Research Article
BibTex RIS Cite

Metal tolerance of Spirulina platensis

Year 2022, Volume: 35 Issue: 3, 135 - 139, 02.12.2022
https://doi.org/10.29136/mediterranean.1097816

Abstract

Microorganism-based bioremediation is a well-sought after method for industrial wastewater treatment and forms the primary stage. The current research suggests using Spirulina platensis as an organism of choice for bioremediation. This study provides an insight into the potential use of primary-treated wastewater as the growth media for Spirulina platensis. The tolerance of S. platensis was confirmed for metals such as mercury (Hg), cadmium (Cd), manganese (Mn), zinc (Zn), and copper (Cu) by using media enriched with these metals. S. platensis was most tolerant to Hg followed by Cd and Cu. Further, it is suggested that the biomass and bioactive compounds extracted from S. platensis be tested for their application in animal and aquaculture feed, supplements, and pharmaceuticals.

Supporting Institution

University of Mumbai

Project Number

140

References

  • Ahmad A, Ghufran R, Wahid ZA (2010) Cd, As, Cu, and Zn transfer through dry to rehydrated biomass of Spirulina Platensis from wastewater. Polish Journal of Environmental Studies 19: 887-893.
  • Al-Dhabi NA (2013) Heavy metal analysis in commercial Spirulina products for human consumption. Saudi Journal of Biological Sciences 20: 383-388. doi:10.1016/j.sjbs.2013.04.006.
  • Central Pollution Control Board (2021) National Inventory of Sewage Treatment Plants. Delhi, pp. 9.
  • Ciferri O (1983) Spirulina, the edible microorganism. Microbiological Reviews 47: 551-578. doi:10.1128/mr.47.4.551-578.1983.
  • Dhankhar R, Hooda A (2011) Fungal biosorption -- an alternative to meet the challenges of heavy metal pollution in aqueous solutions. Environmental technology 32: 467-491. doi: 10.1080/09593330.2011.572922.
  • Dineshkumar R, Narendran R, Sampathkumar P (2016) Cultivation of Spirulina platensis in different selective media. Indian Journal of Geo Marine Science 45: 1749-1754.
  • Fariduddin Q, Varshney P, Ali A (2018) The perspective of nitrate assimilation and bioremediation in Spirulina platensis (a non-nitrogen fixing cyanobacterium): An overview. Journal of Environmental Biology 39: 547-557. doi: 10.22438/jeb/39/5/MS-172.
  • Fukuda S, Lwamoto K, Asumi M, Yokoyama A, Nakayama T, Ishida K, Inouye I, Shraiwa Y (2014) Global searches for microalgae and aquatic plants that can eliminate radioactive cesium, iodine and strontium from the radio-polluted aquatic environment. Journal of Plant Research 127: 79-89. doi: 10.1007/s10265-013-0596-9.
  • Gomont M (1892) Monographie des Oscillariées (Nostocacées Homocystées): Deuxième partie - Lyngbyées. Annales des Sciences Naturelles, Botanique 7(16): 91-264.
  • Gouma S, Fragoeiro S, Bastos A, Magan N (2014) Bacterial and Fungal Bioremediation Strategies. Microbial Biodegradation and Bioremediation 301-323. doi: 10.1016/b978-0-12-800021-2.00013-3.
  • Güroy B, Karadal O, Mantoğlu S, Cebeci OI (2017) Effects of different drying methods on C-phycocyanin content of Spirulina platensis powder. Ege Journal of Fisheries and Aquatic Sciences 34(2): 129-132.
  • Jia H, Yuan Q (2016) Removal of nitrogen from wastewater using microalgae and microalgae–bacteria consortia. Cogent Environmental Science 2(1). doi: 10.1080/23311843.2016.1275089.
  • Juwarkar AA, Singh SK, Mudhoo AA (2010) Comprehensive Overview of Elements in Bioremediation. Reviews in Environmental Science and Bio/Technology 9: 215-288. doi: 10.1007/s11157-010-9215-6.
  • Khan Z, Bhadouria P, Bisen P (2005) Nutritional and Therapeutic Potential of Spirulina. Current Pharmaceutical Biotechnology 6: 373-379. doi: 10.2174/138920105774370607.
  • Kőnig-Péter A, Csudai C, Felinger A, Kilár F, Pernyeszi T (2014) Potential of Various Biosorbents for Zn(II) Removal. Water, Air, & Soil Pollution 225: 1-9. doi: 10.1007/s11270-014-2089-4.
  • Lim HR, Khoo KS, Chew KW, Chang CK, Munawaroh HSH, Kumar PS, Huy ND, Show PL (2021) Perspective of Spirulina culture with wastewater into a sustainable circular bioeconomy. Environmental Pollution 284: 117492. doi: 10.1016/j.envpol.2021.117492.
