Conference Paper
BibTex RIS Cite

Portakal (citrus sinensis) budama atığı uygulamalarının toprak verimlilik parametrelerindeki değişim üzerine etkileri

Year 2019, Volume: 32 Issue: Special Issue, 25 - 33, 24.05.2019
https://doi.org/10.29136/mediterranean.560262

Abstract

Bu çalışmanın amacı, portakal (Citrus cinensis var. "Washington Navel") budama atığının
(PBA) iki farklı toprak işleme aletiyle (freze ve diskaro) toprağa
uygulanmasının bazı toprak verimlilik parametrelerindeki değişim üzerine
etkilerini belirlemektir. Her yıl yapılan budamalar sonrası budama atıkları
kuyruk milinden hareketli parçalama makinesi ile parçalama işleminden sonra
toprağa uygulanmıştır. Yapılan uygulamalar sonunda budama atıklarının
belirlenen toprak verimlilik parametreleri üzerine olan etkileri 0–10 cm ve
10–20 cm derinliklerinden alınan toprak örneklerinde tespit edilmiştir.
Çalışmada, budama atıkları kuru madde temel alınarak 306.0 kg da
-1
olacak şekilde toprağa uygulanmışlardır. Çalışmada, özellikle denemenin ikinci
yılında toprağın organik madde (OM), katyon değişim kapasitesi (KDK), toplam
azot (N), yarayışlı fosfor (P), kalsiyum (Ca
+2), potasyum (K+),
bakır (Cu
+2) ve çinko (Zn+2) miktarları ile elektriksel
iletkenlik (EC) değerlerinde önemli artışlar elde edilmiştir. Diğer taraftan,
hacim ağırlığı, toprak reaksiyonu (pH) değerleri ile değişebilir sodyum (Na
+),
demir (Fe
+3) ve mangan (Mn+2) miktarlarında azalma
meydana geldiği belirlenmiştir. Araştırmanın ikinci yılında, diskaro ile
yapılan PBA uygulamaları toprağın yarayışlı su (YS) miktarında önemli düzeyde
artış sağlarken dönemler arasında önemli bir farklılık meydana gelmemiştir.
Elde edilen sonuçlar dikkate alındığında; PBA’nın bu yolla değerlendirilmesinin
toprak verimliliği ve çevre açısından önemli faydalar sağlayabileceği
öngörülmektedir.

Supporting Institution

AKDENİZ ÜNİVERSİTESİ BİLİMSEL ARAŞTIRMA PROJELERİ YÖNETİM BİRİMİ

Project Number

2011.01.0104.001

Thanks

Desteklerinden dolayı Akdeniz Üniversitesi Bilimsel Araştırma Projeleri Yönetim Birimi ne teşekkür ederiz.

