Research Article
BibTex RIS Cite

Mikrobiyal gübre uygulamalarının Lolium perenne L. türünün çim performansı üzerine etkileri

Year 2019, Volume: 32 Issue: Special Issue, 147 - 155, 24.05.2019
https://doi.org/10.29136/mediterranean.560213

Abstract

Bitki büyüme ve gelişmesini
destekleyen mikroorganizmaları içeren mikrobiyal gübreler, kimyasal gübrelere
olan ihtiyacı azaltabilmektedir. Mikrobiyal gübrelerin çim bitkilerine etkileri
ve sürdürülebilir yeşil alanların yönetiminde kullanımına yönelik çalışmalar
ise oldukça sınırlıdır. Bu çalışmanın amacı;
Bacillus megaterium, Pantoea
agglomerans
ve Pseudomonas
fluorenscens
bakterilerini içeren mikrobiyal gübrenin (MG) çim alanlarda
konvansiyonel gübrelere alternatif olarak kullanılabilme potansiyelini
araştırmaktır. Denemede üç farklı doz MG (100 ml m
-2, 1000 ml m-2
ve 2000 ml m
-2) ve konvansiyonel gübreleme programı altında Lolium perenne ‘Blackcat’çeşidinin
alanda tesis olma hızı, çim kalitesi, rengi, yoğunluğu, biçim artıkları verimi,
kök ve sürgün ağırlığı herhangi bir gübreleme yapılmayan kontrol uygulaması ile
karşılaştırılmıştır. Çalışma 2013-2014 yıllarında Antalya’da tesadüf blokları
deneme desenine göre 3 tekerrürlü olarak yürütülmüştür. Konvansiyel gübre
uygulamasında net 10 g m
-2 yıl-1 (100 kg N ha-1 yıl-1)
dozunda azot uygulaması yapılmıştır. MG ve konvansiyonel gübre uygulamaları
tohum ekim zamanı (Ekim), Sonbahar (Kasım) ve ilkbahar (Mart) olmak üzere 3
dönemde uygulanmıştır. MG uygulamalarının tamamı
L. perenne türünün tesis olma hızını, çim kalite ve rengini, çim indeks
değerini, çim yoğunluğunu ve kök sürgün
-1 oranını kontrole göre
arttırmıştır. Genel olarak MG uygulamaları arttıkça genel çim performansında
artış gözlemlenmiştir. MG 2000 ml m
-2 uygulaması azot uygulamasına
eşdeğer tesis olma hızı oluşturmuş ve ilkbaharda %23 daha fazla sürgün
yoğunluğu ile azot parsellerine üstünlük sağlamıştır. Konvansiyonel N gübreleme
uygulamasına göre MG uygulamalarının biçim artıklarını önemli ölçüde azaltırken
(dolayısıyla biçim sayısını azaltırken), kabül edilebilir bir çim kalitesi
sağladıkları tespit edilmiştir. Çalışmadan elde edilen sonuçlar mikrobiyal
gübrelerin
L. perenne türünün
sürdürülebilir çim alan yönetiminde önemli bir potansiyele sahip olabileceğini
göstermiştir.




