Research Article
BibTex RIS Cite

Kanatlı çizel pullukta kullanılan kanatlarda farklı ağız yapılarının, ilerleme hızının ve iş derinliğinin çeki kuvveti üzerine etkisinin belirlenmesi

Year 2017, Volume: 30 Issue: 3, 219 - 225, 01.12.2017
https://doi.org/10.29136/mediterranean.359833

Abstract

Toprak işleme aletlerinin analizinde ve tasarımında
üzerinde durulan parametrelerden biri çeki kuvvetinin azaltılmasıdır. Çizel
gibi büyük çeki kuvveti gerektiren toprak işleme aletlerinde bu daha
önemlidir. Bu çalışma ile kanatlı çizelin kanat ağız
yapısındaki değişik formların (K1, K2, K3 ve K4) özgül çeki kuvvetine olan
etkileri incelenmiştir. K1 kanat yapısı düz bir ağza sahip olup geleneksel
kullanılan kanat yapısına benzemektedir. K2, K3 ve
K4 kanat ağızları ise
farklı açılara sahip diş formundadır. Çalışmalar toprak kanalında
yürütülmüştür. Bu kanatlar üç farklı ilerleme hızında
(0.12
m s
-1, 0.20 m s-1 ve 0.28 m s-1)
ve üç farklı iş derinliğinde (10 cm, 15 cm ve 20 cm)
denenmiştir. Kanat formunun özgül çeki kuvveti üzerine etkileri istatistiksel
olarak önemli bulunmuştur. En yüksek özgül çeki kuvvetinin düz ağızlı kanatta
(K1) meydana geldiği (1.25 N cm
-2) ve en düşük özgül çeki
kuvvetinin (1.03 N cm
-2) dar açılı dişlere sahip kanatta (K4)
meydana geldiği görülmüştür. İlerleme hızının ve iş derinliğinin artması özgül
çeki kuvvetini önemli derecede artırmıştır.

