Research Article
BibTex RIS Cite

Phenotypic and genotypic characterisation of pepper genotypes for Tomato Spotted Wilt Orthotospovirus reaction and resistance

Year 2022, Volume: 35 Issue: 2, 59 - 67, 02.08.2022
https://doi.org/10.29136/mediterranean.1034291

Abstract

In order to determine the effects of Tomato spotted wilt orthotospovirus (TSWV) on the yield and fruit quality parameters of some common local and commercial pepper (Capsicum annuum L.) genotypes under greenhouse conditions, mechanical inoculations were performed, and virus infections were tested by DAS-ELISA and RT-PCR after the inoculations. Based on the DAS-ELISA results, 95% of the inoculated plants were found to be positive for TSWV, in accordance with the expected amplicon size (276 bp) obtained by RT-PCR results. Infection of TSWV caused significant (p≤0.05) reduction in fruit number (45.97-100%), fruit weight (66.38-98.77%), fruit width (63.77-96.52%), fruit length (31.97-93.514%), flesh thickness (28.64-82.41%), fruit firmness (5.82-94.43%), fruit colour (1.62-7.79%), and total yield (68.62-100%) in infected plants. The best performance against TSWV was observed on cv. Yalova Çarliston 341, while the lowest was observed on cv. Bora 77 among the tested pepper cultivars Yalova Çarliston 341, Yalova Tatlı Kıl, Yalova Yağlık 28, Mazamort, Sera Demre 8, Üçburun, Geyikboynuzu, Bor Biberi, Bora 77 and 153-227. Moreover, the incidence of Tsw resistance gene was investigated by molecular analysis using CAPS marker SCAC568 with TaqI restriction enzyme digestion; however, Tsw gene could not be detected in any of the tested cultivars except wild type C. chinense and resistant genotype cv.153-227. This study reveals the effects of TSWV in common pepper genotypes and will be important for virus resistant breeding studies.