  • Liu S (2017) How Cells Grow. Bioprocess Engineering 629-697. doi: 10.1016/b978-0-444-63783-3.00011-3.
  • Lone MI, He ZL, Stoffella PJ, Yang XE (2008) Phytoremediation of heavy metal polluted soils and water: progresses and perspectives. Journal of Zhejiang University. SCIENCE B 9: 210-220. doi: 10.1631/jzus.B0710633.
  • Lu C, Chau C, Zhang J (2000) Acute toxicity of excess mercury on the photosynthetic performance of cyanobacterium, S. platensis – assessment by chlorophyll fluorescence analysis. Chemosphere 41: 191-196. doi: 10.1016/s0045-6535(99)00411-7.
  • Michael A, Kyewalyanga MS, Lugomela CV (2019). Biomass and nutritive value of Spirulina (Arthrospira fusiformis) cultivated in a cost-effective medium. Annals of Microbiology. doi: 10.1007/s13213-019-01520-4.
  • Michalak I, Mironiuk M, Godlewska K, Trynda J, Marycz K (2020) Arthrospira (Spirulina) platensis: An effective biosorbent for nutrients. Process Biochemistry 88: 129-137. doi: 10.1016/j.procbio.2019.10.004.
  • Ministry of Environment and Forests, Government of India (2010) Common Effluent Treatment Plant Standards. Delhi, pp. 2.
  • Moghazy RM (2019) Activated biomass of the green microalga Chlamydomonas variabilis as an efficient biosorbent to remove methylene blue dye from aqueous solutions. Water SA 45: 20-28. doi: 10.4314/wsa.v45i1.03.
  • Murali OM, Mehar SK (2014) Bioremediation of Heavy Metals using Spirulina. International Journal of Geology, Earth and Environmental Sciences 4: 244-249.
  • Murugesan AG, Maheswari S, Bagirath G (2008) Biosorption of Cadmium by Live and Immobilized Cells of Spirulina platensis. International Journal of Environmental Research 2: 307-312.
  • Padgaonkar A, Paramanya A, Poojari P, Ali A. (2021) Current Insights on Wastewater Treatment and Application of Spirulina platensis in Improving the Water Quality. Marine Science and Technology Bulletin 10(3): 286-294. doi: 10.33714/masteb.972128.
  • Paramanya A, Jha P, Ali A (2019) Bioactive Compounds in Spirulina sp.: Applications and Potential Health Effects. In: Sundaray JK, Rather MA (Eds), Next Generation Research in Aquaculture. Narendra Publishing House, Delhi, pp. 197-218.
  • Priyadarshini E, Priyadarshini SS, Pradhan N (2019) Heavy metal resistance in algae and its application for metal nanoparticle synthesis. Applied Microbiology and Biotechnology 103: 3297-3316. doi: 10.1007/s00253-019-09685-3.
  • Rangsayatorn N, Upatham ES, Kruatrachue M, Pokethitiyook P, Lanza GR (2002) Phytoremediation potential of Spirulina (Arthrospira) platensis: biosorption and toxicity studies of cadmium. Environmental Pollution 119: 45-53. doi: 10.1016/s0269-7491(01)00324-4.
  • Selvakumaran J, Jell G (2005) A guide to basic cell culture and applications in biomaterials and tissue engineering. Biomaterials, Artificial Organs and Tissue Engineering 215-226. doi: 10.1533/9781845690861.4.215.
  • Shi W, Wang L, Rousseau DPL, Lens PNL (2010) Removal of estrone, 17α-ethinylestradiol, and 17ß-estradiol in algae and duckweed-based wastewater treatment systems. Environmental Science and Pollution Research 17: 824–833. doi: 10.1007/s11356-010-0301-7.
  • Tabagari I, Kurashvili M, Varazi T, Adamia G, Gigolashvili G, Pruidze M, Chokheli L, Khatisashvili G, Niemsdorf P (2019) Application of Arthrospira (Spirulina) platensis against Chemical Pollution of Water. Water 11: 1759. doi: 10.3390/w11091759.
  • The Environment (Protection) Rules (1986) S.O. 32(E) Environment (Protection) Act 1986. India: Government of India.
  • Thomson AM, Kurup G (2010) Heavy metal tolerance and metal-induced oxidative stress in Spirulina platensis. Asian Journal of Microbiology, Biotechnology and Environmental Sciences 12: 461-468.
  • Usharani G, Saranraj P, Kanchana D (2012) Spirulina Cultivation: A Review. International Journal of Pharmaceutical & Biological Archives 3: 1327-1341.
  • Wang J, Chen C (2009) Biosorbents for heavy metals removal and their future. Biotechnology Advances 27: 195-226. doi: 10.1016/j.biotechadv.2008.11.002.
  • Yan G, Viraraghavan T (2003) Heavy-metal removal from aqueous solution by fungus Mucor rouxii. Water Research 37: 4486-4496. doi: 10.1016/s0043-1354(03)00409-3.