References

  • Aamlid TS, Andersen TE, Kvalbein A, Pettersen T, Jensen AD (2014) Composted garden waste as organic amendment to the USGA-Rootzone and topdressing Sand on Red Fescue (Festuca rubra). Greens 79(3): 87-96.
  • Açıkgoz E, Bilgili U, Sahin F, Guillard K (2016) Effect of plant growth-promoting Bacillus sp. on color and clipping yield of three turfgrass species. Journal of Plant Nutrition 39(10): 1404-1411.
  • Al-Enazy A, Al-Oud SS, Al-Barakah FN, Usman AR (2017) Role of microbial inoculation and industrial by-product phoshogypsum in growth and nutrient uptake of maize (zea mays L.) grown in calcareous soil. J Sci Food Agric. 97: 3665-3674.
  • Alloway BJ (2004) Zinc in Soils and Crop Nutrition.Publ. of International Zinc association. http://www.iza.com/Documents/Communications/Publications/ALLOWAY_PRINT.pdf. Accessed 4 October 2010.
  • Baldani JI, Caruso L, Baldani VLD, Goi SR. Döbereiner J (1997) Recent advance in BNF with non‐legume plant. Soil Biol Biochem 29: 911–922.
  • Beard JB (1973) Turfgrass: Science and Culture. Prentice-Hall. Inc. NY.
  • Bloemberg GV, Lugtenberg BJJ (2001) Molecular basis of plant growth promotion and biocontrol by rhizobacteria. Curr. Opin. Plant Biol. 4: 343–350.
  • Butler T (2006) Plant hormones in Turfgrass Management. Pitch care. https://www.pitchcare.com/news-media/plant-hormones-in-turfgrass-management.html.
  • Brown PH, Cakmak I, Zhang Q (1993) Form and function of zinc in plants. Chap. 7. In A.D. Robson (Ed). Zinc in Soils and Plants. Kluwer Academic Publishers. Dordrecht, pp. 90-106.
  • Castanheira N, Dourado AC, Alves PI, Cortes-Pallero AM, Delgado-Rodriguez AI, Prazeres A, Borges N, Sanchez C, Crespo MTB, Fareleira P (2013) Annual ryegrass-associated bacteria with potential for plant growth promotion. Microbiological Research 169: 768-779.
  • Çakmakçi R, Kantar F, Algur ÖF (1999) Sugar beet and Barley Yields in relation to Bacillus polymyxa and Bacillus megaterium var. phospaticum inoculation. J. Plant Nutr. Soil Sci. 162: 437-442.
  • EEA (2009) Water resources across Europe: Confronting water scarcity and drought. Environ. Agency. Copenhagen. http://www.eea.europa.eu/publications/water-resources-across-europe. Accessed 10 March 2019.
  • Emmons R (2000) Turfgrass Science and Management. Delmar Publishers. Albany. NY.
  • Ervin EH, Zhang X (2008) Applied physiology of Natural and Synthetic Plant Growth Regulators on Turfgrass. In M. Pessarakli ed. Handbook of turfgrass management and physiology. CRC Press. Boca Raton. FL. pp. 690.
  • Davies PJ (2010) Plant hormones: Biosynthesis, signal trans-duction, action 3rd ed. Springer. New York. doi: 10.1007/978-1-4020-2686-7.
  • Ding YF, Huang PS, Ling QH (1995) Relationship between emergence of tiller and nirogen concentration of leaf blade or leaf sheath on specific node of rice. J Nanjing Agric Univ 18: 14-18 (in Chinese with English abstract).
  • EU (2009) Directive 2009/128/EC of the European Parliament and of the Council of 21 October 2009 on establishing a framework for Community action to achieve a sustainable use of pesticides. Off. J. Europ. Union L.309/71.
  • Feng Y, Shen D, Song W (2006) Rice endophyte Pantoea agglomerans YS19 promotes host plant growth and affects allocations of host photosynthates. J Appl Microbiol 100: 938–45.
  • Flipse WJ. Katz BG. Lindner JB. Markel R (1984). Sources of nitrate in groundwater in a sewered housing development. Central Long Island, New York. Ground Water 32: 418-426.
  • Guillard K, Kopp KL (2004) Nitrogen fertilizer form and associated nitrate leaching from cool-season lawn turf. J. Environ. Qual. 33: 1822-1827.
  • Javorekova S, Makova J, Medo J, Kovacsova S, Charousova I, Horak J (2015) Effect of bio-fertilizers application on microbial diversity and physiological profiling of microorganisms in arable soil. Eurasian Journal of Soil Science 4: 54-61.
  • Heckman JR, Liu H, Hill W, DeMilla M, Anastasia WL (2000). Kentucky bluegrass responses to mowing practices and Nitrogen Fertility Management. Journal of Sustainable Agriculture 15(4): 25-33. https://doi.org/10.1300/J064v15n04_04.
  • Heydari A, Balestra GM (2008). Nutritional Disorders of Turfgrasses. In: Handbook of Turfgrass Management and Physiology (M Pessarakli. ed). CRC Press Taylor & Francis Group. Boca Raton, pp. 211-221.
  • Jayaswal RK, Fernandez M, Upadhyay RS, Visintin L, Kurz M, Webb J, Rinehart K (1993) Antagonism of Pseudomonas cepacia against phytopathogenic fungi. Curr. Microbiol. 26: 17-22.
  • Kacar B. İnal A (2008) Bitki Analizleri. Nobel Yayın Dağıtım. Ankara.
  • Kloepper JW, Schippers B, Bakker PAHM (1992) Proposed elimination of the term endorhizosphere. Phytopathol 82: 726–727.
  • Kuo Y (2015) Effects of fertilizer type on chlorophyll content and plant biomass in common bermudagrass. African Journal of Agricultural Research 10(42): 3997-4000.
  • Langer RHM, Prasad PC, Laude HM (1973) Effects of kinetin in tiller bud elongation in wheat (Triticum aestivum L). Ann Bot. 37: 565-571.
  • Ledeboer FB, Skogley CR (1973) Effects of various nitrogen sources. timing. and rates on quality and growth rate of cool-season turfgrasses. Agronomy Journal 65: 243–246.
  • Li X, Geng X, Xie R, Fu L, Jiang J, Gao L, Sun J (2016) The endophytic bacteria isolated from elephant grass (Pennisetum purpureum Schumach) promote plant growth and enhance salt tolerance of Hybrid Pennisetum. Biotechnol Biofuels 9: 190-213.