References

  • Adkins S (2000) Tomato spotted wilt virus positive steps towards negative success. Molecular Plant Pathology 1(3): 151-157.
  • Azeri T (1981) Preliminary report of tomato spotted wilt virus (TSWV) and its epidemiology on tobacco in the Çanakkale region of Turkey. Journal of Turkish Phytopathology 10(2-3): 79-87.
  • Black LL, Hobbs HA, Gatti Jr JM (1991) Tomato spotted wilt virus resistance in Capsicum chinense PI 152225 and 159236. Plant Disease 75(8): 863.
  • Boiteux LS (1995) Allelic relationships between genes for resistance to tomato spotted wilt tospovirus in Capsicum chinense. Theoretical and Applied Genetics 90(1): 146-149.
  • Bozdoğan V and Kamberoglu MA (2015) Incidence and distribution of tomato spotted wilt tospovirus (TSWV) in vegetable crops in Antalya province of Turkey. Turkish Journal of Phytopathology 44(1-3): 39-50.
  • Brittlebank CC (1919) Tomato diseases. Journal of Agriculture Victoria 27: 231-235.
  • Clark MF, Adams AN (1977) Characteristics of the microplate method of enzyme-linked immunosorbent assay for the detection of plant viruses. Journal of General Virology 34(3): 475-483.
  • Çelik İ, Özalp R, Polat İ, Çelik N (2010) Biberde domates lekeli solgunluk virus (tomato spotted wilt virus-TSWV) hastalığı, yayılışı ve dayanıklılık çalışmaları. In: VIII. Sebze Tarımı Sempozyumu. Van, Türkiye, pp. 477-484.
  • Çelik İ, Özalp R, Çelik N, Polat İ, Sülü G (2018) Domates lekeli solgunluk virüsü (TSWV)’ne dayanıklı sivri biber hatlarının geliştirilmesi. Derim 35(1): 27-36.
  • Doyle J, Doyle JL (1987) Genomic plant DNA preparation from fresh tissue-CTAB method. Phytochem Bull 19(11): 11-15.
  • Ferrand L, Almeida MMS, Orílio AF, Dal Bó E, Resende RO, García ML (2019) Biological and molecular characterization of tomato spotted wilt virus (TSWV) resistance‐breaking isolates from Argentina. Plant Pathology 68(9): 1587-1601.
  • İkten H (2019) Farklı genetic kaynaklardan elde edilen F2 biber genotiplerinde (Capsicum annuum L.) TSWV’ye dayanıklılığın moleküler analizi. Mediterranean Agricultural Sciences 32(1): 43-48.
  • Keleş Öztürk P, Baloğlu S (2019) Doğu Akdeniz Bölgesi’nde açık alanda yetiştirilen biberlerde bazı virüslerin serolojik ve moleküler tanısı. Alatarım 18(1): 1-11.
  • Konieczny A and Ausubel FM (1993) A procedure for mapping Arabidopsis mutations using codominant ecotype-specific PCR-based markers. Plant Journal 4: 403-410.
  • Lefebvre V, Caranta C, Pflieger S, Moury B, Daubèze AM, Blattes A, Ferrière C, Phaly T, Nemouchi G, Ruffinato A, and Palloix A (1997). Updated intraspecific maps of pepper. Capsicum and Eggplant Newsletter 16: 35-41.
  • Margaria P, Ciuffo M, Rosa C, Turina M (2015) Evidence of a tomato spotted wilt virus resistance-breaking strain originated through natural reassortment between two evolutionary-distinct isolates. Virus Research 196: 157-161.
  • Moury B, Palloix A, Selassie KG, Marchoux G (1997) Hypersensitive resistance to tomato spotted wilt virus in three Capsicum chinense accessions is controlled by a single gene and is overcome by virulent strains. Euphytica 94(1): 45-52.
  • Moury B, Pflieger S, Blattes A, Lefebvre V, Palloix A (2000) A CAPS marker to assist selection of tomato spotted wilt virus (TSWV) resistance in pepper. Genome 43(1): 137-142.
  • Paran I and Michelmore RW (1993) Development of reliable PCR-based markers linked to downy mildew resistance genes in lettuce. Theoritical and Applied Genetics 85: 985-993.
  • Perez YV, Mejias A, Rodriguez-Roman E, Avilan D, Zambrano KA, Gomez JC, Olachea JE, Marys EE (2014) Identification of Tomato spotted wilt virus associated with fruit damage during a recent virus outbreak in pepper in Venezuela. Plant Disease 99(6): 896-896.
  • Polat I, Celik I, Celik N and Ozalp R (2012) Biological and molecular determination for resistance to tomato spotted wilt virus (TSWV) in F2 population of long-type pepper (Capsicum annuum L.). In: International Symposium on Biotechnology and Other Omics in Vegetable Science. Antalya, Turkey, pp. 115-120.
  • Roggero P, Lisa V, Nervo G and Pennazio S (1996) Continuous high temperature can break the hypersensitivity of Capsicum chinense 'PI 152225' to tomato spotted wilt tospovirus (TSWV). Phytopathologia Mediterranea 35(2): 117-120.
  • Roggero P, Masenga V and Tavella L (2002) Field isolates of tomato spotted wilt virus overcoming resistance in pepper and their spread to other hosts in Italy. Plant Disease 86(9): 950-954.
  • Scholthof KBG, Adkins S, Czosnek H, Palukaitis P, Jacquot E, Hohn T, Hohn B, Saunders K, Candresse T, Ahlquıst P, Hemenway C, Foster GD (2011) Top 10 plant viruses in molecular plant pathology. Molecular Plant Pathology 12(9): 938-954.
  • Silvar C and García-González CA (2017) Screening old peppers (Capsicum spp.) for disease resistance and pungency-related traits. Scientia Horticulturae 218: 249-257.
  • Şevik M (2008) Thrips (Thripidae: Thysanoptera) türleri ile taşınan bitki virüsleri. Derim 25(1): 1-11.
  • Şimşek D, Pınar H, Mutlu N (2015) Moleküler ıslah yöntemleri kullanılarak Tospovirus ve Tobamoviruslere dayanıklı yeni dolmalık biber (Capsicum annum L.) hat ve çeşitlerinin geliştirilmesi. Alatarım 14(1): 1-8.
  • Tekinel N, Dolar MS, Sağsöz S, Salcan Y (1969) Mersin bölgesinde ekonomik bakımdan önemli bazı sebzelerin virüsleri üzerinde araştırmalar. Bitki Koruma Bülteni 9(1): 37-49.
  • Turhan P, Korkmaz S (2006) Çanakkale ilinde domates lekeli solgunluk virüsünün serolojik ve biyolojik yöntemlerle saptanması. Tarım Bilimleri Dergisi 12(2): 130-136.
  • TÜİK (2020) https://www.tuik.gov.tr/. Accessed 2 November, 2021.
  • Ullman DE, Cho JJ, Mau RF, Westcot DM, Custer DM (1992) A midgut barrier to tomato spotted wilt virus acquisition by adult western flower thrips. Phytopathology 82: 1333-1333.
  • Welsh J, and McClelland M (1990) Fingerprinting genomes using PCR with arbitrary primers. Nucleic Acids Research 18: 7213-7218.
  • Williams JGK, Kubelik AR, Livak KJ, Rafalsky A, and Tingey SV (1990) DNA polymorphisms amplified by arbitrary primers are useful as genetic markers. Nucleic Acids Research 18: 6531-6535.

