Research Article
BibTex RIS Cite

Mısır saplarının peletlenmesi ve pelet özelliklerinin belirlenmesi

Year 2018, Volume: 31 Issue: 3, 269 - 274, 03.12.2018
https://doi.org/10.29136/mediterranean.427730

Abstract

Bu çalışmada, tarımsal üretim alanlarından toplanan
mısır saplarının peletlenmesi ve elde edilen peletlerin özelliklerinin
belirlenmesi amaçlanmıştır. Çalışmada, 6 mm elek delik çapına sahip çekiçli
değirmende öğütülmüş, nem içeriği % 14.75, materyal yığın yoğunluğu 120 kg m
-3
ve geometrik ortalama çapı 1.076 mm olan mısır sapları, 15 kW gücünde ve 8 mm
kalıp delik çapına sahip, 70-100 kg h
-1 üretim kapasitesindeki
pelet makinesinde peletlenmiştir. Peletlerin kalite göstergeleri olarak pelet
yığın ve parça yoğunluğu, nem içeriği, mekanik dayanıklılık direnci, basınç
direnci ve nem alma durumu belirlenmiştir. Ayrıca, peletleme makinesinin
kapasitesi ve enerji tüketim değerleri ölçülmüştür. Çalışma sonunda, peletlerin
ortalama çapı 8.27 mm, uzunluğu 32.19 mm ve kütlesi ise 2.17 g olarak ölçülmüştür.
Fiziksel testler sonunda peletlerin oldukça sağlam yapıda oldukları
görülmüştür. Peletlerin yığın yoğunluğu 715 kg m
-3, parça
yoğunluğu 1264 kg m
-3, nem içeriği % 6.24, mekanik
dayanıklılık direnci % 96.94, basınç direnci 3060 N ve nem alma durumu % 11.53
olarak bulunmuştur. Peletleme makinesinin üretim kapasitesi 66 kg h
-1
ve enerji tüketim değeri 15.14 kWh olarak belirlenmiştir.