References

  • Al-Suhaibani SA, Ghaly AE (2013) Comparative study of the kinetic parameters of three chisel plows operating at different depths and forward speed in a sandy soil. The International Journal of Engineering and Science 2: 42-59.
  • Armin A (2014) Mechanics of soil-blade interaction. PhD Thesis, Department of Mechanical Engineering University of Saskatchewan, Saskatoon.
  • Arvidsson J, Keller T, Gustafsson K (2004) Specific draught for moldboard plough, chisel plough and disc harrow at different water contents. Soil and Tillage Research 79: 221-231.
  • ASAE (2003) ASAE Standard D497.4: Agricultural Machinery Management Data. ASAE, St. Joseph, Michigan, USA.
  • Aykas E, Yalçın H, Çakır E (2005) Koruyucu toprak işleme yöntemleri ve doğrudan ekim. Ege Üniversitesi Ziraat Fakültesi Dergisi 42(3): 195-205.
  • Boydaş MG (2004) Buğday tarımında kullanılan bazı birincil toprak işleme aletlerinde değişik yapısal özelliklerin toprağın fiziksel özelliklerine, iş başarısına, çeki gücü ve yakıt tüketimine etkileri. Doktora tezi, Atatürk Üniversitesi Fen Bilimleri Enstitüsü Tarım Makinaları ABD.
  • Desbiolles JMA, Godwin RJ, Kilgour J, Blackmore BS (1997) A novel approach to the prediction of tillage tool draught using a standard tine. J. Agric. Engng Res. 66: 295-309.
  • Gao HW, Li HW, Chen JD (1999) Research on sustainable mechanized dryland farming. Agric. Res. Arid Areas 1: 57–62.
  • Gupta PD, Gupta CP, Pandey KP (1989) An analytical model for predicting draft forces on convex type cutting blades. Soil and Tillage Research 14: 131-44.
  • Kees G (2008) Using subsoiling to reduce soil compaction. USDA Forest Service Technology and Development Program Missoula, MT. http://www.fs.fed.us/t-d/pubs/pdfpubs/pdf08342828/pdf08342828dpi72.pdf. Erişim 15 Mayıs 2016.
  • Koller I (2003) Techniques of soil tillage 1-25 p. In: Adel El Titi (Ed.). Soil tillage in agroecosystems, CRC Press, Boca Raton.
  • Korucu T, Kirişçi V, Görücü S (1998) Korumalı toprak işleme ve Türkiye’deki uygulamaları. 18. Ulusal Tarımsal Mekanizasyon Kongresi Bildiriler Kitabı, 321-333, Tekirdağ.
  • Kushwaha RL, Chi L, Shen J (1993) Analytical and numerical models for predicting soil forces on narrow tillage tools- A Review. Canadian Agricultural Engineering 35(3): 183-193.
  • Lal R (1989) Conservation tillage for sustainable agriculture: tropics vs. temperate environments. Advances in Agronomy 42: 8–197.
  • Li M, Yang Y, Guo L, Chen D, Sun H, Tong J (2015) Design and analysis of bionic cutting blades using finite element method. Applied Bionics and Biomechanics 2: 1-7.
  • Ndisya J, Gitau A, Mbuge D, Hiuhu A (2016) The effect of the operational parameters on the draft requirement of ripping in a sandy clay soil. Open Journal of Optimization 5: 1-13.
  • Neisy A, Jamshidi AR, Tayari E, Attaie P (2014) Introduction to the energy requirements by a tillage tool. WALIA Journal 30(1): 35-38.
  • Osman TO, Zaied MB, El Naim AM (2014) Field performance of a modified chisel plow. International Journal of Natural Sciences Research 2(6): 85-96.
  • Owen GT (1989) Subsoiling forces and tool speed in compact soils. Canadian Agricultural Engineering 31(1): 15-20.
  • Payne PC (1956) The relationship between the mechanical properties of soil and the performance of simple cultivation implements. J. Agric. Engng Res. 1: 23-50.
  • Rahman S, Chen Y (2001) Laboratory investigation of cutting forces and soil disturbance resulting from different manure incorporation tools in a loam sand soil. Soil and Tillage Research 58(1): 19-29.
  • Raper RL (2005) Subsoiler shapes for site−specific tillage. Applied Engineering in Agriculture 21(1): 25−30.
  • Rowe RJ, Barnes KK (1961) Influence of speed on elements of draft of a tillage tool. Transaction of ASAE 4(1): 55-57.
  • Salar MR, Esehaghbeygi A, Hemmat A (2013) Soil loosening characteristics of a dual bent blade subsurface tillage implement. Soil and Tillage Research 134: 17-24.
  • Saunders CR, Godwin J, O’Dogherty MJ (2000) Prediction of soil forces acting on mouldboard ploughs. Fourth International Conference on Soil Dynamics, Adelaide, Australia, March, 26-30.
  • Siemens JC, Weber JA, Thornburn TH (1965) Mechanics of soil as influenced by model tillage tools. Transaction of ASAE 8(1): 1-7.
  • Subbulakshmi S, Harisudan C, Saravanan C, Subbian P (2009) Conservation tillage an eco friendly management practices for agriculture. Research Journal of Agriculture and Biological Sciences 5(6): 1098–1103.
  • Vakali C, Zaller JG, Kopke U (2011) Reduced tillage effects on soil properties and growth of cereals and associated weeds under organic farming. Soil and Tillage Research 111: 133- 141.
  • Wang XY, Gao HW, Li HW, Zhou XX (2000) Experimental study on runoff and erosion under conservation tillage. Transaction of ASAE 3: 66–69.
  • Van Muysen W, Govers G, Van Oost K, Van Rompaey A (2000) The effect of tillage depth, tillage speed and soil condition on chisel tillage erosivity. Journal of Soil and Water Conservation 55(3): 355-364.
  • Zadeh SRA (2006) Modelling of energy requirements by A narrow tillage tool. PhD Thesis, Department of Agricultural and Bioresource Engineering University of Saskatchewan, Saskatoon.

Determination of effect of different wing mouth forms, different travelling speeds and different working depths on draft force in wings used in winged chisel plough

Year 2017, Volume: 30 Issue: 3, 219 - 225, 01.12.2017
https://doi.org/10.29136/mediterranean.359833

Abstract

One of the parameters contemplated in analysis and design of soil tillage tools is the reduction of draft force. This is more important for soil tillage tools as chisel shank which needs large draft force. In this research, effect of various wing mouth forms (K1, K2, K3 ve K4) on specific draft of winged chisel was examined. K1 wing mouth form which has a smooth mouth is similar to the form used conventional wings. K2, K3 and K4 wing mouth forms are the form of teeth with different angles. The study was conducted in soil bin. These wings were tested at three different travelling speeds (0.12 m s-1, 0.20 m s-1 and 0.28 m s-1) and three different working depths (10 cm, 15 cm and 20 cm). Specific draft force was significantly affected from the wing forms. The highest specific draft force (1.25 N cm-2) obtained from the smooth mouth wing (K1), and the lowest specific draft force (1.03 N cm-2) occurred with the narrow angle teeth wing. An increase in travelling speed and working depth significantly increased the specific draft force.