References

  • Baldock JA, Nelson PN (1999) Soil Organic Matter. In 'Handbook of Soil Science. Ed M. E. Sumner., CRC Press: Boca Raton, USA, pp. B25–B84.
  • Bastida F, Moreno JL, García C, Hernàndez T (2007) Addition of urban waste to semiarid degraded soil: Long–term effect. Pedosphere 17: 557–567.
  • Bastida F, Kandeler E, Moreno JL, Ros M, Hernandez T, García C (2008) Application of fresh and compost organic wastes modifies structure, size and activity of soil microbial community under semiarid climate. Applied Soil Ecology 40: 318–329.
  • Başçetinçelik A, Öztürk H, Karaca C, Kaçıra M, Ekinci K, Baban A, Kaya D, Barnes I, Komiotti N, Nieminen M (2005) Türkiye’de tarımsal atıkların değerlendirilmesi. Eğitim Programı Notları. Bursa, Türkiye, s. 15-25.
  • Black CA (1965) Methods of Soil Analaysis. Part:2. Amer. Soc. Of Agronomy Inc., Publisher Madisson, Wisconsin, USA. 1372–1376.
  • Bouyoucos GJ (1953). An improved type of soil hydrometer. Soil Science 76: 377–378.
  • César N, Hernández T, García C (2009) Organic Waste Amendment as Strategy for Fixing Carbon and Combating Soil Degradation in Semiarid Areas. Conferences & Workshops Conference: ISWA World Congress 2009, Lisbon.
  • Chapman ND, Pratt PF (1961) methods of analysis for soils, plants and waters. Univiversity of California Division of Agriculture Science 1–309.
  • Chaudhuri S, McDonald LM, Skousen J, Pena–Yewtukhiw EM (2013) Soil organic carbon molecular properties: Effects of time since reclamation in a minesoil chronosequence. Land Degradation & Development 26(3): 237–348.
  • Çağlar KÖ (1949) Toprak Bilgisi. Ankara Üniversitesi Ziraat Fak., Yayınları. Sayı: 10.
  • Çanakçı M, Topakçı M, Ağsaran B, Karayel D (2010) Kuyruk Milinden Hareketli Budama Artığı Parçalama Makinasının Temel İşletmecilik Verilerinin Belirlenmesi. Tarım Bilimleri Dergisi 16: 46–54.
  • Dalal R, Strong WM, Weston EJ, Cooper JE, Lehane KJ, King AJ, Chicken CJ (1995) Sustaining Productivity of a Vertisol at Warra, Queensland, with Fertilizers, no–tillage or legumes. 1. Organic Matter Status. Australian Jornal of Experimental Agriculture 35, 903-13.
  • Demiralay İ (1993) Toprak fiziksel analizleri. Atatürk Üniversitesi Ziraat Fakültesi Yayınları No: 143, Erzurum, s. 131.
  • DIN (1978) Torf für gartenbau and landwirtshaft (DIN: 11542).
  • Directive EU (2008) DIRECTIVE 2008/98/EC of the European Parliament and of the Council of 19 November 2008. http://ec.europa.eu/environment/waste/framework/.
  • Duxbury JM, Smith MS, Doran JW (1989). Soil organic matter as a source and a sink of plant nutrients. In 'Dynamics of soil organic matter in tropical ecosystems. Eds D. C. Coleman, J. M. Oades, and G. Uehara, (University of Hawaii Press: Honolulu), pp. 33–67.
  • European Environment Agency (EEA) (2000) Down to Earth, Soil Degradation and Sustainable Development in Europe. Environmental Issues Series No 16; Office for Official Publications of the European Communities: Luxembourg. pp. 32.
  • Emerson WW, McGarry D (2003) Organic carbon and soil porosity. Australian Journal of Soil Research 41: 107–118.
  • Fernàndez JM, Senesi N, Plaza C, Brunetti G, Polo A (2009) Effects of composted and thermally dried sewage sludges on soil and soil humic acid properties. Pedosphere 19: 281–291.
  • Gleixner G, Poirier N, Bol R, Balesdent J (2002) Molecular dynamics of organic matter in a cultivated soil. Organic Geochemistry 33: 357–366.
  • Hueso–González P, Martínez–Murıllo JF, Ruız–Sınoga JD (2014) The Impact of organic amendments on forest soil properties under mediterranean climatic conditions. Land Degradation & Development 25: 604–612.
  • Jackson MC (1967). Soil Chemical Analysis. Prentice Hall of India Private Limited, New Delhi, India.
  • Jiménez MN, Fernández–Ondoño E, Ripoll MA, Castro–Rodríguez J, Huntsinger L, Bruno NF (2013) Stones and organic mulches improve the Quercus ilex L. afforestation success under Mediterranean climatic conditions. Land Degradation & Development. doi: 10.1002/ ldr.2250.