Phenotypic and genotypic characterisation of pepper genotypes for Tomato Spotted Wilt Orthotospovirus reaction and resistance

Year 2022, Volume: 35 Issue: 2, 59 - 67, 02.08.2022
https://doi.org/10.29136/mediterranean.1034291

Abstract

In order to determine the effects of Tomato spotted wilt orthotospovirus (TSWV) on the yield and fruit quality parameters of some common local and commercial pepper (Capsicum annuum L.) genotypes under greenhouse conditions, mechanical inoculations were performed, and virus infections were tested by DAS-ELISA and RT-PCR after the inoculations. Based on the DAS-ELISA results, 95% of the inoculated plants were found to be positive for TSWV, in accordance with the expected amplicon size (276 bp) obtained by RT-PCR results. Infection of TSWV caused significant (p≤0.05) reduction in fruit number (45.97-100%), fruit weight (66.38-98.77%), fruit width (63.77-96.52%), fruit length (31.97-93.514%), flesh thickness (28.64-82.41%), fruit firmness (5.82-94.43%), fruit colour (1.62-7.79%), and total yield (68.62-100%) in infected plants. The best performance against TSWV was observed on cv. Yalova Çarliston 341, while the lowest was observed on cv. Bora 77 among the tested pepper cultivars Yalova Çarliston 341, Yalova Tatlı Kıl, Yalova Yağlık 28, Mazamort, Sera Demre 8, Üçburun, Geyikboynuzu, Bor Biberi, Bora 77 and 153-227. Moreover, the incidence of Tsw resistance gene was investigated by molecular analysis using CAPS marker SCAC568 with TaqI restriction enzyme digestion; however, Tsw gene could not be detected in any of the tested cultivars except wild type C. chinense and resistant genotype cv.153-227. This study reveals the effects of TSWV in common pepper genotypes and will be important for virus resistant breeding studies.