  • Lindberg T, Granhall U (1984) Isolation and characterization of dinitrogen-fixing bacteria from the rhizosphere of temperate cereals and forage grasses. Applied and Environmental Microbiology 48: 683-689.
  • Liu H, Hull RJ, Duff DT (1997) Comparing cultivars of three cool-season turfgrasses for soil water NO3 concentration and leaching potential. Crop Sci. 37: 526-534.
  • Liu X, Huang B, Banowetz G (2002) Cytokinin effects on Creeping bentrgrass responses to heat stress: I.Shoot and Root Growth. Crop Sci. 42: 457-465.
  • Liu Y, Gu D, Ding Y, Wang Q, Li G, Wang S (2011) The relationship between nitrogen auxin. and cytokinin in the growth regulation of rice (Oryza sativa L.) tiller buds. Australian Journal of Crop Science 5(8): 1019-1026.
  • Miltner ED, Stahnke GK, Johnston WJ, Golob CT (2004) Late fall and winter nitrogen fertilization and turfgrass in two pacific northwest climates. HortScience 39: 1745-1749.
  • Miltner ED, Branham BE, Paul EA, Rieke RE (1996) Leaching and mass balance of 15N-labeled urea applied to a Kentucky bluegrass turf. Crop Sci. 36: 1427-1433.
  • Nektarios PA, Petrovic AM, Steenhuis TS (2014) Nitrate and Tracer leaching from aerated turfgrass profiles. European Journal of Horticultural Science 79: 150-157.
  • Nunes C, Usall J, Teixido N, Fons E, Vinas I (2002) Post‐harvest biological control by Pantoea agglomerans (CPA‐2) on Golden Delicious apples. J Appl Microbiol 92: 247–255.
  • Pallai R, Hynes RK, Verma B, Nelson LM (2012) Phytohormone production and colonization of canola (Brassica napus L.) roots by Pseudomonas fluorescens 6-8 under gnotobiotic conditions.Canadian Journal of Microbiology 58(2): 170-178. https://doi.org/10.1139/w11-120.
  • Parlak S, Güner D (2017) Mikrobiyal gübre uygulamasının karaçam (Pinus nigra Arnold. Subsp. Pallasiana (Lamb.) Holmboe) fidanlarının bazı morfolojik özelliklerine etkisi. Ormancılık Araştırma Dergisi 4(2): 100-106.
  • Parker JE (2003) Plant recognition of microbial patterns. Trends Plant Sci. 8: 245–247.
  • Peacock CH, Daniel PH (1992) A comparison of Turfgrass response to biologically amended Fertilizers. Hort Science 27(8): 883-884.
  • Ping L, Boland W (2004) Signals from the underground: bacterial volatiles promote growh in Arabidopsis. Trends Plant Sci. 9: 263-266.
  • Parveen H, Singh AV, Khan A, Prasad B, Pareek N (2018). Influence of plant growth promoting rhizobacteria on seed germination and seedling vigor of green gram. Int. J Chemical Studies 6(4): 611-618.
  • Paulino-Paulino J, Harmsen EW, Sotomayor-Ramirez D, Rivera LE (2008) Nitrate leaching under different levels of irrigation for three turfgrasses in southern Puerto Rico. J. Agr. Univ. Puerto Rico. 92: 135-152.
  • Puhalla CJ, Krans JV, Goatley JM (2010) Sports Fields: Design. Construction and Maintenance. 2nd Edition. Wiley. Hoboken. NJ.
  • Qasim M, Younis A, Zahir ZA, Riaz A, Raza H, Usman T (2014) Microbial inoculation increases the nutrient uptake efficiency for quality production of Gladiolus grandifloras. Pak J Agric. Sci. 51: 875–880.
  • Reddy CA Saravanan RS (2013) Polymicrobial multi-functional approach for enhancement of crop productivity. Adv. Appl. Microbiol. 82: 53–113. doi:10.1016/B978-0-12-407679-2.00003-X.
  • Ryu CM, Faraq MA, Hu CH, Reddy MS, Kloepper JW, Pare PW (2004) Bacterial volatiles induce systemic resistance in Arabidopsis. Plant Physiol. 134: 1017–1026.
  • Sakakibara H, Takei K, Hirose N (2006) Interactions between nitrogen and cytokinin in the regulation of metabolism and development. Trends Plant Sci. 11: 440-448.
  • Singh AV, Shah S (2013) Plant Growth-Promoting Rhizobacteria for Sustainable Agriculture. In: Modern technologies for sustainable agriculture. (Ed Kumar S. Prasad B). Modern Tech Sustainable Agri. New Delhi, India, pp. 151-168.
  • Singh J, Singh AV, Prasad B, Shah S (2017) Sustainable agriculture strategies of wheat biofortification through microorganisms. In: Wheat a premier food crop. (Ed. Anil Kumar. Amarjeet Kumar and Birendra Prasad). Kalyani. Publishers. New Delhi, India, pp. 373-391.
  • Skoog F (1940) Relationship between zinc and auxin in the growth of higher plants. Am. J. Bot. 27: 939- 951.
  • Starr JL, DeReo HC (1981) The fate of nitrogen fertilizer applied to turfgrass.Crop Sci. 21: 531-536.
  • Steenhoudt O, Vanderleyden J (2000) Azospirillum: a free-living nitrogen-fixing bacterium closely associated with grasses: genetic, biochemical and ecological aspects. FEMS Microbiol. Rev. 24: 487–506.
  • Strandberg M, Blomback K, Dahl Jensen AM, Knox W (2012) Priorities for sustainable Turfgrass management: a researh and industry perspective. Acta Agriculturae Scandinavica Section B-Soil and Plant Science 3: 1-7.
  • Taiz L, Zeiger E (2010) Auxin: The first discovered plant growth hormone. In: L. Taiz and E. Zeiger. Editors. Plant physi-ology. 5th ed. Sinauer Associates Inc. Publishers. Sunderland. MS. pp. 545–582.
  • Turgeon AJ (1998) Turfgrass Management. 5th ed. Prentice-Hall. Englewood Cliffs. NJ.
  • Van Duyne B (1994) The spring grass and leaf diet. BioCycle 35: 61-62.
  • Vessey JK (2003) Plant growth promoting rhizobacteria as biofertilizers. Plant and Soil 255: 571-586.
  • Zahir ZA, Asghar HN, Arshad M (2001) Cytokinin and its precursors for improving growth and yield of rice. Soil Biol Biochem 33: 405–408.
  • Zhang X, Ervin EH, Wu W, Sharma N, Hamill A (2017) Auxin and Trinexapac-ethyl impact on root viability and hormone metabolism in Creeping Bentgrass under water deficit. Crop Sci. 57: 1-8. doi:10.2135/cropsci2016.05.0434İ.