  • Juo ASR, Lal R (1997) The effects of fallow and continuous cultivation on the chemical and physical properties of an Ultisol. Plant and Soil 35: 567–568.
  • Kacar B (1995) Toprak analizleri. Bitki ve toprağın kimyasal analizleri: III. Ankara Üniversitesi Ziraat Fakültesi Eğitim Araştırma ve Geliştirme Vakfı Yayınları. No: 3, Ankara, s. 705.
  • Kacar B, Inal A (2008) Bitki Analizleri. Nobel Yayıncılık, No: 1241. I. Baskı, ISBN 978–605–395–036–3.
  • Karlen DL, Ditzler CA, Andrews SS (2003) Soil quality: why and how? Geoderma 114, 145–156.
  • Kiem R, Kogel–Knabner I (2003) Contribution of lignin and polysaccharides to the refractory carbon pool in C-depleted arable soils. Soil Biology and Biochemistry 35: 101–118.
  • Lee KE, Pankhurst CE (1992) Soil Organisms and Sustainable Productivity. Australian Journal of Soil Research 30: 855–92.
  • Lindsay WL, Norwell WA (1978) Development of a DTPA soil test for zinc, iron, manganese and copper. Soil Science Society of America Journal 42(3): 421–428.
  • Lopez–Bermudez F (1990) Soil erosion by water on the desertification of a semi–arid Mediterranean fluvial basin: The Segura basin, Spain. Agriculture, Ecosystems & Environment 33: 129–145.
  • Marschner B, Brodowski S, Dreves A, Gleixner G, Gude A, Grootes PM, Hamer U, Heim A, Jandl G, Ji R, Kaiser K, Kalbitz K, Kramer C, Leinweber P, Rethemeyer J, Schaffer A, Schmidt MWI, Schwark L, Wiesenberg GLB (2008) How relevant is recalcitrance for the stabilization of organic matter in soils? Journal of Plant Nutrition and Soil Science 171: 91–110.
  • Meteoroloji Genel Müdürlüğü (2015) http://www.mgm.gov.tr/veridegerlendirme/yillik-toplam-yagis-verileri.aspx?m=antalya#sfB.
  • Nemati MR, Caron J, Gallichand J (2000) Using paper de–inking sludge to maintain soil structural form: Field measurements. Soil Science Society of America Journal 64: 275–285.
  • Norfleet ML, Ditzler CA, Puckett WE, Grossman RB, Shaw JN (2003) Soil quality and its relationshıp to pedology. Soil Science 168(3): 149–155.
  • Novara A, Gristina L, Bodì MB, Cerdà A (2011) The impact of fire on redistribution of soil organic matter on a mediterranean hillslope under maquia vegetation type. Land Degradation & Development 22: 530–536.
  • Olsen SR, Sommers EL (1982) Phosphorus Availability Indices. Phosphorus soluble in sodium bicarbonate methods of soils analysis. Part 2. Chemical and Microbiological Properties. Editors: A. L. Page. R. H. Miller. D. R. Keeney, pp. 404–430.
  • Rhoades JD (1982) Soluble salts, In: Page, A.L. (Ed.), Methods of Soil Analysis, Part 2, Second Edition, American Society of Agronomy, Inc., Madison, WI, USA, p. 167–179. Agronomy Monograph No: 9.
  • Ros M, Hernández T, García C (2003) Bioremediation of soil degraded by sewage sludge: Effects on soil properties and erosion. Environmental Management 31: 741–747.
  • Shazana M, Fauziah CI, Syed Omar SR (2013) Alleviating the infertility of an acid sulphate soil by using ground basalt with or without lime and organic fertilizer under submerged conditions. Land Degradation & Development 24: 129–140. doi: 10.1002/ldr.1111.
  • Şeflek AY, Çarman K, Özbek O (2006) Budama Atıklarının Parçalanmasında Kullanılan Makinanın Performans Değerlerinin İrdelenmesi. Tarım Makinaları Bilimi Dergisi 2(3): 219–224.
  • Tejada M, García–Martínez AM, Parrado J (2009) Effects of vermicompost composted with vinasse on soil properties, soil losses and soil restoration. Catena 77: 238–247.
  • Weber LR (1978) Incorporation of nonsegregated, noncomposted solid waste and soil physical properties. Journal of Environmental Quality 7: 397–400.
  • Wolf B, Snyder GH (2003) Sustainable Soils: The place of organic matter in sustaining soils and their productivity. Food Products Press of The Haworth Press: New York.

