Research Article
BibTex RIS Cite
Year 2020, Volume: 3 Issue: 2, 75 - 81, 31.05.2020

Abstract

References

  • Abràmoff, M. D., Magalhães, P. J., Ram, S. J. (2004) Image processing with imageJ. Biophotonics International, 11: 36–41.
  • Borowitzka, M. A., Borowitzka, L. J., Kessly, D. (1990) Effects of salinity increase on carotenoid accumulation in the green alga Dunaliella salina. Journal of Applied Phycology, 2: 111–119.
  • Chu, W. L. (2012) Biotechnological applications of microalgae. IeJSME, 6, pp. 24-37.
  • Edler, L., Elbrächter, M. (2010) The Utermöhl method for quantitative phytoplankton analysis, in: Karlson, B.; Cusack, C. and Bresnan, E. (Eds.), Microscopic and molecular methods for quantitative phytoplankton analysis. Paris, France, UNESCO, 110pp.
  • Ferrando, N. S., Benítez, H. H., Gabellone, N. A., Claps, M. C., Altamirano, P. R. (2011) A quick and effective estimation of algal density by turbidimetry developed with Chlorella vulgaris cultures. Limnetica, 29;397–406.
  • Gentleman, R. (2008) R programming for bioinformatics, Chapman and Hall/CRC, Seattle, Washington, U.S.A.
  • Grishagin, I. V. (2015) Automatic cell counting with ImageJ. Analytical Biochemistry, 473: 63–65.
  • Guedes, A. C., Amaro, H. M., Malcata, F. X. (2011) Microalgae as sources of carotenoids. Marine drugs, 9: 625-644.
  • Guillard, R. R., Sieracki, M. S. (2005) Counting cells in cultures with the light microscope, in: Andersen, R. A. (Ed.), Algal culturing techniques. Elsevier, UK, pp. 239-252.
  • Hötzel, G., Croome, R. (1999) A phytoplankton methods manual for Australian freshwaters, LWRRDC Occesional Paper 22/99, Australia.
  • Lee, R. E. (2018) Phycology, fourth ed. Cambridge University Press, Colorado State University, USA.
  • Lund, J. W. G., Kipling, C., Le Cren, E. D. (1958) The inverted microscope method of estimating algal numbers and the statistical basis of estimations by counting. Hydrobiologia, 11: 143–170.
  • Markovits, A., Gianelli, M. P., Conejeros, R., Erazo, S. (1993) Strain selection for β-carotene production by Dunaliella. World Journal of Microbiology and Biotechnology, 9: 534–537.
  • O'Brien, J., Hayder, H., Peng, C. (2016) Automated quantification and analysis of cell counting procedures using ImageJ plugins. JoVE (Journal of Visualized Experiments), (117), e54719.
  • Moheimani, N. R., Borowitzka, M. A., Isdepsky, A., Sing, S. F. (2013) Standard methods for measuring growth of algae and their composition. In Algae for biofuels and energy, pp. 265-284. Springer, Dordrecht.
  • Schlipalius, L. (1991) The extensive commercial cultivation of Dunaliella salina. Bioresource Technology, 38 :241–243.
  • Schultz, S. G. (1987) U.S. Patent No. 4,687,329. Washington, DC: U.S. Patent and Trademark Office.
  • Thomas, C. R., Paul, G. C. (1996) Applications of image analysis in cell technology. Current Opinion in Biotechnology, 7: 35–45.
  • Tompkins, J., MM (Mitzi) De Ville, Day, J. G., Turner, M. F. (1995) Culture Collection of Algae and Protozoa: Catalogue of Strains.

ASSESSMENT OF CELL COUNTING METHOD BASED ON IMAGE PROCESSING FOR A MICROALGA CULTURE

Year 2020, Volume: 3 Issue: 2, 75 - 81, 31.05.2020

Abstract

Routine monitoring of microalgal growth requires the use of one of several methods such as cell counting under the microscope and measuring optical density (OD) with a spectrophotometer. Each of these methods has their advantages and disadvantages. For example, counting cells under the microscope can be time consuming, but it provides the best estimate of cell growth. Measuring OD is much quicker, however it doesn’t provide any information on cell numbers and debris in culture can interfere with OD measurements. Therefore, this study aimed to demonstrate the usefulness of an image processing approach for counting cells in a microalga culture. Results showed that highest correlations were observed between Utermöhl cell counts and OD measurements (r=0.99), ImageJ cell counts and OD measurements (r=0.99) and between Utermöhl and ImageJ cell counts (r=0.99). In the regression analysis, highest R2 values were obtained for Utermöhl vs OD (R2=0.99) and ImageJ vs OD (R2=0.99). Counting algal cells with ImageJ allows the analyst to complete the procedure 4 times faster than with manual Utermöhl procedure.