References

  • Balasubramanian D (2000) Physical properties of raw cashew nut. Journal of Agricultural Engineering Reserach 78: 291-297.
  • Başçetinçelik A, Karaca C, Öztürk HH, Kacıra M, Ekinci K (2005) Agricultural biomass potential in Turkey. Proceedings of the 9th International Congress on Mechanization and Energy in Agriculture & 27th International Conference of CIGR Section IV: The Efficient Use of Electricity and Renewable Energy Sources in Agriculture, Sep. 27-29, İzmir-TURKEY.
  • Bergström D, Israelsonn S, Öhman M, Dahlqvist S, Gref R, Boman C, Wasterlund I (2008) Effects of raw material particle size distribution on the characteristics of scots pine sawdust fuel pellets. Fuel Processing Technology 89: 1324-1329.
  • Bilgin S, Yılmaz H, Koçer A, Acar M, Dok M (2015) Fındık zurufunun peletlenmesi ve pelet fiziksel özelliklerinin belirlenmesi. Tarım Makinaları Bilim Dergisi 11: 265-273.
  • Bilgin S, Koçer A, Yılmaz H, Acar M, Dok M (2016) Çay fabrikası atıklarınının peletlenmesi ve pelet fiziksel özelliklerinin belirlenmesi. JAFAG (2016) 33 (Ek sayı), 70-80.
  • Celma AR, Cuadros F, Rodriguez FL (2012) Characterization of pellets from industrial tomato residues. Food and Bioproducts Processing 90: 700-706.
  • Colley ZJ (2006) Compaction of switchgrass for value added utilization. M. Sc. Thesis, The Gtaduate Faculty of Auburn University.
  • EN 15210-1 (2009) Solid Biofuels. Determination of Mechanical Durability of Pellets and Briquettes – Part 1: Pellets.
  • EN 15103 (2009) Solid Biofuels. Determination of Bulk Density.
  • EN 14961-1 (2010) Solid biofuels – Fuel Specification and classes, Part 1 – General requirements.
  • EN 14961-6 (2010) Non-Woody Pellets for Non- Industrial Use.
  • EN 16127 (2012) Solid Biofuels. Determination of Length and Diameter of Pellets.
  • EN 14961-2 (2013) Solid Biofuels - Fuel Specification and Classes – Part 2: Wood Pellets for Non-Industrial Use.
  • ETKB (2016) Enerji ve Tabii Kaynaklar Bakanlığı. 2015-2019 Stratejik Planı. http://www.enerji.gov.tr . Erişim 21 Mayıs 2018.
  • EU Directive 2009/28/EC (2009) On the promotion of the use of energy from renewable sources and amending and subsequently repealing directives 2001/77/ec and 2003/30/ec.
  • Fasina OO (2008) Physical properties of peanut hull pellets. Bioresource Technology 99: 1259-1266.
  • Garcia-Maraver A, Ramos-Ridao AF, Ruiz DP, Zamorano M (2010) Quality of pellets from olive grove residual biomass. International Conference on Renewable Energies and Power Quality (ICREPQ’10), Granada-Spain.
  • Gil MV, Oulego P, Casal MD, Pevida C, Pis JJ, Rubiera F (2010) Mechanical durability and combustion characteristics of pellets from biomass blends. Bioresource Technology 101(22): 8859–8867.
  • Goetzl A (2015) Developments in the global trade of wood pellets. Office of industries working paper, US International Trade Commission.
  • Jackson J, Turner A, Mark T and Montross M (2016). Densification of biomass using a pilot scale flat ring roller pellet mill”, Fuel Processing Technology 148, 43-9.
  • Joyce M (2014) Biofuels production drives growth in overall biomass energy use over past decade. Retreived from: http://www.eia.gov/todayinenergy/detail.cfm?id=15451.
  • Kaliyan N, Morey RV (2009) Factor affecting strength and durability of densified biomass products. Biomass and Bioenergy 33: 337-359.
  • Lehtikangas P (2001) Quality properties of pelletized sawdust, logging residues and bark. Biomass and Bioenergy 20: 351-360.
  • Liu Z, Jiang Z, Cai Z, Fei B, Yu Y, Liu X (2013a) Effects of carbonization conditions on properties of bamboo pellets. Renewable Energy 51: 1-6.
  • Liu Z, Lie X, Fei B, Jiang Z, Cai Z, Yu Y (2013b) The proterties of pellets from mixing bamboo and rice straw. Renewable Energy 55: 1-5.
  • Mani S, Tabil LG, Sokhansanj S (2006) Effects of compressive force, particle size and moisture content on mechanical of biomass pellets from grasses. Biomass and Bioenergy 30: 648-654.
  • McKeown MS, Trablesi S, Nelson SO, Tollner EW (2017) Microwave sensing of moisture in flowing biomass pellets. Biosystem Engineering 155: 152-160.
  • Metzger JO, Hüttermann A (2009) Sustainable global energy supply based on lignocellulosic biomass from afforestation of degraded areas. Naturwissenschaften 96(2): 279-288.
  • Niedziołka I, Szpryngiel M, Kachel-Jakubowska M, Kraszkiewicz A, Zawislak K, Sobczak P, Nadulski R (2015) Assessment of the energetic and mechanical properties of pellets produced from agricultural biomass. Renewable Energy 76: 312-317.
  • Nishiguchi S, Tabata T (2016) Assessment of social, economic, and environmental aspects of woody biomass energy utilization: Direct burning and wood pellets. Renewable and Sustainable Energy Reviews 57: 1279-1286.
  • Nyström J, Dahlquist E (2004) Dahlquist methods for determination of moisture content in woodchips for power plants—a review. Fuel 83(7): 773–779.
  • Puig-Arnavat M, Shang L, Sárossy Z, Ahrenfeldt J, Henriksen UB (2016) From a single pellet press to a bench scale pellet mill — Pelletizing six different biomass feedstocks. Fuel Processing Technology 142: 27–33.
  • Razuan R, Finney KN, Chen Q, Sharifi VN, Swithenbank J (2011) Pelletised fuel production from palm kernel cake. Fuel Processing Technology 92(3): 609-615.
  • Samuelsson R, Thyrel M, Sjöström M, Lestander TA (2009) Effect of biomaterial characteristics on pelletizing properties and biofuel pellet quality. Fuel Processing Technology 90: 1129-1134.
  • Shan F, Lin Q, Zhou K, Wu Y, Fu W, Zhang P, Song L, Shao C, Yi B (2017) An experimental study of ignition and combustion of single biomass pellets in air and oxy-fuel. Fuel 188: 277–284.
  • Sokhansanj J, Turhollow AF (2004) Biomass densification-cubing operations and cost for corn stover. Applied Engineering in Agriculture 20: 495-499.
  • Theerarattananoon K, Xu F, Wilson J, Ballard R, McKinney L, Staggenborg S, Vadlanı P, Pei ZJ, Wang D (2011) Physical properties of pellets made from sorghum stalk, corn stover, wheat straw and big bluestem. Industrial Crops and Products 33(2): 325-332.
  • TKİ (2015) Türkiye Kömür İşletmeleri Kurumu. 2015 Kömür (Linyit) Sektör Raporu, Mayıs 2016.
  • Tumuluru JS, Wright CT, Hess JR, Kenney KL (2011) A review of biomass densification systems to develop uniform feedstock commodities for bioenergy application. Biofuels, Bioproducts and Biorefining 5: 683-707.
  • TÜİK (2018) Bitkisel Üretim İstatistikleri, Tarım ve Orman Alanları, Türkiye İstatistik Kurumu. http://www.tuik.gov.tr . Erişim 17 Mayıs 2018.
  • Yılmaz H (2014) Bazı Tarımsal Artıkların Peletlenmesi ve Pelet Fiziksel Özelliklerinin Belirlenmesi Üzerine Bir Çalışma. Antalya: Akdeniz Üniversitesi Fen Bilimleri Enstitüsü, Yüksek Lisans Tezi, Antalya.

