Research Article
BibTex RIS Cite
Year 2020, Volume: 3 Issue: 1, 1 - 9, 31.01.2020

Abstract

References

  • Angelis, S., Novak, A.C., Sydney, E.B., Soccol, V.T., Carvalho, J.C., Pandey A., Noseda, D., Tholozan, J.L., Lorquin, J., Soccol, C.R. (2012) Co-Culture of Microalgae, Cyanobacteria and Macromycetes for Exopolysaccharides Production: Process Preliminary Optimization and Partial Characterization. Applied Biochemistry and Biotechnology 167: 1092–1106.
  • Arias, S., Moral, A., Ferrer, M.R., Tallon, R., Quesada, E., Bejar V. (2003) Mauran, an Exopolysaccharide Produced by the Halophilic Bacterium Halomonas Maura, with a Novel Composition and Interesting Properties for Biotechnology. Extremophiles 7: 2003, 319–326.
  • Barbarino, E., Lourenço, S.O. (2005) An Evaluation of Methods for Extraction and Quantification of Protein from Marine Macro and Microalgae. Journal of Applied Phycology 17: 447–460.
  • Bhunia, B., Uday U.S.P., Oinam, G., Mondal, A., Bandyopadhyay, T.K, Tiwari, O.N. (2018) Characterization, Genetic Regulation and Production of Cyanobacterial Exopolysaccharides and Its Applicability for Heavy Metal Removal. Carbohydrate Polymers 179: 228-243.
  • Delattre, C., Pierre, G., Laroche, C., Michaud, P. (2016). Production,extraction and characterization of microalgal and cyanobacterial exopolysaccharides. Biotechnology advances. 34, 1159-1179.
  • De Philippis, R., Colica, G., Micheletti, E. (2011) Exopolysaccharide-Producing Cyanobacteria in Heavy Metal Removal from Water: Molecular Basis and Practical Applicability of the Biosorption Process. Applied Microbiology and Biotechnology 92: 697.
  • De Philippis, R., Margheri, M.C., Materassi, R., Vincenzini, M. (1998) Potential of Unicellular Cyanobacteria from Saline Environments as Exopolysaccharide Producers. Applied and Environmental Microbiology 64: 1130–1132.
  • Donot, F., Fontana, A., Baccoua, J.C., Schorr-Galindo, S. (2012) Microbial Exopolysaccharides: Main Examples of Synthesis, Excretion, Genetics and Extraction. Carbohydrate Polymers 87: 951–962.
  • Frølund. B., Palmgren, R., Keiding, K., Nielsen, P.H. (1996) Extraction of Extracellular Polymers from Activated Sludge Using a Cation Exchange Resin. Water Research 30: 1749–1758.
  • Garlapati, D., Chandrasekaran, M., Devanesan, A., Mathimani, T., Pugazhendhi, A. (2019) Role of Cyanobacteria in Agricultural and Industrial Sectors: An Outlook on Economically Important Byproducts. Applied Microbiology and Biotechnology 103: 4709–4721.
  • Kanamarlapudi, S. L.R. K., Muddada, S. (2017) Characterization of Exopolysaccharide Produced by Streptococcus Thermophilus CC30. BioMed Research International: 2017.
  • Kawaguchi, T., Decho, A.W. (2002) Biochemical Characterization of Cyanobacterial Extracellular Polymers ( EPS ) from Modern Marine Stromatolites ( Bahamas ). Preparative Biochemistry and Biotechnology 32: 51-63
  • Khattar, J. I. S., Singh, D. P., Jindal, N., Kaur, N., Singh, Y., Rahi, P., Gulati, A. (2010) Isolation and Characterization of Exopolysaccharides Produced by the Cyanobacterium Limnothrix Redekei PUPCCC 116. Applied Microbiology and Biotechnology 162: 1327–1338.
  • Klock, J.H., Wieland, A., Seifert, R., Michaelis, W. (2007) Extracellular Polymeric Substances ( EPS ) from Cyanobacterial Mats: Characterisation and Isolation Method Optimisation. Marine Biology 152: 1077–1085.
  • Li, P., Harding, S.E., Liu, Z. (2001) Cyanobacterial Exopolysaccharides: Their Nature and Potential Biotechnological Applications Cyanobacterial Exopolysaccharides: Their Nature and Potential Biotechnological Applications. Biotechnology and Genetic Engineering Reviews 18: 375-404.
  • Llamas, I.,Amjres, H., Mata, J.A., Quesada, E., Béjar, V. (2012) The Potential Biotechnological Applications of the Exopolysaccharide Produced by the Halophilic Bacterium Halomonas Almeriensis. Molecules 17: 7103–7120.
  • Mandal, S.K., Singh, R.P., Patel V. (2011) Isolation and Characterization of Exopolysaccharide Secreted by a Toxic Dinoflagellate , Amphidinium Carterae Hulburt 1957 and Its Probable Role in Harmful Algal Blooms ( HABs ). Microbial ecology 62: 518–527.