References

  • Abràmoff, M. D., Magalhães, P. J., Ram, S. J. (2004) Image processing with imageJ. Biophotonics International, 11: 36–41.
  • Borowitzka, M. A., Borowitzka, L. J., Kessly, D. (1990) Effects of salinity increase on carotenoid accumulation in the green alga Dunaliella salina. Journal of Applied Phycology, 2: 111–119.
  • Chu, W. L. (2012) Biotechnological applications of microalgae. IeJSME, 6, pp. 24-37.
  • Edler, L., Elbrächter, M. (2010) The Utermöhl method for quantitative phytoplankton analysis, in: Karlson, B.; Cusack, C. and Bresnan, E. (Eds.), Microscopic and molecular methods for quantitative phytoplankton analysis. Paris, France, UNESCO, 110pp.
  • Ferrando, N. S., Benítez, H. H., Gabellone, N. A., Claps, M. C., Altamirano, P. R. (2011) A quick and effective estimation of algal density by turbidimetry developed with Chlorella vulgaris cultures. Limnetica, 29;397–406.
  • Gentleman, R. (2008) R programming for bioinformatics, Chapman and Hall/CRC, Seattle, Washington, U.S.A.
  • Grishagin, I. V. (2015) Automatic cell counting with ImageJ. Analytical Biochemistry, 473: 63–65.
  • Guedes, A. C., Amaro, H. M., Malcata, F. X. (2011) Microalgae as sources of carotenoids. Marine drugs, 9: 625-644.
  • Guillard, R. R., Sieracki, M. S. (2005) Counting cells in cultures with the light microscope, in: Andersen, R. A. (Ed.), Algal culturing techniques. Elsevier, UK, pp. 239-252.
  • Hötzel, G., Croome, R. (1999) A phytoplankton methods manual for Australian freshwaters, LWRRDC Occesional Paper 22/99, Australia.
  • Lee, R. E. (2018) Phycology, fourth ed. Cambridge University Press, Colorado State University, USA.
  • Lund, J. W. G., Kipling, C., Le Cren, E. D. (1958) The inverted microscope method of estimating algal numbers and the statistical basis of estimations by counting. Hydrobiologia, 11: 143–170.
  • Markovits, A., Gianelli, M. P., Conejeros, R., Erazo, S. (1993) Strain selection for β-carotene production by Dunaliella. World Journal of Microbiology and Biotechnology, 9: 534–537.
  • O'Brien, J., Hayder, H., Peng, C. (2016) Automated quantification and analysis of cell counting procedures using ImageJ plugins. JoVE (Journal of Visualized Experiments), (117), e54719.
  • Moheimani, N. R., Borowitzka, M. A., Isdepsky, A., Sing, S. F. (2013) Standard methods for measuring growth of algae and their composition. In Algae for biofuels and energy, pp. 265-284. Springer, Dordrecht.
  • Schlipalius, L. (1991) The extensive commercial cultivation of Dunaliella salina. Bioresource Technology, 38 :241–243.
  • Schultz, S. G. (1987) U.S. Patent No. 4,687,329. Washington, DC: U.S. Patent and Trademark Office.
  • Thomas, C. R., Paul, G. C. (1996) Applications of image analysis in cell technology. Current Opinion in Biotechnology, 7: 35–45.
  • Tompkins, J., MM (Mitzi) De Ville, Day, J. G., Turner, M. F. (1995) Culture Collection of Algae and Protozoa: Catalogue of Strains.
There are 19 citations in total.

Details

Primary Language English
Subjects Hydrobiology
Journal Section Research Articles
Authors

Vesile Esra Dökümcüoğlu

Mete Yılmaz 0000-0002-0982-727X

Publication Date May 31, 2020
Submission Date December 14, 2019
Published in Issue Year 2020 Volume: 3 Issue: 2

Cite

APA Dökümcüoğlu, V. E., & Yılmaz, M. (2020). ASSESSMENT OF CELL COUNTING METHOD BASED ON IMAGE PROCESSING FOR A MICROALGA CULTURE. Mediterranean Fisheries and Aquaculture Research, 3(2), 75-81. https://doi.org//medfar.v3i54660.659398

MedFAR is published by Mersin University, Faculty of Fisheries in English and Turkish. MedFAR does not apply any kind of publication charges.  

Articles Published in MedFAR are Licensed under Creative Common Licence

by-nc.svg


Flag Counter