The effects of microbial fertilizers on turfgrass performance of Lolium perenne L.

Year 2019, Volume: 32 Issue: Special Issue, 147 - 155, 24.05.2019
https://doi.org/10.29136/mediterranean.560213

Abstract

Microbial fertilizers having plant growth promoting microorganisms might reduce the need for chemical fertilizers. There is a limited information available regarding the effect of microbial fertilizers on turfgrass species and possibility of their usage in the sustainable management of turf areas. The objective of this study was to study effectiveness of the microbial fertilizer (MF) consisting of Bacillus megaterium (KBA-10), Pantoea agglomerans RK-124 and Pseudomonas fluorenscens FDG-13 species on turf areas as an alternative to the conventional fertilizers. Turfgrass establishment rate, quality and color, density, clipping yield, root and shoot dry weight of Lolium perenne ‘blackcat’ fertilized with either 3 different dosage of MF or conventional fertilizer program were compared with untreated control. The study was conducted in Antalya during 2013-2014 and experimental design was randomized complete block with 3 replications. Under conventional fertilizer program net 10 g N m-2 year-1 (100 kg N ha-1) was applied annually. Fertilizers were applied as three split application; at the seeding (October), fall (November) and spring (March). Microbial fertilizers enhanced turfgrass quality, color, density, grass index and root to shoot ratio compared to untreated control. Turf performance of L. perenne enhanced with the increased dosage of MF. Results showed that 2000 ml m-2 MF application provided turfgrass establishment similar to that of N and was superior to N for having 23% more shoot density. All of the MF dosages provided acceptable quality with less clipping yield compared to that of N application. Results support the important potential of microbial fertilizers as part of sustainable management of L. perenne.