  • Masukoa, T., Minami, A., Iwasaki, N., Majimab, T., Nishimura, S.I., Lee, Y.C. (2005) Carbohydrate Analysis by a Phenol-Sulfuric Acid Method in Microplate Format. Analytical Biochemistry 339: 69–72.
  • Moronea, J., Alfeusa, A., Vasconcelosa, V., Martins, R. (2019) Revealing the Potential of Cyanobacteria in Cosmetics and Cosmeceuticals — A New Bioactive Approach. Algal Research 41: 101541.
  • Mota, R., Guimarãesa, R., Büttel, Z., Rossi, F., Colica, G., Silva, C.J., Santos, C., Galesa, L., Zillea, A., De Philippis, R., Pereiraa, s.B., Tamagni, P. (2013) Production and Characterization of Extracellular Carbohydrate Polymer from Cyanothece Sp. CCY 0110. Carbohydrate Polymers 92: 1408–1415.
  • Mota, R., Rossi, F., Andrenelli, L., Pereira, S.B., De Philippis, R., Tamagni, P. (2016) Released Polysaccharides (RPS) from Cyanothece Sp. CCY 0110 as Biosorbent for Heavy Metals Bioremediation: Interactions between Metals and RPS Binding Sites. Applied Microbiology and Biotechnology 100: 7765–7775.
  • Ohki, K., Le N. Q. T., Oshikawa, S., Kanesaki, Y., Okajima, M., Kaneko, T., Thi, T.H., (2014) Exopolysaccharide Production by a Unicellular Freshwater Cyanobacterium Cyanothece Sp . Isolated from a Rice Field in Vietnam. Journal of Applied Phycology 26: 265–272.
  • De Jesús Paniagua-Michel, J., Olmos-Soto, J., Morales-Guerrero, E.R. (2014) Algal and Microbial Exopolysaccharides: New Insights as Biosurfactants and Bioemulsifiers. Vol. Advances in Food and Nutrition Research 73: 221-257.
  • Parikh, A., Madamwar, D. (2006) Partial Characterization of Extracellular Polysaccharides from Cyanobacteria. Bioresource Technology 97: 1822–1827. Richert, L., Golubic, S., Le Guédès, R., Ratiskol, J., Payri, C., Guezennec, J. (2005) Characterization of Exopolysaccharides Produced by Cyanobacteria Isolated from Polynesian Microbial Mats. Current Microbiology 51: 379–84.
  • Sathiyanarayanan, G., Bhatia, S.K., Joong Kim, H.J., Kim, J., Jeon,J., Kim, Y., Park, S., Hyun Lee, S.,Kyung Lee, Y., Yang, Y. (2016) Metal Removal and Reduction Potential of an Exopolysaccharide Produced by Arctic Psychrotrophic Bacterium: Pseudomonas Sp. PAMC 28620. RSC Advances 6: 96870–96881.
  • Singh, S., Kant, C., Yadav, R.K., Reddy, Y.P., Abraham, G. (2019) Cyanobacterial Exopolysaccharides : Composition, Biosynthesis and Biotechnological Applications. Cyanobacteria: 347-358.
  • Singh, S., Verma, E., Niveshika, Tiwari, B., Mishra1, A.K. (2016) Exopolysaccharide Production in Anabaena Sp. PCC 7120 under Different CaCl 2 Regimes. Physiology and Molecular Biology of Plants 22: 557–566.
  • Stanier, R.Y., Kunisawa, R., Mandel, M., Cohen-Bazire, G. (1971) Purification and Properties of Unicellular Blue-Green Algae (Order Chroococcales). Bacterological Reviews 35:171-205.
  • Sun, M., Li, W., Yu, H., Harada, H. (2012) A Novel Integrated Approach to Quantitatively Evaluate the Efficiency of Extracellular Polymeric Substances ( EPS ) Extraction Process. Applied Microbiology and Biotechnology 96: 1577–1585.
  • Nicolaus, B., Kambourova, M., Oner, E.T. (2010) Exopolysaccharides from Extremophiles : From Fundamentals to Biotechnology. Environmental Technology 31: 1145-1158.
  • Tiwari, O.N., Khangembam, R., Shamjetshabam, M., Sharma, A.S., Oinam, G., Brand, J.J. (2015) Characterization and Optimization of Bioflocculant Exopolysaccharide Production by Cyanobacteria Nostoc Sp. BTA97 and Anabaena Sp . BTA990 in Culture Conditions. Applied Biochemistry and Biotechnology 176: 1950–63.
  • Waterborg, J.H., Matthews, H.R. (1984) The Lowry Method for Protein Quantitation. Methods in Molecular Biology 1: 1–3.
  • Yilmaz, M., Foss, A. J., Selwood, A. I., Özen, M., Boundy, M. (2018). Paralytic shellfish toxin producing Aphanizomenon gracile strains isolated from Lake Iznik, Turkey. Toxicon 148: 132-142.
  • Yim, J.H., Kim, S.J., Ahn, S.H., Lee, C.K., Rhie, K.T., Lee, H.K. (2004) Antiviral Effects of Sulfated Exopolysaccharide from the Marine Microalga Gyrodinium Impudicum Strain. Marine Biotechnology 6: 17–25.