The effects of pruning waste of citrus (Citrus sinensis) applications on the some productivity parameter changes of the soil

Year 2019, Volume: 32 Issue: Special Issue, 25 - 33, 24.05.2019
https://doi.org/10.29136/mediterranean.560262

Abstract

The purpose of this experiment was to determine the effect of orange (Citrus cinensis var. "Washington Navel") pruning waste (OPW) applications with two soil tillage equipment (disk harrow and freeze) on changes in some productivity parameters of soil. OPW applied for two years after the power take off (PTO) driven pruning residue chopper. At the end of the application, effects of OPW on soil properties were determined in soil samples obtained from 0–10 and 10–20 cm soil depth. In the experiment, OPW applications to soil based on dry matter as 306.0 kg da-1 every two years after the pruning is done. In the study, especially in the second year of the experiment, organic matter (OM), cation exchange capacity (KDK), total nitrogen (N), phosphorus (P), calcium (Ca+2), potassium (K+), copper (Cu+2) and electrical conductivity (EC) values have increased significantly in both depths of the soil. On the other hand, it was determined that the value of bulk density (HA), soil reaction (pH), amount of changeable sodium (Na+), iron (Fe+3) and manganese (Mn+2) decreased with the applications. OPW applications showed a significant increase in the amount of available water (AW) in the second year of the experiment, but did not make a significant difference between the periods. Considering the results obtained in this project; the use of OPW on a regular basis will benefit in terms of soil productivity and environment.