References

  • Aamlid TS, Andersen TE, Kvalbein A, Pettersen T, Jensen AD (2014) Composted garden waste as organic amendment to the USGA-Rootzone and topdressing Sand on Red Fescue (Festuca rubra). Greens 79(3): 87-96.
  • Açıkgoz E, Bilgili U, Sahin F, Guillard K (2016) Effect of plant growth-promoting Bacillus sp. on color and clipping yield of three turfgrass species. Journal of Plant Nutrition 39(10): 1404-1411.
  • Al-Enazy A, Al-Oud SS, Al-Barakah FN, Usman AR (2017) Role of microbial inoculation and industrial by-product phoshogypsum in growth and nutrient uptake of maize (zea mays L.) grown in calcareous soil. J Sci Food Agric. 97: 3665-3674.
  • Alloway BJ (2004) Zinc in Soils and Crop Nutrition.Publ. of International Zinc association. http://www.iza.com/Documents/Communications/Publications/ALLOWAY_PRINT.pdf. Accessed 4 October 2010.
  • Baldani JI, Caruso L, Baldani VLD, Goi SR. Döbereiner J (1997) Recent advance in BNF with non‐legume plant. Soil Biol Biochem 29: 911–922.
  • Beard JB (1973) Turfgrass: Science and Culture. Prentice-Hall. Inc. NY.
  • Bloemberg GV, Lugtenberg BJJ (2001) Molecular basis of plant growth promotion and biocontrol by rhizobacteria. Curr. Opin. Plant Biol. 4: 343–350.
  • Butler T (2006) Plant hormones in Turfgrass Management. Pitch care. https://www.pitchcare.com/news-media/plant-hormones-in-turfgrass-management.html.
  • Brown PH, Cakmak I, Zhang Q (1993) Form and function of zinc in plants. Chap. 7. In A.D. Robson (Ed). Zinc in Soils and Plants. Kluwer Academic Publishers. Dordrecht, pp. 90-106.
  • Castanheira N, Dourado AC, Alves PI, Cortes-Pallero AM, Delgado-Rodriguez AI, Prazeres A, Borges N, Sanchez C, Crespo MTB, Fareleira P (2013) Annual ryegrass-associated bacteria with potential for plant growth promotion. Microbiological Research 169: 768-779.
  • Çakmakçi R, Kantar F, Algur ÖF (1999) Sugar beet and Barley Yields in relation to Bacillus polymyxa and Bacillus megaterium var. phospaticum inoculation. J. Plant Nutr. Soil Sci. 162: 437-442.
  • EEA (2009) Water resources across Europe: Confronting water scarcity and drought. Environ. Agency. Copenhagen. http://www.eea.europa.eu/publications/water-resources-across-europe. Accessed 10 March 2019.
  • Emmons R (2000) Turfgrass Science and Management. Delmar Publishers. Albany. NY.
  • Ervin EH, Zhang X (2008) Applied physiology of Natural and Synthetic Plant Growth Regulators on Turfgrass. In M. Pessarakli ed. Handbook of turfgrass management and physiology. CRC Press. Boca Raton. FL. pp. 690.
  • Davies PJ (2010) Plant hormones: Biosynthesis, signal trans-duction, action 3rd ed. Springer. New York. doi: 10.1007/978-1-4020-2686-7.
  • Ding YF, Huang PS, Ling QH (1995) Relationship between emergence of tiller and nirogen concentration of leaf blade or leaf sheath on specific node of rice. J Nanjing Agric Univ 18: 14-18 (in Chinese with English abstract).
  • EU (2009) Directive 2009/128/EC of the European Parliament and of the Council of 21 October 2009 on establishing a framework for Community action to achieve a sustainable use of pesticides. Off. J. Europ. Union L.309/71.
  • Feng Y, Shen D, Song W (2006) Rice endophyte Pantoea agglomerans YS19 promotes host plant growth and affects allocations of host photosynthates. J Appl Microbiol 100: 938–45.
  • Flipse WJ. Katz BG. Lindner JB. Markel R (1984). Sources of nitrate in groundwater in a sewered housing development. Central Long Island, New York. Ground Water 32: 418-426.
  • Guillard K, Kopp KL (2004) Nitrogen fertilizer form and associated nitrate leaching from cool-season lawn turf. J. Environ. Qual. 33: 1822-1827.