Investigation of Exopolysaccharide Production Capacities of Cyanobacterial Strains Isolated from Lake Uluabat, Turkey

Year 2020, Volume: 3 Issue: 1, 1 - 9, 31.01.2020

Abstract

Exopolysaccharides (EPS), important metabolites of microalgae and cyanobacteria, can be used as food additives, drug active substances, and in detergents, adhesives, and waste water treatment processes. Cyanobacterial EPSs are divided into two groups: the first group includes EPSs which are associated with the cell membrane (capsular, sheath), while the second group EPSs are released into the culture medium. The capsular polysaccharides can be found in the form of a sheath, capsule or mucilage. Cyanobacterial EPSs are heteropolymer structures consisting of monosaccharides, lipids, proteins and DNA. In this study, chemical characterization and metal binding properties of 3 different cyanobacterial (Cyanobium sp., Anabaena sp. and Limnothrix sp.) EPSs were investigated. Total protein concentrations ranged between 98,8 mg g-1 and 171,6 mg g-1 and total carbohydrate concentrations ranged between 252,1 mg g-1 and 320,5 mg g-1 per dry weight of the cyanobacterial EPS prepared in the study. Elemental compositions and metal (Cu+2, Cr+6 and Ni+2) adsorption properties of EPSs were determined with SEM-EDS analysis. According to elemental analysis EPS molecules mainly contained carbon (35,63-65,12%) and oxygen (21,39-40,27%).