Metal tolerance of Spirulina platensis

Year 2022, Volume: 35 Issue: 3, 135 - 139, 02.12.2022
https://doi.org/10.29136/mediterranean.1097816

Abstract

Microorganism-based bioremediation is a well-sought after method for industrial wastewater treatment and forms the primary stage. The current research suggests using Spirulina platensis as an organism of choice for bioremediation. This study provides an insight into the potential use of primary-treated wastewater as the growth media for Spirulina platensis. The tolerance of S. platensis was confirmed for metals such as mercury (Hg), cadmium (Cd), manganese (Mn), zinc (Zn), and copper (Cu) by using media enriched with these metals. S. platensis was most tolerant to Hg followed by Cd and Cu. Further, it is suggested that the biomass and bioactive compounds extracted from S. platensis be tested for their application in animal and aquaculture feed, supplements, and pharmaceuticals.

Project Number

140

References

  • Ahmad A, Ghufran R, Wahid ZA (2010) Cd, As, Cu, and Zn transfer through dry to rehydrated biomass of Spirulina Platensis from wastewater. Polish Journal of Environmental Studies 19: 887-893.
  • Al-Dhabi NA (2013) Heavy metal analysis in commercial Spirulina products for human consumption. Saudi Journal of Biological Sciences 20: 383-388. doi:10.1016/j.sjbs.2013.04.006.
  • Central Pollution Control Board (2021) National Inventory of Sewage Treatment Plants. Delhi, pp. 9.
  • Ciferri O (1983) Spirulina, the edible microorganism. Microbiological Reviews 47: 551-578. doi:10.1128/mr.47.4.551-578.1983.
  • Dhankhar R, Hooda A (2011) Fungal biosorption -- an alternative to meet the challenges of heavy metal pollution in aqueous solutions. Environmental technology 32: 467-491. doi: 10.1080/09593330.2011.572922.
  • Dineshkumar R, Narendran R, Sampathkumar P (2016) Cultivation of Spirulina platensis in different selective media. Indian Journal of Geo Marine Science 45: 1749-1754.
  • Fariduddin Q, Varshney P, Ali A (2018) The perspective of nitrate assimilation and bioremediation in Spirulina platensis (a non-nitrogen fixing cyanobacterium): An overview. Journal of Environmental Biology 39: 547-557. doi: 10.22438/jeb/39/5/MS-172.
  • Fukuda S, Lwamoto K, Asumi M, Yokoyama A, Nakayama T, Ishida K, Inouye I, Shraiwa Y (2014) Global searches for microalgae and aquatic plants that can eliminate radioactive cesium, iodine and strontium from the radio-polluted aquatic environment. Journal of Plant Research 127: 79-89. doi: 10.1007/s10265-013-0596-9.
  • Gomont M (1892) Monographie des Oscillariées (Nostocacées Homocystées): Deuxième partie - Lyngbyées. Annales des Sciences Naturelles, Botanique 7(16): 91-264.
  • Gouma S, Fragoeiro S, Bastos A, Magan N (2014) Bacterial and Fungal Bioremediation Strategies. Microbial Biodegradation and Bioremediation 301-323. doi: 10.1016/b978-0-12-800021-2.00013-3.