  • Javorekova S, Makova J, Medo J, Kovacsova S, Charousova I, Horak J (2015) Effect of bio-fertilizers application on microbial diversity and physiological profiling of microorganisms in arable soil. Eurasian Journal of Soil Science 4: 54-61.
  • Heckman JR, Liu H, Hill W, DeMilla M, Anastasia WL (2000). Kentucky bluegrass responses to mowing practices and Nitrogen Fertility Management. Journal of Sustainable Agriculture 15(4): 25-33. https://doi.org/10.1300/J064v15n04_04.
  • Heydari A, Balestra GM (2008). Nutritional Disorders of Turfgrasses. In: Handbook of Turfgrass Management and Physiology (M Pessarakli. ed). CRC Press Taylor & Francis Group. Boca Raton, pp. 211-221.
  • Jayaswal RK, Fernandez M, Upadhyay RS, Visintin L, Kurz M, Webb J, Rinehart K (1993) Antagonism of Pseudomonas cepacia against phytopathogenic fungi. Curr. Microbiol. 26: 17-22.
  • Kacar B. İnal A (2008) Bitki Analizleri. Nobel Yayın Dağıtım. Ankara.
  • Kloepper JW, Schippers B, Bakker PAHM (1992) Proposed elimination of the term endorhizosphere. Phytopathol 82: 726–727.
  • Kuo Y (2015) Effects of fertilizer type on chlorophyll content and plant biomass in common bermudagrass. African Journal of Agricultural Research 10(42): 3997-4000.
  • Langer RHM, Prasad PC, Laude HM (1973) Effects of kinetin in tiller bud elongation in wheat (Triticum aestivum L). Ann Bot. 37: 565-571.
  • Ledeboer FB, Skogley CR (1973) Effects of various nitrogen sources. timing. and rates on quality and growth rate of cool-season turfgrasses. Agronomy Journal 65: 243–246.
  • Li X, Geng X, Xie R, Fu L, Jiang J, Gao L, Sun J (2016) The endophytic bacteria isolated from elephant grass (Pennisetum purpureum Schumach) promote plant growth and enhance salt tolerance of Hybrid Pennisetum. Biotechnol Biofuels 9: 190-213.
  • Lindberg T, Granhall U (1984) Isolation and characterization of dinitrogen-fixing bacteria from the rhizosphere of temperate cereals and forage grasses. Applied and Environmental Microbiology 48: 683-689.
  • Liu H, Hull RJ, Duff DT (1997) Comparing cultivars of three cool-season turfgrasses for soil water NO3 concentration and leaching potential. Crop Sci. 37: 526-534.
  • Liu X, Huang B, Banowetz G (2002) Cytokinin effects on Creeping bentrgrass responses to heat stress: I.Shoot and Root Growth. Crop Sci. 42: 457-465.
  • Liu Y, Gu D, Ding Y, Wang Q, Li G, Wang S (2011) The relationship between nitrogen auxin. and cytokinin in the growth regulation of rice (Oryza sativa L.) tiller buds. Australian Journal of Crop Science 5(8): 1019-1026.
  • Miltner ED, Stahnke GK, Johnston WJ, Golob CT (2004) Late fall and winter nitrogen fertilization and turfgrass in two pacific northwest climates. HortScience 39: 1745-1749.
  • Miltner ED, Branham BE, Paul EA, Rieke RE (1996) Leaching and mass balance of 15N-labeled urea applied to a Kentucky bluegrass turf. Crop Sci. 36: 1427-1433.
  • Nektarios PA, Petrovic AM, Steenhuis TS (2014) Nitrate and Tracer leaching from aerated turfgrass profiles. European Journal of Horticultural Science 79: 150-157.
  • Nunes C, Usall J, Teixido N, Fons E, Vinas I (2002) Post‐harvest biological control by Pantoea agglomerans (CPA‐2) on Golden Delicious apples. J Appl Microbiol 92: 247–255.
  • Pallai R, Hynes RK, Verma B, Nelson LM (2012) Phytohormone production and colonization of canola (Brassica napus L.) roots by Pseudomonas fluorescens 6-8 under gnotobiotic conditions.Canadian Journal of Microbiology 58(2): 170-178. https://doi.org/10.1139/w11-120.
  • Parlak S, Güner D (2017) Mikrobiyal gübre uygulamasının karaçam (Pinus nigra Arnold. Subsp. Pallasiana (Lamb.) Holmboe) fidanlarının bazı morfolojik özelliklerine etkisi. Ormancılık Araştırma Dergisi 4(2): 100-106.