References

  • Adkins S (2000) Tomato spotted wilt virus positive steps towards negative success. Molecular Plant Pathology 1(3): 151-157.
  • Azeri T (1981) Preliminary report of tomato spotted wilt virus (TSWV) and its epidemiology on tobacco in the Çanakkale region of Turkey. Journal of Turkish Phytopathology 10(2-3): 79-87.
  • Black LL, Hobbs HA, Gatti Jr JM (1991) Tomato spotted wilt virus resistance in Capsicum chinense PI 152225 and 159236. Plant Disease 75(8): 863.
  • Boiteux LS (1995) Allelic relationships between genes for resistance to tomato spotted wilt tospovirus in Capsicum chinense. Theoretical and Applied Genetics 90(1): 146-149.
  • Bozdoğan V and Kamberoglu MA (2015) Incidence and distribution of tomato spotted wilt tospovirus (TSWV) in vegetable crops in Antalya province of Turkey. Turkish Journal of Phytopathology 44(1-3): 39-50.
  • Brittlebank CC (1919) Tomato diseases. Journal of Agriculture Victoria 27: 231-235.
  • Clark MF, Adams AN (1977) Characteristics of the microplate method of enzyme-linked immunosorbent assay for the detection of plant viruses. Journal of General Virology 34(3): 475-483.
  • Çelik İ, Özalp R, Polat İ, Çelik N (2010) Biberde domates lekeli solgunluk virus (tomato spotted wilt virus-TSWV) hastalığı, yayılışı ve dayanıklılık çalışmaları. In: VIII. Sebze Tarımı Sempozyumu. Van, Türkiye, pp. 477-484.
  • Çelik İ, Özalp R, Çelik N, Polat İ, Sülü G (2018) Domates lekeli solgunluk virüsü (TSWV)’ne dayanıklı sivri biber hatlarının geliştirilmesi. Derim 35(1): 27-36.
  • Doyle J, Doyle JL (1987) Genomic plant DNA preparation from fresh tissue-CTAB method. Phytochem Bull 19(11): 11-15.
  • Ferrand L, Almeida MMS, Orílio AF, Dal Bó E, Resende RO, García ML (2019) Biological and molecular characterization of tomato spotted wilt virus (TSWV) resistance‐breaking isolates from Argentina. Plant Pathology 68(9): 1587-1601.
  • İkten H (2019) Farklı genetic kaynaklardan elde edilen F2 biber genotiplerinde (Capsicum annuum L.) TSWV’ye dayanıklılığın moleküler analizi. Mediterranean Agricultural Sciences 32(1): 43-48.
  • Keleş Öztürk P, Baloğlu S (2019) Doğu Akdeniz Bölgesi’nde açık alanda yetiştirilen biberlerde bazı virüslerin serolojik ve moleküler tanısı. Alatarım 18(1): 1-11.
  • Konieczny A and Ausubel FM (1993) A procedure for mapping Arabidopsis mutations using codominant ecotype-specific PCR-based markers. Plant Journal 4: 403-410.
  • Lefebvre V, Caranta C, Pflieger S, Moury B, Daubèze AM, Blattes A, Ferrière C, Phaly T, Nemouchi G, Ruffinato A, and Palloix A (1997). Updated intraspecific maps of pepper. Capsicum and Eggplant Newsletter 16: 35-41.
  • Margaria P, Ciuffo M, Rosa C, Turina M (2015) Evidence of a tomato spotted wilt virus resistance-breaking strain originated through natural reassortment between two evolutionary-distinct isolates. Virus Research 196: 157-161.
  • Moury B, Palloix A, Selassie KG, Marchoux G (1997) Hypersensitive resistance to tomato spotted wilt virus in three Capsicum chinense accessions is controlled by a single gene and is overcome by virulent strains. Euphytica 94(1): 45-52.
  • Moury B, Pflieger S, Blattes A, Lefebvre V, Palloix A (2000) A CAPS marker to assist selection of tomato spotted wilt virus (TSWV) resistance in pepper. Genome 43(1): 137-142.
  • Paran I and Michelmore RW (1993) Development of reliable PCR-based markers linked to downy mildew resistance genes in lettuce. Theoritical and Applied Genetics 85: 985-993.
  • Perez YV, Mejias A, Rodriguez-Roman E, Avilan D, Zambrano KA, Gomez JC, Olachea JE, Marys EE (2014) Identification of Tomato spotted wilt virus associated with fruit damage during a recent virus outbreak in pepper in Venezuela. Plant Disease 99(6): 896-896.
  • Polat I, Celik I, Celik N and Ozalp R (2012) Biological and molecular determination for resistance to tomato spotted wilt virus (TSWV) in F2 population of long-type pepper (Capsicum annuum L.). In: International Symposium on Biotechnology and Other Omics in Vegetable Science. Antalya, Turkey, pp. 115-120.
  • Roggero P, Lisa V, Nervo G and Pennazio S (1996) Continuous high temperature can break the hypersensitivity of Capsicum chinense 'PI 152225' to tomato spotted wilt tospovirus (TSWV). Phytopathologia Mediterranea 35(2): 117-120.
  • Roggero P, Masenga V and Tavella L (2002) Field isolates of tomato spotted wilt virus overcoming resistance in pepper and their spread to other hosts in Italy. Plant Disease 86(9): 950-954.
  • Scholthof KBG, Adkins S, Czosnek H, Palukaitis P, Jacquot E, Hohn T, Hohn B, Saunders K, Candresse T, Ahlquıst P, Hemenway C, Foster GD (2011) Top 10 plant viruses in molecular plant pathology. Molecular Plant Pathology 12(9): 938-954.
  • Silvar C and García-González CA (2017) Screening old peppers (Capsicum spp.) for disease resistance and pungency-related traits. Scientia Horticulturae 218: 249-257.
  • Şevik M (2008) Thrips (Thripidae: Thysanoptera) türleri ile taşınan bitki virüsleri. Derim 25(1): 1-11.
  • Şimşek D, Pınar H, Mutlu N (2015) Moleküler ıslah yöntemleri kullanılarak Tospovirus ve Tobamoviruslere dayanıklı yeni dolmalık biber (Capsicum annum L.) hat ve çeşitlerinin geliştirilmesi. Alatarım 14(1): 1-8.
  • Tekinel N, Dolar MS, Sağsöz S, Salcan Y (1969) Mersin bölgesinde ekonomik bakımdan önemli bazı sebzelerin virüsleri üzerinde araştırmalar. Bitki Koruma Bülteni 9(1): 37-49.
  • Turhan P, Korkmaz S (2006) Çanakkale ilinde domates lekeli solgunluk virüsünün serolojik ve biyolojik yöntemlerle saptanması. Tarım Bilimleri Dergisi 12(2): 130-136.
  • TÜİK (2020) https://www.tuik.gov.tr/. Accessed 2 November, 2021.
  • Ullman DE, Cho JJ, Mau RF, Westcot DM, Custer DM (1992) A midgut barrier to tomato spotted wilt virus acquisition by adult western flower thrips. Phytopathology 82: 1333-1333.
  • Welsh J, and McClelland M (1990) Fingerprinting genomes using PCR with arbitrary primers. Nucleic Acids Research 18: 7213-7218.
  • Williams JGK, Kubelik AR, Livak KJ, Rafalsky A, and Tingey SV (1990) DNA polymorphisms amplified by arbitrary primers are useful as genetic markers. Nucleic Acids Research 18: 6531-6535.
There are 33 citations in total.