  • Güroy B, Karadal O, Mantoğlu S, Cebeci OI (2017) Effects of different drying methods on C-phycocyanin content of Spirulina platensis powder. Ege Journal of Fisheries and Aquatic Sciences 34(2): 129-132.
  • Jia H, Yuan Q (2016) Removal of nitrogen from wastewater using microalgae and microalgae–bacteria consortia. Cogent Environmental Science 2(1). doi: 10.1080/23311843.2016.1275089.
  • Juwarkar AA, Singh SK, Mudhoo AA (2010) Comprehensive Overview of Elements in Bioremediation. Reviews in Environmental Science and Bio/Technology 9: 215-288. doi: 10.1007/s11157-010-9215-6.
  • Khan Z, Bhadouria P, Bisen P (2005) Nutritional and Therapeutic Potential of Spirulina. Current Pharmaceutical Biotechnology 6: 373-379. doi: 10.2174/138920105774370607.
  • Kőnig-Péter A, Csudai C, Felinger A, Kilár F, Pernyeszi T (2014) Potential of Various Biosorbents for Zn(II) Removal. Water, Air, & Soil Pollution 225: 1-9. doi: 10.1007/s11270-014-2089-4.
  • Lim HR, Khoo KS, Chew KW, Chang CK, Munawaroh HSH, Kumar PS, Huy ND, Show PL (2021) Perspective of Spirulina culture with wastewater into a sustainable circular bioeconomy. Environmental Pollution 284: 117492. doi: 10.1016/j.envpol.2021.117492.
  • Liu S (2017) How Cells Grow. Bioprocess Engineering 629-697. doi: 10.1016/b978-0-444-63783-3.00011-3.
  • Lone MI, He ZL, Stoffella PJ, Yang XE (2008) Phytoremediation of heavy metal polluted soils and water: progresses and perspectives. Journal of Zhejiang University. SCIENCE B 9: 210-220. doi: 10.1631/jzus.B0710633.
  • Lu C, Chau C, Zhang J (2000) Acute toxicity of excess mercury on the photosynthetic performance of cyanobacterium, S. platensis – assessment by chlorophyll fluorescence analysis. Chemosphere 41: 191-196. doi: 10.1016/s0045-6535(99)00411-7.
  • Michael A, Kyewalyanga MS, Lugomela CV (2019). Biomass and nutritive value of Spirulina (Arthrospira fusiformis) cultivated in a cost-effective medium. Annals of Microbiology. doi: 10.1007/s13213-019-01520-4.
  • Michalak I, Mironiuk M, Godlewska K, Trynda J, Marycz K (2020) Arthrospira (Spirulina) platensis: An effective biosorbent for nutrients. Process Biochemistry 88: 129-137. doi: 10.1016/j.procbio.2019.10.004.
  • Ministry of Environment and Forests, Government of India (2010) Common Effluent Treatment Plant Standards. Delhi, pp. 2.
  • Moghazy RM (2019) Activated biomass of the green microalga Chlamydomonas variabilis as an efficient biosorbent to remove methylene blue dye from aqueous solutions. Water SA 45: 20-28. doi: 10.4314/wsa.v45i1.03.
  • Murali OM, Mehar SK (2014) Bioremediation of Heavy Metals using Spirulina. International Journal of Geology, Earth and Environmental Sciences 4: 244-249.
  • Murugesan AG, Maheswari S, Bagirath G (2008) Biosorption of Cadmium by Live and Immobilized Cells of Spirulina platensis. International Journal of Environmental Research 2: 307-312.
  • Padgaonkar A, Paramanya A, Poojari P, Ali A. (2021) Current Insights on Wastewater Treatment and Application of Spirulina platensis in Improving the Water Quality. Marine Science and Technology Bulletin 10(3): 286-294. doi: 10.33714/masteb.972128.