  • Parker JE (2003) Plant recognition of microbial patterns. Trends Plant Sci. 8: 245–247.
  • Peacock CH, Daniel PH (1992) A comparison of Turfgrass response to biologically amended Fertilizers. Hort Science 27(8): 883-884.
  • Ping L, Boland W (2004) Signals from the underground: bacterial volatiles promote growh in Arabidopsis. Trends Plant Sci. 9: 263-266.
  • Parveen H, Singh AV, Khan A, Prasad B, Pareek N (2018). Influence of plant growth promoting rhizobacteria on seed germination and seedling vigor of green gram. Int. J Chemical Studies 6(4): 611-618.
  • Paulino-Paulino J, Harmsen EW, Sotomayor-Ramirez D, Rivera LE (2008) Nitrate leaching under different levels of irrigation for three turfgrasses in southern Puerto Rico. J. Agr. Univ. Puerto Rico. 92: 135-152.
  • Puhalla CJ, Krans JV, Goatley JM (2010) Sports Fields: Design. Construction and Maintenance. 2nd Edition. Wiley. Hoboken. NJ.
  • Qasim M, Younis A, Zahir ZA, Riaz A, Raza H, Usman T (2014) Microbial inoculation increases the nutrient uptake efficiency for quality production of Gladiolus grandifloras. Pak J Agric. Sci. 51: 875–880.
  • Reddy CA Saravanan RS (2013) Polymicrobial multi-functional approach for enhancement of crop productivity. Adv. Appl. Microbiol. 82: 53–113. doi:10.1016/B978-0-12-407679-2.00003-X.
  • Ryu CM, Faraq MA, Hu CH, Reddy MS, Kloepper JW, Pare PW (2004) Bacterial volatiles induce systemic resistance in Arabidopsis. Plant Physiol. 134: 1017–1026.
  • Sakakibara H, Takei K, Hirose N (2006) Interactions between nitrogen and cytokinin in the regulation of metabolism and development. Trends Plant Sci. 11: 440-448.
  • Singh AV, Shah S (2013) Plant Growth-Promoting Rhizobacteria for Sustainable Agriculture. In: Modern technologies for sustainable agriculture. (Ed Kumar S. Prasad B). Modern Tech Sustainable Agri. New Delhi, India, pp. 151-168.
  • Singh J, Singh AV, Prasad B, Shah S (2017) Sustainable agriculture strategies of wheat biofortification through microorganisms. In: Wheat a premier food crop. (Ed. Anil Kumar. Amarjeet Kumar and Birendra Prasad). Kalyani. Publishers. New Delhi, India, pp. 373-391.
  • Skoog F (1940) Relationship between zinc and auxin in the growth of higher plants. Am. J. Bot. 27: 939- 951.
  • Starr JL, DeReo HC (1981) The fate of nitrogen fertilizer applied to turfgrass.Crop Sci. 21: 531-536.
  • Steenhoudt O, Vanderleyden J (2000) Azospirillum: a free-living nitrogen-fixing bacterium closely associated with grasses: genetic, biochemical and ecological aspects. FEMS Microbiol. Rev. 24: 487–506.
  • Strandberg M, Blomback K, Dahl Jensen AM, Knox W (2012) Priorities for sustainable Turfgrass management: a researh and industry perspective. Acta Agriculturae Scandinavica Section B-Soil and Plant Science 3: 1-7.
  • Taiz L, Zeiger E (2010) Auxin: The first discovered plant growth hormone. In: L. Taiz and E. Zeiger. Editors. Plant physi-ology. 5th ed. Sinauer Associates Inc. Publishers. Sunderland. MS. pp. 545–582.
  • Turgeon AJ (1998) Turfgrass Management. 5th ed. Prentice-Hall. Englewood Cliffs. NJ.
  • Van Duyne B (1994) The spring grass and leaf diet. BioCycle 35: 61-62.
  • Vessey JK (2003) Plant growth promoting rhizobacteria as biofertilizers. Plant and Soil 255: 571-586.
  • Zahir ZA, Asghar HN, Arshad M (2001) Cytokinin and its precursors for improving growth and yield of rice. Soil Biol Biochem 33: 405–408.
  • Zhang X, Ervin EH, Wu W, Sharma N, Hamill A (2017) Auxin and Trinexapac-ethyl impact on root viability and hormone metabolism in Creeping Bentgrass under water deficit. Crop Sci. 57: 1-8. doi:10.2135/cropsci2016.05.0434İ.
There are 62 citations in total.