Details

Primary Language English
Subjects Agricultural Engineering
Journal Section Makaleler
Authors

Ömer Faruk Özdemir 0000-0001-9332-3420

Eminur Elçi 0000-0002-6434-6321

Publication Date August 2, 2022
Submission Date December 8, 2021
Published in Issue Year 2022 Volume: 35 Issue: 2

Cite

APA Özdemir, Ö. F., & Elçi, E. (2022). Phenotypic and genotypic characterisation of pepper genotypes for Tomato Spotted Wilt Orthotospovirus reaction and resistance. Mediterranean Agricultural Sciences, 35(2), 59-67. https://doi.org/10.29136/mediterranean.1034291
AMA Özdemir ÖF, Elçi E. Phenotypic and genotypic characterisation of pepper genotypes for Tomato Spotted Wilt Orthotospovirus reaction and resistance. Mediterranean Agricultural Sciences. August 2022;35(2):59-67. doi:10.29136/mediterranean.1034291
Chicago Özdemir, Ömer Faruk, and Eminur Elçi. “Phenotypic and Genotypic Characterisation of Pepper Genotypes for Tomato Spotted Wilt Orthotospovirus Reaction and Resistance”. Mediterranean Agricultural Sciences 35, no. 2 (August 2022): 59-67. https://doi.org/10.29136/mediterranean.1034291.
EndNote Özdemir ÖF, Elçi E (August 1, 2022) Phenotypic and genotypic characterisation of pepper genotypes for Tomato Spotted Wilt Orthotospovirus reaction and resistance. Mediterranean Agricultural Sciences 35 2 59–67.
IEEE Ö. F. Özdemir and E. Elçi, “Phenotypic and genotypic characterisation of pepper genotypes for Tomato Spotted Wilt Orthotospovirus reaction and resistance”, Mediterranean Agricultural Sciences, vol. 35, no. 2, pp. 59–67, 2022, doi: 10.29136/mediterranean.1034291.
ISNAD Özdemir, Ömer Faruk - Elçi, Eminur. “Phenotypic and Genotypic Characterisation of Pepper Genotypes for Tomato Spotted Wilt Orthotospovirus Reaction and Resistance”. Mediterranean Agricultural Sciences 35/2 (August 2022), 59-67. https://doi.org/10.29136/mediterranean.1034291.
JAMA Özdemir ÖF, Elçi E. Phenotypic and genotypic characterisation of pepper genotypes for Tomato Spotted Wilt Orthotospovirus reaction and resistance. Mediterranean Agricultural Sciences. 2022;35:59–67.
MLA Özdemir, Ömer Faruk and Eminur Elçi. “Phenotypic and Genotypic Characterisation of Pepper Genotypes for Tomato Spotted Wilt Orthotospovirus Reaction and Resistance”. Mediterranean Agricultural Sciences, vol. 35, no. 2, 2022, pp. 59-67, doi:10.29136/mediterranean.1034291.
Vancouver Özdemir ÖF, Elçi E. Phenotypic and genotypic characterisation of pepper genotypes for Tomato Spotted Wilt Orthotospovirus reaction and resistance. Mediterranean Agricultural Sciences. 2022;35(2):59-67.

Creative Commons License

Mediterranean Agricultural Sciences is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.