References

  • Al-Suhaibani SA, Ghaly AE (2013) Comparative study of the kinetic parameters of three chisel plows operating at different depths and forward speed in a sandy soil. The International Journal of Engineering and Science 2: 42-59.
  • Armin A (2014) Mechanics of soil-blade interaction. PhD Thesis, Department of Mechanical Engineering University of Saskatchewan, Saskatoon.
  • Arvidsson J, Keller T, Gustafsson K (2004) Specific draught for moldboard plough, chisel plough and disc harrow at different water contents. Soil and Tillage Research 79: 221-231.
  • ASAE (2003) ASAE Standard D497.4: Agricultural Machinery Management Data. ASAE, St. Joseph, Michigan, USA.
  • Aykas E, Yalçın H, Çakır E (2005) Koruyucu toprak işleme yöntemleri ve doğrudan ekim. Ege Üniversitesi Ziraat Fakültesi Dergisi 42(3): 195-205.
  • Boydaş MG (2004) Buğday tarımında kullanılan bazı birincil toprak işleme aletlerinde değişik yapısal özelliklerin toprağın fiziksel özelliklerine, iş başarısına, çeki gücü ve yakıt tüketimine etkileri. Doktora tezi, Atatürk Üniversitesi Fen Bilimleri Enstitüsü Tarım Makinaları ABD.
  • Desbiolles JMA, Godwin RJ, Kilgour J, Blackmore BS (1997) A novel approach to the prediction of tillage tool draught using a standard tine. J. Agric. Engng Res. 66: 295-309.
  • Gao HW, Li HW, Chen JD (1999) Research on sustainable mechanized dryland farming. Agric. Res. Arid Areas 1: 57–62.
  • Gupta PD, Gupta CP, Pandey KP (1989) An analytical model for predicting draft forces on convex type cutting blades. Soil and Tillage Research 14: 131-44.
  • Kees G (2008) Using subsoiling to reduce soil compaction. USDA Forest Service Technology and Development Program Missoula, MT. http://www.fs.fed.us/t-d/pubs/pdfpubs/pdf08342828/pdf08342828dpi72.pdf. Erişim 15 Mayıs 2016.
  • Koller I (2003) Techniques of soil tillage 1-25 p. In: Adel El Titi (Ed.). Soil tillage in agroecosystems, CRC Press, Boca Raton.
  • Korucu T, Kirişçi V, Görücü S (1998) Korumalı toprak işleme ve Türkiye’deki uygulamaları. 18. Ulusal Tarımsal Mekanizasyon Kongresi Bildiriler Kitabı, 321-333, Tekirdağ.
  • Kushwaha RL, Chi L, Shen J (1993) Analytical and numerical models for predicting soil forces on narrow tillage tools- A Review. Canadian Agricultural Engineering 35(3): 183-193.
  • Lal R (1989) Conservation tillage for sustainable agriculture: tropics vs. temperate environments. Advances in Agronomy 42: 8–197.
  • Li M, Yang Y, Guo L, Chen D, Sun H, Tong J (2015) Design and analysis of bionic cutting blades using finite element method. Applied Bionics and Biomechanics 2: 1-7.
  • Ndisya J, Gitau A, Mbuge D, Hiuhu A (2016) The effect of the operational parameters on the draft requirement of ripping in a sandy clay soil. Open Journal of Optimization 5: 1-13.
  • Neisy A, Jamshidi AR, Tayari E, Attaie P (2014) Introduction to the energy requirements by a tillage tool. WALIA Journal 30(1): 35-38.
  • Osman TO, Zaied MB, El Naim AM (2014) Field performance of a modified chisel plow. International Journal of Natural Sciences Research 2(6): 85-96.
  • Owen GT (1989) Subsoiling forces and tool speed in compact soils. Canadian Agricultural Engineering 31(1): 15-20.
  • Payne PC (1956) The relationship between the mechanical properties of soil and the performance of simple cultivation implements. J. Agric. Engng Res. 1: 23-50.
  • Rahman S, Chen Y (2001) Laboratory investigation of cutting forces and soil disturbance resulting from different manure incorporation tools in a loam sand soil. Soil and Tillage Research 58(1): 19-29.
  • Raper RL (2005) Subsoiler shapes for site−specific tillage. Applied Engineering in Agriculture 21(1): 25−30.
  • Rowe RJ, Barnes KK (1961) Influence of speed on elements of draft of a tillage tool. Transaction of ASAE 4(1): 55-57.
  • Salar MR, Esehaghbeygi A, Hemmat A (2013) Soil loosening characteristics of a dual bent blade subsurface tillage implement. Soil and Tillage Research 134: 17-24.
  • Saunders CR, Godwin J, O’Dogherty MJ (2000) Prediction of soil forces acting on mouldboard ploughs. Fourth International Conference on Soil Dynamics, Adelaide, Australia, March, 26-30.
  • Siemens JC, Weber JA, Thornburn TH (1965) Mechanics of soil as influenced by model tillage tools. Transaction of ASAE 8(1): 1-7.
  • Subbulakshmi S, Harisudan C, Saravanan C, Subbian P (2009) Conservation tillage an eco friendly management practices for agriculture. Research Journal of Agriculture and Biological Sciences 5(6): 1098–1103.
  • Vakali C, Zaller JG, Kopke U (2011) Reduced tillage effects on soil properties and growth of cereals and associated weeds under organic farming. Soil and Tillage Research 111: 133- 141.
  • Wang XY, Gao HW, Li HW, Zhou XX (2000) Experimental study on runoff and erosion under conservation tillage. Transaction of ASAE 3: 66–69.
  • Van Muysen W, Govers G, Van Oost K, Van Rompaey A (2000) The effect of tillage depth, tillage speed and soil condition on chisel tillage erosivity. Journal of Soil and Water Conservation 55(3): 355-364.
  • Zadeh SRA (2006) Modelling of energy requirements by A narrow tillage tool. PhD Thesis, Department of Agricultural and Bioresource Engineering University of Saskatchewan, Saskatoon.
There are 31 citations in total.