References

  • Angelis, S., Novak, A.C., Sydney, E.B., Soccol, V.T., Carvalho, J.C., Pandey A., Noseda, D., Tholozan, J.L., Lorquin, J., Soccol, C.R. (2012) Co-Culture of Microalgae, Cyanobacteria and Macromycetes for Exopolysaccharides Production: Process Preliminary Optimization and Partial Characterization. Applied Biochemistry and Biotechnology 167: 1092–1106.
  • Arias, S., Moral, A., Ferrer, M.R., Tallon, R., Quesada, E., Bejar V. (2003) Mauran, an Exopolysaccharide Produced by the Halophilic Bacterium Halomonas Maura, with a Novel Composition and Interesting Properties for Biotechnology. Extremophiles 7: 2003, 319–326.
  • Barbarino, E., Lourenço, S.O. (2005) An Evaluation of Methods for Extraction and Quantification of Protein from Marine Macro and Microalgae. Journal of Applied Phycology 17: 447–460.
  • Bhunia, B., Uday U.S.P., Oinam, G., Mondal, A., Bandyopadhyay, T.K, Tiwari, O.N. (2018) Characterization, Genetic Regulation and Production of Cyanobacterial Exopolysaccharides and Its Applicability for Heavy Metal Removal. Carbohydrate Polymers 179: 228-243.
  • Delattre, C., Pierre, G., Laroche, C., Michaud, P. (2016). Production,extraction and characterization of microalgal and cyanobacterial exopolysaccharides. Biotechnology advances. 34, 1159-1179.
  • De Philippis, R., Colica, G., Micheletti, E. (2011) Exopolysaccharide-Producing Cyanobacteria in Heavy Metal Removal from Water: Molecular Basis and Practical Applicability of the Biosorption Process. Applied Microbiology and Biotechnology 92: 697.
  • De Philippis, R., Margheri, M.C., Materassi, R., Vincenzini, M. (1998) Potential of Unicellular Cyanobacteria from Saline Environments as Exopolysaccharide Producers. Applied and Environmental Microbiology 64: 1130–1132.
  • Donot, F., Fontana, A., Baccoua, J.C., Schorr-Galindo, S. (2012) Microbial Exopolysaccharides: Main Examples of Synthesis, Excretion, Genetics and Extraction. Carbohydrate Polymers 87: 951–962.
  • Frølund. B., Palmgren, R., Keiding, K., Nielsen, P.H. (1996) Extraction of Extracellular Polymers from Activated Sludge Using a Cation Exchange Resin. Water Research 30: 1749–1758.
  • Garlapati, D., Chandrasekaran, M., Devanesan, A., Mathimani, T., Pugazhendhi, A. (2019) Role of Cyanobacteria in Agricultural and Industrial Sectors: An Outlook on Economically Important Byproducts. Applied Microbiology and Biotechnology 103: 4709–4721.
  • Kanamarlapudi, S. L.R. K., Muddada, S. (2017) Characterization of Exopolysaccharide Produced by Streptococcus Thermophilus CC30. BioMed Research International: 2017.
  • Kawaguchi, T., Decho, A.W. (2002) Biochemical Characterization of Cyanobacterial Extracellular Polymers ( EPS ) from Modern Marine Stromatolites ( Bahamas ). Preparative Biochemistry and Biotechnology 32: 51-63
  • Khattar, J. I. S., Singh, D. P., Jindal, N., Kaur, N., Singh, Y., Rahi, P., Gulati, A. (2010) Isolation and Characterization of Exopolysaccharides Produced by the Cyanobacterium Limnothrix Redekei PUPCCC 116. Applied Microbiology and Biotechnology 162: 1327–1338.
  • Klock, J.H., Wieland, A., Seifert, R., Michaelis, W. (2007) Extracellular Polymeric Substances ( EPS ) from Cyanobacterial Mats: Characterisation and Isolation Method Optimisation. Marine Biology 152: 1077–1085.
  • Li, P., Harding, S.E., Liu, Z. (2001) Cyanobacterial Exopolysaccharides: Their Nature and Potential Biotechnological Applications Cyanobacterial Exopolysaccharides: Their Nature and Potential Biotechnological Applications. Biotechnology and Genetic Engineering Reviews 18: 375-404.
  • Llamas, I.,Amjres, H., Mata, J.A., Quesada, E., Béjar, V. (2012) The Potential Biotechnological Applications of the Exopolysaccharide Produced by the Halophilic Bacterium Halomonas Almeriensis. Molecules 17: 7103–7120.
  • Mandal, S.K., Singh, R.P., Patel V. (2011) Isolation and Characterization of Exopolysaccharide Secreted by a Toxic Dinoflagellate , Amphidinium Carterae Hulburt 1957 and Its Probable Role in Harmful Algal Blooms ( HABs ). Microbial ecology 62: 518–527.
  • Masukoa, T., Minami, A., Iwasaki, N., Majimab, T., Nishimura, S.I., Lee, Y.C. (2005) Carbohydrate Analysis by a Phenol-Sulfuric Acid Method in Microplate Format. Analytical Biochemistry 339: 69–72.
  • Moronea, J., Alfeusa, A., Vasconcelosa, V., Martins, R. (2019) Revealing the Potential of Cyanobacteria in Cosmetics and Cosmeceuticals — A New Bioactive Approach. Algal Research 41: 101541.