Project Number

2011.01.0104.001

References

  • Baldock JA, Nelson PN (1999) Soil Organic Matter. In 'Handbook of Soil Science. Ed M. E. Sumner., CRC Press: Boca Raton, USA, pp. B25–B84.
  • Bastida F, Moreno JL, García C, Hernàndez T (2007) Addition of urban waste to semiarid degraded soil: Long–term effect. Pedosphere 17: 557–567.
  • Bastida F, Kandeler E, Moreno JL, Ros M, Hernandez T, García C (2008) Application of fresh and compost organic wastes modifies structure, size and activity of soil microbial community under semiarid climate. Applied Soil Ecology 40: 318–329.
  • Başçetinçelik A, Öztürk H, Karaca C, Kaçıra M, Ekinci K, Baban A, Kaya D, Barnes I, Komiotti N, Nieminen M (2005) Türkiye’de tarımsal atıkların değerlendirilmesi. Eğitim Programı Notları. Bursa, Türkiye, s. 15-25.
  • Black CA (1965) Methods of Soil Analaysis. Part:2. Amer. Soc. Of Agronomy Inc., Publisher Madisson, Wisconsin, USA. 1372–1376.
  • Bouyoucos GJ (1953). An improved type of soil hydrometer. Soil Science 76: 377–378.
  • César N, Hernández T, García C (2009) Organic Waste Amendment as Strategy for Fixing Carbon and Combating Soil Degradation in Semiarid Areas. Conferences & Workshops Conference: ISWA World Congress 2009, Lisbon.
  • Chapman ND, Pratt PF (1961) methods of analysis for soils, plants and waters. Univiversity of California Division of Agriculture Science 1–309.
  • Chaudhuri S, McDonald LM, Skousen J, Pena–Yewtukhiw EM (2013) Soil organic carbon molecular properties: Effects of time since reclamation in a minesoil chronosequence. Land Degradation & Development 26(3): 237–348.
  • Çağlar KÖ (1949) Toprak Bilgisi. Ankara Üniversitesi Ziraat Fak., Yayınları. Sayı: 10.
  • Çanakçı M, Topakçı M, Ağsaran B, Karayel D (2010) Kuyruk Milinden Hareketli Budama Artığı Parçalama Makinasının Temel İşletmecilik Verilerinin Belirlenmesi. Tarım Bilimleri Dergisi 16: 46–54.
  • Dalal R, Strong WM, Weston EJ, Cooper JE, Lehane KJ, King AJ, Chicken CJ (1995) Sustaining Productivity of a Vertisol at Warra, Queensland, with Fertilizers, no–tillage or legumes. 1. Organic Matter Status. Australian Jornal of Experimental Agriculture 35, 903-13.
  • Demiralay İ (1993) Toprak fiziksel analizleri. Atatürk Üniversitesi Ziraat Fakültesi Yayınları No: 143, Erzurum, s. 131.
  • DIN (1978) Torf für gartenbau and landwirtshaft (DIN: 11542).
  • Directive EU (2008) DIRECTIVE 2008/98/EC of the European Parliament and of the Council of 19 November 2008. http://ec.europa.eu/environment/waste/framework/.
  • Duxbury JM, Smith MS, Doran JW (1989). Soil organic matter as a source and a sink of plant nutrients. In 'Dynamics of soil organic matter in tropical ecosystems. Eds D. C. Coleman, J. M. Oades, and G. Uehara, (University of Hawaii Press: Honolulu), pp. 33–67.
  • European Environment Agency (EEA) (2000) Down to Earth, Soil Degradation and Sustainable Development in Europe. Environmental Issues Series No 16; Office for Official Publications of the European Communities: Luxembourg. pp. 32.
  • Emerson WW, McGarry D (2003) Organic carbon and soil porosity. Australian Journal of Soil Research 41: 107–118.
  • Fernàndez JM, Senesi N, Plaza C, Brunetti G, Polo A (2009) Effects of composted and thermally dried sewage sludges on soil and soil humic acid properties. Pedosphere 19: 281–291.
  • Gleixner G, Poirier N, Bol R, Balesdent J (2002) Molecular dynamics of organic matter in a cultivated soil. Organic Geochemistry 33: 357–366.
  • Hueso–González P, Martínez–Murıllo JF, Ruız–Sınoga JD (2014) The Impact of organic amendments on forest soil properties under mediterranean climatic conditions. Land Degradation & Development 25: 604–612.
  • Jackson MC (1967). Soil Chemical Analysis. Prentice Hall of India Private Limited, New Delhi, India.
  • Jiménez MN, Fernández–Ondoño E, Ripoll MA, Castro–Rodríguez J, Huntsinger L, Bruno NF (2013) Stones and organic mulches improve the Quercus ilex L. afforestation success under Mediterranean climatic conditions. Land Degradation & Development. doi: 10.1002/ ldr.2250.