Pelleting of corn stalk and determination of pellet properties

Year 2018, Volume: 31 Issue: 3, 269 - 274, 03.12.2018
https://doi.org/10.29136/mediterranean.427730

Abstract

Corn stalks have the potential for energy use in the form of pellets. The aim of this study was to pelleting of corn stalks collected from agricultural production areas and determination of pellet properties. In the experiments, pelleting machine with 15 kW motor power, 8 mm die diameter and 70-100 kg h-1 production capacity for pelleting of corn stalks was used. The moisture content, bulk density and geometric mean diameter of ground corn stalks were 14.75 %, 120 kg m-3 and 1.076 mm, respectively. Pellet physical properties such as pellet bulk density, particle density, moisture content, mechanical durability, compressive resistance and moisture sorption were determined. Also, values of capacity and energy consumption of machines were measured. At the end of study, the average diameter, length and mass of the pellets were measured as 8.27 mm, 32.19 mm and 2.17 g, respectively. The result of physical tests showed that the produced pellets were quite strong due to mechanical durability, compressive resistance, and moisture sorption. The moisture content, bulk density, particle density, compressive resistance and moisture sorption of pellets were founded as 6.24%, 715 kg m³, 1256 kg m³, 3060 N and 11.53%, respectively. The average production capacity and energy consumption of pelleting machine were found 66 kg h-¹ and 15.14 kWh, respectively.