  • Mota, R., Guimarãesa, R., Büttel, Z., Rossi, F., Colica, G., Silva, C.J., Santos, C., Galesa, L., Zillea, A., De Philippis, R., Pereiraa, s.B., Tamagni, P. (2013) Production and Characterization of Extracellular Carbohydrate Polymer from Cyanothece Sp. CCY 0110. Carbohydrate Polymers 92: 1408–1415.
  • Mota, R., Rossi, F., Andrenelli, L., Pereira, S.B., De Philippis, R., Tamagni, P. (2016) Released Polysaccharides (RPS) from Cyanothece Sp. CCY 0110 as Biosorbent for Heavy Metals Bioremediation: Interactions between Metals and RPS Binding Sites. Applied Microbiology and Biotechnology 100: 7765–7775.
  • Ohki, K., Le N. Q. T., Oshikawa, S., Kanesaki, Y., Okajima, M., Kaneko, T., Thi, T.H., (2014) Exopolysaccharide Production by a Unicellular Freshwater Cyanobacterium Cyanothece Sp . Isolated from a Rice Field in Vietnam. Journal of Applied Phycology 26: 265–272.
  • De Jesús Paniagua-Michel, J., Olmos-Soto, J., Morales-Guerrero, E.R. (2014) Algal and Microbial Exopolysaccharides: New Insights as Biosurfactants and Bioemulsifiers. Vol. Advances in Food and Nutrition Research 73: 221-257.
  • Parikh, A., Madamwar, D. (2006) Partial Characterization of Extracellular Polysaccharides from Cyanobacteria. Bioresource Technology 97: 1822–1827. Richert, L., Golubic, S., Le Guédès, R., Ratiskol, J., Payri, C., Guezennec, J. (2005) Characterization of Exopolysaccharides Produced by Cyanobacteria Isolated from Polynesian Microbial Mats. Current Microbiology 51: 379–84.
  • Sathiyanarayanan, G., Bhatia, S.K., Joong Kim, H.J., Kim, J., Jeon,J., Kim, Y., Park, S., Hyun Lee, S.,Kyung Lee, Y., Yang, Y. (2016) Metal Removal and Reduction Potential of an Exopolysaccharide Produced by Arctic Psychrotrophic Bacterium: Pseudomonas Sp. PAMC 28620. RSC Advances 6: 96870–96881.
  • Singh, S., Kant, C., Yadav, R.K., Reddy, Y.P., Abraham, G. (2019) Cyanobacterial Exopolysaccharides : Composition, Biosynthesis and Biotechnological Applications. Cyanobacteria: 347-358.
  • Singh, S., Verma, E., Niveshika, Tiwari, B., Mishra1, A.K. (2016) Exopolysaccharide Production in Anabaena Sp. PCC 7120 under Different CaCl 2 Regimes. Physiology and Molecular Biology of Plants 22: 557–566.
  • Stanier, R.Y., Kunisawa, R., Mandel, M., Cohen-Bazire, G. (1971) Purification and Properties of Unicellular Blue-Green Algae (Order Chroococcales). Bacterological Reviews 35:171-205.
  • Sun, M., Li, W., Yu, H., Harada, H. (2012) A Novel Integrated Approach to Quantitatively Evaluate the Efficiency of Extracellular Polymeric Substances ( EPS ) Extraction Process. Applied Microbiology and Biotechnology 96: 1577–1585.
  • Nicolaus, B., Kambourova, M., Oner, E.T. (2010) Exopolysaccharides from Extremophiles : From Fundamentals to Biotechnology. Environmental Technology 31: 1145-1158.
  • Tiwari, O.N., Khangembam, R., Shamjetshabam, M., Sharma, A.S., Oinam, G., Brand, J.J. (2015) Characterization and Optimization of Bioflocculant Exopolysaccharide Production by Cyanobacteria Nostoc Sp. BTA97 and Anabaena Sp . BTA990 in Culture Conditions. Applied Biochemistry and Biotechnology 176: 1950–63.
  • Waterborg, J.H., Matthews, H.R. (1984) The Lowry Method for Protein Quantitation. Methods in Molecular Biology 1: 1–3.
  • Yilmaz, M., Foss, A. J., Selwood, A. I., Özen, M., Boundy, M. (2018). Paralytic shellfish toxin producing Aphanizomenon gracile strains isolated from Lake Iznik, Turkey. Toxicon 148: 132-142.
  • Yim, J.H., Kim, S.J., Ahn, S.H., Lee, C.K., Rhie, K.T., Lee, H.K. (2004) Antiviral Effects of Sulfated Exopolysaccharide from the Marine Microalga Gyrodinium Impudicum Strain. Marine Biotechnology 6: 17–25.
There are 34 citations in total.

Details

Primary Language English
Subjects Hydrobiology
Journal Section Research Articles
Authors

Kübra Şentürk

Mete Yılmaz 0000-0002-0982-727X

Publication Date January 31, 2020
Submission Date December 4, 2019
Published in Issue Year 2020 Volume: 3 Issue: 1

Cite

APA Şentürk, K., & Yılmaz, M. (2020). Investigation of Exopolysaccharide Production Capacities of Cyanobacterial Strains Isolated from Lake Uluabat, Turkey. Mediterranean Fisheries and Aquaculture Research, 3(1), 1-9. https://doi.org//medfar.v3i52185.654636

MedFAR is published by Mersin University, Faculty of Fisheries in English and Turkish. MedFAR does not apply any kind of publication charges.  

Articles Published in MedFAR are Licensed under Creative Common Licence

by-nc.svg


Flag Counter