  • Juo ASR, Lal R (1997) The effects of fallow and continuous cultivation on the chemical and physical properties of an Ultisol. Plant and Soil 35: 567–568.
  • Kacar B (1995) Toprak analizleri. Bitki ve toprağın kimyasal analizleri: III. Ankara Üniversitesi Ziraat Fakültesi Eğitim Araştırma ve Geliştirme Vakfı Yayınları. No: 3, Ankara, s. 705.
  • Kacar B, Inal A (2008) Bitki Analizleri. Nobel Yayıncılık, No: 1241. I. Baskı, ISBN 978–605–395–036–3.
  • Karlen DL, Ditzler CA, Andrews SS (2003) Soil quality: why and how? Geoderma 114, 145–156.
  • Kiem R, Kogel–Knabner I (2003) Contribution of lignin and polysaccharides to the refractory carbon pool in C-depleted arable soils. Soil Biology and Biochemistry 35: 101–118.
  • Lee KE, Pankhurst CE (1992) Soil Organisms and Sustainable Productivity. Australian Journal of Soil Research 30: 855–92.
  • Lindsay WL, Norwell WA (1978) Development of a DTPA soil test for zinc, iron, manganese and copper. Soil Science Society of America Journal 42(3): 421–428.
  • Lopez–Bermudez F (1990) Soil erosion by water on the desertification of a semi–arid Mediterranean fluvial basin: The Segura basin, Spain. Agriculture, Ecosystems & Environment 33: 129–145.
  • Marschner B, Brodowski S, Dreves A, Gleixner G, Gude A, Grootes PM, Hamer U, Heim A, Jandl G, Ji R, Kaiser K, Kalbitz K, Kramer C, Leinweber P, Rethemeyer J, Schaffer A, Schmidt MWI, Schwark L, Wiesenberg GLB (2008) How relevant is recalcitrance for the stabilization of organic matter in soils? Journal of Plant Nutrition and Soil Science 171: 91–110.
  • Meteoroloji Genel Müdürlüğü (2015) http://www.mgm.gov.tr/veridegerlendirme/yillik-toplam-yagis-verileri.aspx?m=antalya#sfB.
  • Nemati MR, Caron J, Gallichand J (2000) Using paper de–inking sludge to maintain soil structural form: Field measurements. Soil Science Society of America Journal 64: 275–285.
  • Norfleet ML, Ditzler CA, Puckett WE, Grossman RB, Shaw JN (2003) Soil quality and its relationshıp to pedology. Soil Science 168(3): 149–155.
  • Novara A, Gristina L, Bodì MB, Cerdà A (2011) The impact of fire on redistribution of soil organic matter on a mediterranean hillslope under maquia vegetation type. Land Degradation & Development 22: 530–536.
  • Olsen SR, Sommers EL (1982) Phosphorus Availability Indices. Phosphorus soluble in sodium bicarbonate methods of soils analysis. Part 2. Chemical and Microbiological Properties. Editors: A. L. Page. R. H. Miller. D. R. Keeney, pp. 404–430.
  • Rhoades JD (1982) Soluble salts, In: Page, A.L. (Ed.), Methods of Soil Analysis, Part 2, Second Edition, American Society of Agronomy, Inc., Madison, WI, USA, p. 167–179. Agronomy Monograph No: 9.
  • Ros M, Hernández T, García C (2003) Bioremediation of soil degraded by sewage sludge: Effects on soil properties and erosion. Environmental Management 31: 741–747.
  • Shazana M, Fauziah CI, Syed Omar SR (2013) Alleviating the infertility of an acid sulphate soil by using ground basalt with or without lime and organic fertilizer under submerged conditions. Land Degradation & Development 24: 129–140. doi: 10.1002/ldr.1111.
  • Şeflek AY, Çarman K, Özbek O (2006) Budama Atıklarının Parçalanmasında Kullanılan Makinanın Performans Değerlerinin İrdelenmesi. Tarım Makinaları Bilimi Dergisi 2(3): 219–224.
  • Tejada M, García–Martínez AM, Parrado J (2009) Effects of vermicompost composted with vinasse on soil properties, soil losses and soil restoration. Catena 77: 238–247.
  • Weber LR (1978) Incorporation of nonsegregated, noncomposted solid waste and soil physical properties. Journal of Environmental Quality 7: 397–400.
  • Wolf B, Snyder GH (2003) Sustainable Soils: The place of organic matter in sustaining soils and their productivity. Food Products Press of The Haworth Press: New York.
There are 44 citations in total.