Details

Primary Language Turkish
Subjects Agricultural Engineering
Journal Section Makaleler
Authors

Songül Sever Mutlu 0000-0002-7886-1594

Elis Sever This is me 0000-0002-7746-9398

Sahriye Sönmez 0000-0003-2753-2296

Publication Date May 24, 2019
Submission Date May 3, 2019
Published in Issue Year 2019 Volume: 32 Issue: Special Issue

Cite

APA Sever Mutlu, S., Sever, E., & Sönmez, S. (2019). Mikrobiyal gübre uygulamalarının Lolium perenne L. türünün çim performansı üzerine etkileri. Mediterranean Agricultural Sciences, 32, 147-155. https://doi.org/10.29136/mediterranean.560213
AMA Sever Mutlu S, Sever E, Sönmez S. Mikrobiyal gübre uygulamalarının Lolium perenne L. türünün çim performansı üzerine etkileri. Mediterranean Agricultural Sciences. May 2019;32:147-155. doi:10.29136/mediterranean.560213
Chicago Sever Mutlu, Songül, Elis Sever, and Sahriye Sönmez. “Mikrobiyal gübre uygulamalarının Lolium Perenne L. Türünün çim Performansı üzerine Etkileri”. Mediterranean Agricultural Sciences 32, May (May 2019): 147-55. https://doi.org/10.29136/mediterranean.560213.
EndNote Sever Mutlu S, Sever E, Sönmez S (May 1, 2019) Mikrobiyal gübre uygulamalarının Lolium perenne L. türünün çim performansı üzerine etkileri. Mediterranean Agricultural Sciences 32 147–155.
IEEE S. Sever Mutlu, E. Sever, and S. Sönmez, “Mikrobiyal gübre uygulamalarının Lolium perenne L. türünün çim performansı üzerine etkileri”, Mediterranean Agricultural Sciences, vol. 32, pp. 147–155, 2019, doi: 10.29136/mediterranean.560213.
ISNAD Sever Mutlu, Songül et al. “Mikrobiyal gübre uygulamalarının Lolium Perenne L. Türünün çim Performansı üzerine Etkileri”. Mediterranean Agricultural Sciences 32 (May 2019), 147-155. https://doi.org/10.29136/mediterranean.560213.
JAMA Sever Mutlu S, Sever E, Sönmez S. Mikrobiyal gübre uygulamalarının Lolium perenne L. türünün çim performansı üzerine etkileri. Mediterranean Agricultural Sciences. 2019;32:147–155.
MLA Sever Mutlu, Songül et al. “Mikrobiyal gübre uygulamalarının Lolium Perenne L. Türünün çim Performansı üzerine Etkileri”. Mediterranean Agricultural Sciences, vol. 32, 2019, pp. 147-55, doi:10.29136/mediterranean.560213.
Vancouver Sever Mutlu S, Sever E, Sönmez S. Mikrobiyal gübre uygulamalarının Lolium perenne L. türünün çim performansı üzerine etkileri. Mediterranean Agricultural Sciences. 2019;32:147-55.

Creative Commons License

Mediterranean Agricultural Sciences is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.