References

  • Balasubramanian D (2000) Physical properties of raw cashew nut. Journal of Agricultural Engineering Reserach 78: 291-297.
  • Başçetinçelik A, Karaca C, Öztürk HH, Kacıra M, Ekinci K (2005) Agricultural biomass potential in Turkey. Proceedings of the 9th International Congress on Mechanization and Energy in Agriculture & 27th International Conference of CIGR Section IV: The Efficient Use of Electricity and Renewable Energy Sources in Agriculture, Sep. 27-29, İzmir-TURKEY.
  • Bergström D, Israelsonn S, Öhman M, Dahlqvist S, Gref R, Boman C, Wasterlund I (2008) Effects of raw material particle size distribution on the characteristics of scots pine sawdust fuel pellets. Fuel Processing Technology 89: 1324-1329.
  • Bilgin S, Yılmaz H, Koçer A, Acar M, Dok M (2015) Fındık zurufunun peletlenmesi ve pelet fiziksel özelliklerinin belirlenmesi. Tarım Makinaları Bilim Dergisi 11: 265-273.
  • Bilgin S, Koçer A, Yılmaz H, Acar M, Dok M (2016) Çay fabrikası atıklarınının peletlenmesi ve pelet fiziksel özelliklerinin belirlenmesi. JAFAG (2016) 33 (Ek sayı), 70-80.
  • Celma AR, Cuadros F, Rodriguez FL (2012) Characterization of pellets from industrial tomato residues. Food and Bioproducts Processing 90: 700-706.
  • Colley ZJ (2006) Compaction of switchgrass for value added utilization. M. Sc. Thesis, The Gtaduate Faculty of Auburn University.
  • EN 15210-1 (2009) Solid Biofuels. Determination of Mechanical Durability of Pellets and Briquettes – Part 1: Pellets.
  • EN 15103 (2009) Solid Biofuels. Determination of Bulk Density.
  • EN 14961-1 (2010) Solid biofuels – Fuel Specification and classes, Part 1 – General requirements.
  • EN 14961-6 (2010) Non-Woody Pellets for Non- Industrial Use.
  • EN 16127 (2012) Solid Biofuels. Determination of Length and Diameter of Pellets.
  • EN 14961-2 (2013) Solid Biofuels - Fuel Specification and Classes – Part 2: Wood Pellets for Non-Industrial Use.
  • ETKB (2016) Enerji ve Tabii Kaynaklar Bakanlığı. 2015-2019 Stratejik Planı. http://www.enerji.gov.tr . Erişim 21 Mayıs 2018.
  • EU Directive 2009/28/EC (2009) On the promotion of the use of energy from renewable sources and amending and subsequently repealing directives 2001/77/ec and 2003/30/ec.
  • Fasina OO (2008) Physical properties of peanut hull pellets. Bioresource Technology 99: 1259-1266.
  • Garcia-Maraver A, Ramos-Ridao AF, Ruiz DP, Zamorano M (2010) Quality of pellets from olive grove residual biomass. International Conference on Renewable Energies and Power Quality (ICREPQ’10), Granada-Spain.
  • Gil MV, Oulego P, Casal MD, Pevida C, Pis JJ, Rubiera F (2010) Mechanical durability and combustion characteristics of pellets from biomass blends. Bioresource Technology 101(22): 8859–8867.
  • Goetzl A (2015) Developments in the global trade of wood pellets. Office of industries working paper, US International Trade Commission.
  • Jackson J, Turner A, Mark T and Montross M (2016). Densification of biomass using a pilot scale flat ring roller pellet mill”, Fuel Processing Technology 148, 43-9.
  • Joyce M (2014) Biofuels production drives growth in overall biomass energy use over past decade. Retreived from: http://www.eia.gov/todayinenergy/detail.cfm?id=15451.
  • Kaliyan N, Morey RV (2009) Factor affecting strength and durability of densified biomass products. Biomass and Bioenergy 33: 337-359.
  • Lehtikangas P (2001) Quality properties of pelletized sawdust, logging residues and bark. Biomass and Bioenergy 20: 351-360.
  • Liu Z, Jiang Z, Cai Z, Fei B, Yu Y, Liu X (2013a) Effects of carbonization conditions on properties of bamboo pellets. Renewable Energy 51: 1-6.
  • Liu Z, Lie X, Fei B, Jiang Z, Cai Z, Yu Y (2013b) The proterties of pellets from mixing bamboo and rice straw. Renewable Energy 55: 1-5.
  • Mani S, Tabil LG, Sokhansanj S (2006) Effects of compressive force, particle size and moisture content on mechanical of biomass pellets from grasses. Biomass and Bioenergy 30: 648-654.
  • McKeown MS, Trablesi S, Nelson SO, Tollner EW (2017) Microwave sensing of moisture in flowing biomass pellets. Biosystem Engineering 155: 152-160.
  • Metzger JO, Hüttermann A (2009) Sustainable global energy supply based on lignocellulosic biomass from afforestation of degraded areas. Naturwissenschaften 96(2): 279-288.
  • Niedziołka I, Szpryngiel M, Kachel-Jakubowska M, Kraszkiewicz A, Zawislak K, Sobczak P, Nadulski R (2015) Assessment of the energetic and mechanical properties of pellets produced from agricultural biomass. Renewable Energy 76: 312-317.
  • Nishiguchi S, Tabata T (2016) Assessment of social, economic, and environmental aspects of woody biomass energy utilization: Direct burning and wood pellets. Renewable and Sustainable Energy Reviews 57: 1279-1286.
  • Nyström J, Dahlquist E (2004) Dahlquist methods for determination of moisture content in woodchips for power plants—a review. Fuel 83(7): 773–779.
  • Puig-Arnavat M, Shang L, Sárossy Z, Ahrenfeldt J, Henriksen UB (2016) From a single pellet press to a bench scale pellet mill — Pelletizing six different biomass feedstocks. Fuel Processing Technology 142: 27–33.
  • Razuan R, Finney KN, Chen Q, Sharifi VN, Swithenbank J (2011) Pelletised fuel production from palm kernel cake. Fuel Processing Technology 92(3): 609-615.
  • Samuelsson R, Thyrel M, Sjöström M, Lestander TA (2009) Effect of biomaterial characteristics on pelletizing properties and biofuel pellet quality. Fuel Processing Technology 90: 1129-1134.
  • Shan F, Lin Q, Zhou K, Wu Y, Fu W, Zhang P, Song L, Shao C, Yi B (2017) An experimental study of ignition and combustion of single biomass pellets in air and oxy-fuel. Fuel 188: 277–284.
  • Sokhansanj J, Turhollow AF (2004) Biomass densification-cubing operations and cost for corn stover. Applied Engineering in Agriculture 20: 495-499.
  • Theerarattananoon K, Xu F, Wilson J, Ballard R, McKinney L, Staggenborg S, Vadlanı P, Pei ZJ, Wang D (2011) Physical properties of pellets made from sorghum stalk, corn stover, wheat straw and big bluestem. Industrial Crops and Products 33(2): 325-332.
  • TKİ (2015) Türkiye Kömür İşletmeleri Kurumu. 2015 Kömür (Linyit) Sektör Raporu, Mayıs 2016.
  • Tumuluru JS, Wright CT, Hess JR, Kenney KL (2011) A review of biomass densification systems to develop uniform feedstock commodities for bioenergy application. Biofuels, Bioproducts and Biorefining 5: 683-707.
  • TÜİK (2018) Bitkisel Üretim İstatistikleri, Tarım ve Orman Alanları, Türkiye İstatistik Kurumu. http://www.tuik.gov.tr . Erişim 17 Mayıs 2018.
  • Yılmaz H (2014) Bazı Tarımsal Artıkların Peletlenmesi ve Pelet Fiziksel Özelliklerinin Belirlenmesi Üzerine Bir Çalışma. Antalya: Akdeniz Üniversitesi Fen Bilimleri Enstitüsü, Yüksek Lisans Tezi, Antalya.
There are 41 citations in total.