Details

Primary Language Turkish
Subjects Agricultural Engineering
Journal Section Makaleler
Authors

Erdem Yılmaz 0000-0002-4217-088X

Murad Çanakcı 0000-0002-1985-8387

Mehmet Topakçı 0000-0002-5049-9511

Sahriye Sönmez 0000-0003-2753-2296

Bora Ağsaran This is me 0000-0002-4137-2711

Zeki Alagöz 0000-0002-7312-7550

Sedat Çıtak This is me 0000-0002-4760-3779

Dilek Saadet Üras This is me 0000-0003-3115-2069

Project Number 2011.01.0104.001
Publication Date May 24, 2019
Submission Date May 3, 2019
Published in Issue Year 2019 Volume: 32 Issue: Special Issue

Cite

APA Yılmaz, E., Çanakcı, M., Topakçı, M., Sönmez, S., et al. (2019). Portakal (citrus sinensis) budama atığı uygulamalarının toprak verimlilik parametrelerindeki değişim üzerine etkileri. Mediterranean Agricultural Sciences, 32, 25-33. https://doi.org/10.29136/mediterranean.560262
AMA Yılmaz E, Çanakcı M, Topakçı M, Sönmez S, Ağsaran B, Alagöz Z, Çıtak S, Üras DS. Portakal (citrus sinensis) budama atığı uygulamalarının toprak verimlilik parametrelerindeki değişim üzerine etkileri. Mediterranean Agricultural Sciences. May 2019;32:25-33. doi:10.29136/mediterranean.560262
Chicago Yılmaz, Erdem, Murad Çanakcı, Mehmet Topakçı, Sahriye Sönmez, Bora Ağsaran, Zeki Alagöz, Sedat Çıtak, and Dilek Saadet Üras. “Portakal (citrus Sinensis) Budama atığı uygulamalarının Toprak Verimlilik Parametrelerindeki değişim üzerine Etkileri”. Mediterranean Agricultural Sciences 32, May (May 2019): 25-33. https://doi.org/10.29136/mediterranean.560262.
EndNote Yılmaz E, Çanakcı M, Topakçı M, Sönmez S, Ağsaran B, Alagöz Z, Çıtak S, Üras DS (May 1, 2019) Portakal (citrus sinensis) budama atığı uygulamalarının toprak verimlilik parametrelerindeki değişim üzerine etkileri. Mediterranean Agricultural Sciences 32 25–33.
IEEE E. Yılmaz, M. Çanakcı, M. Topakçı, S. Sönmez, B. Ağsaran, Z. Alagöz, S. Çıtak, and D. S. Üras, “Portakal (citrus sinensis) budama atığı uygulamalarının toprak verimlilik parametrelerindeki değişim üzerine etkileri”, Mediterranean Agricultural Sciences, vol. 32, pp. 25–33, 2019, doi: 10.29136/mediterranean.560262.
ISNAD Yılmaz, Erdem et al. “Portakal (citrus Sinensis) Budama atığı uygulamalarının Toprak Verimlilik Parametrelerindeki değişim üzerine Etkileri”. Mediterranean Agricultural Sciences 32 (May 2019), 25-33. https://doi.org/10.29136/mediterranean.560262.
JAMA Yılmaz E, Çanakcı M, Topakçı M, Sönmez S, Ağsaran B, Alagöz Z, Çıtak S, Üras DS. Portakal (citrus sinensis) budama atığı uygulamalarının toprak verimlilik parametrelerindeki değişim üzerine etkileri. Mediterranean Agricultural Sciences. 2019;32:25–33.
MLA Yılmaz, Erdem et al. “Portakal (citrus Sinensis) Budama atığı uygulamalarının Toprak Verimlilik Parametrelerindeki değişim üzerine Etkileri”. Mediterranean Agricultural Sciences, vol. 32, 2019, pp. 25-33, doi:10.29136/mediterranean.560262.
Vancouver Yılmaz E, Çanakcı M, Topakçı M, Sönmez S, Ağsaran B, Alagöz Z, Çıtak S, Üras DS. Portakal (citrus sinensis) budama atığı uygulamalarının toprak verimlilik parametrelerindeki değişim üzerine etkileri. Mediterranean Agricultural Sciences. 2019;32:25-33.

Creative Commons License

Mediterranean Agricultural Sciences is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.