Details

Primary Language Turkish
Subjects Agricultural Engineering
Journal Section Makaleler
Authors

Mustafa Gökalp Boydaş

Publication Date December 1, 2017
Submission Date November 2, 2016
Published in Issue Year 2017 Volume: 30 Issue: 3

Cite

APA Boydaş, M. G. (2017). Kanatlı çizel pullukta kullanılan kanatlarda farklı ağız yapılarının, ilerleme hızının ve iş derinliğinin çeki kuvveti üzerine etkisinin belirlenmesi. Mediterranean Agricultural Sciences, 30(3), 219-225. https://doi.org/10.29136/mediterranean.359833
AMA Boydaş MG. Kanatlı çizel pullukta kullanılan kanatlarda farklı ağız yapılarının, ilerleme hızının ve iş derinliğinin çeki kuvveti üzerine etkisinin belirlenmesi. Mediterranean Agricultural Sciences. December 2017;30(3):219-225. doi:10.29136/mediterranean.359833
Chicago Boydaş, Mustafa Gökalp. “Kanatlı çizel Pullukta kullanılan Kanatlarda Farklı ağız yapılarının, Ilerleme hızının Ve Iş derinliğinin çeki Kuvveti üzerine Etkisinin Belirlenmesi”. Mediterranean Agricultural Sciences 30, no. 3 (December 2017): 219-25. https://doi.org/10.29136/mediterranean.359833.
EndNote Boydaş MG (December 1, 2017) Kanatlı çizel pullukta kullanılan kanatlarda farklı ağız yapılarının, ilerleme hızının ve iş derinliğinin çeki kuvveti üzerine etkisinin belirlenmesi. Mediterranean Agricultural Sciences 30 3 219–225.
IEEE M. G. Boydaş, “Kanatlı çizel pullukta kullanılan kanatlarda farklı ağız yapılarının, ilerleme hızının ve iş derinliğinin çeki kuvveti üzerine etkisinin belirlenmesi”, Mediterranean Agricultural Sciences, vol. 30, no. 3, pp. 219–225, 2017, doi: 10.29136/mediterranean.359833.
ISNAD Boydaş, Mustafa Gökalp. “Kanatlı çizel Pullukta kullanılan Kanatlarda Farklı ağız yapılarının, Ilerleme hızının Ve Iş derinliğinin çeki Kuvveti üzerine Etkisinin Belirlenmesi”. Mediterranean Agricultural Sciences 30/3 (December 2017), 219-225. https://doi.org/10.29136/mediterranean.359833.
JAMA Boydaş MG. Kanatlı çizel pullukta kullanılan kanatlarda farklı ağız yapılarının, ilerleme hızının ve iş derinliğinin çeki kuvveti üzerine etkisinin belirlenmesi. Mediterranean Agricultural Sciences. 2017;30:219–225.
MLA Boydaş, Mustafa Gökalp. “Kanatlı çizel Pullukta kullanılan Kanatlarda Farklı ağız yapılarının, Ilerleme hızının Ve Iş derinliğinin çeki Kuvveti üzerine Etkisinin Belirlenmesi”. Mediterranean Agricultural Sciences, vol. 30, no. 3, 2017, pp. 219-25, doi:10.29136/mediterranean.359833.
Vancouver Boydaş MG. Kanatlı çizel pullukta kullanılan kanatlarda farklı ağız yapılarının, ilerleme hızının ve iş derinliğinin çeki kuvveti üzerine etkisinin belirlenmesi. Mediterranean Agricultural Sciences. 2017;30(3):219-25.

Creative Commons License

Mediterranean Agricultural Sciences is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.