Details

Primary Language Turkish
Subjects Agricultural Engineering
Journal Section Makaleler
Authors

Hasan Yılmaz

Publication Date December 3, 2018
Submission Date May 28, 2018
Published in Issue Year 2018 Volume: 31 Issue: 3

Cite

APA Yılmaz, H. (2018). Mısır saplarının peletlenmesi ve pelet özelliklerinin belirlenmesi. Mediterranean Agricultural Sciences, 31(3), 269-274. https://doi.org/10.29136/mediterranean.427730
AMA Yılmaz H. Mısır saplarının peletlenmesi ve pelet özelliklerinin belirlenmesi. Mediterranean Agricultural Sciences. December 2018;31(3):269-274. doi:10.29136/mediterranean.427730
Chicago Yılmaz, Hasan. “Mısır saplarının Peletlenmesi Ve Pelet özelliklerinin Belirlenmesi”. Mediterranean Agricultural Sciences 31, no. 3 (December 2018): 269-74. https://doi.org/10.29136/mediterranean.427730.
EndNote Yılmaz H (December 1, 2018) Mısır saplarının peletlenmesi ve pelet özelliklerinin belirlenmesi. Mediterranean Agricultural Sciences 31 3 269–274.
IEEE H. Yılmaz, “Mısır saplarının peletlenmesi ve pelet özelliklerinin belirlenmesi”, Mediterranean Agricultural Sciences, vol. 31, no. 3, pp. 269–274, 2018, doi: 10.29136/mediterranean.427730.
ISNAD Yılmaz, Hasan. “Mısır saplarının Peletlenmesi Ve Pelet özelliklerinin Belirlenmesi”. Mediterranean Agricultural Sciences 31/3 (December 2018), 269-274. https://doi.org/10.29136/mediterranean.427730.
JAMA Yılmaz H. Mısır saplarının peletlenmesi ve pelet özelliklerinin belirlenmesi. Mediterranean Agricultural Sciences. 2018;31:269–274.
MLA Yılmaz, Hasan. “Mısır saplarının Peletlenmesi Ve Pelet özelliklerinin Belirlenmesi”. Mediterranean Agricultural Sciences, vol. 31, no. 3, 2018, pp. 269-74, doi:10.29136/mediterranean.427730.
Vancouver Yılmaz H. Mısır saplarının peletlenmesi ve pelet özelliklerinin belirlenmesi. Mediterranean Agricultural Sciences. 2018;31(3):269-74.

Creative Commons License

Mediterranean Agricultural Sciences is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.