  • Paramanya A, Jha P, Ali A (2019) Bioactive Compounds in Spirulina sp.: Applications and Potential Health Effects. In: Sundaray JK, Rather MA (Eds), Next Generation Research in Aquaculture. Narendra Publishing House, Delhi, pp. 197-218.
  • Priyadarshini E, Priyadarshini SS, Pradhan N (2019) Heavy metal resistance in algae and its application for metal nanoparticle synthesis. Applied Microbiology and Biotechnology 103: 3297-3316. doi: 10.1007/s00253-019-09685-3.
  • Rangsayatorn N, Upatham ES, Kruatrachue M, Pokethitiyook P, Lanza GR (2002) Phytoremediation potential of Spirulina (Arthrospira) platensis: biosorption and toxicity studies of cadmium. Environmental Pollution 119: 45-53. doi: 10.1016/s0269-7491(01)00324-4.
  • Selvakumaran J, Jell G (2005) A guide to basic cell culture and applications in biomaterials and tissue engineering. Biomaterials, Artificial Organs and Tissue Engineering 215-226. doi: 10.1533/9781845690861.4.215.
  • Shi W, Wang L, Rousseau DPL, Lens PNL (2010) Removal of estrone, 17α-ethinylestradiol, and 17ß-estradiol in algae and duckweed-based wastewater treatment systems. Environmental Science and Pollution Research 17: 824–833. doi: 10.1007/s11356-010-0301-7.
  • Tabagari I, Kurashvili M, Varazi T, Adamia G, Gigolashvili G, Pruidze M, Chokheli L, Khatisashvili G, Niemsdorf P (2019) Application of Arthrospira (Spirulina) platensis against Chemical Pollution of Water. Water 11: 1759. doi: 10.3390/w11091759.
  • The Environment (Protection) Rules (1986) S.O. 32(E) Environment (Protection) Act 1986. India: Government of India.
  • Thomson AM, Kurup G (2010) Heavy metal tolerance and metal-induced oxidative stress in Spirulina platensis. Asian Journal of Microbiology, Biotechnology and Environmental Sciences 12: 461-468.
  • Usharani G, Saranraj P, Kanchana D (2012) Spirulina Cultivation: A Review. International Journal of Pharmaceutical & Biological Archives 3: 1327-1341.
  • Wang J, Chen C (2009) Biosorbents for heavy metals removal and their future. Biotechnology Advances 27: 195-226. doi: 10.1016/j.biotechadv.2008.11.002.
  • Yan G, Viraraghavan T (2003) Heavy-metal removal from aqueous solution by fungus Mucor rouxii. Water Research 37: 4486-4496. doi: 10.1016/s0043-1354(03)00409-3.
There are 37 citations in total.

Details

Primary Language English
Journal Section Makaleler
Authors

Amruta Padgaonkar 0000-0002-0443-2279

Additiya Paramanya 0000-0002-8568-8902

Payal Poojari 0000-0003-2617-7552

Ahmad Ali 0000-0003-4467-5387

Project Number 140
Publication Date December 2, 2022
Submission Date April 3, 2022
Published in Issue Year 2022 Volume: 35 Issue: 3

Cite

APA Padgaonkar, A., Paramanya, A., Poojari, P., Ali, A. (2022). Metal tolerance of Spirulina platensis. Mediterranean Agricultural Sciences, 35(3), 135-139. https://doi.org/10.29136/mediterranean.1097816
AMA Padgaonkar A, Paramanya A, Poojari P, Ali A. Metal tolerance of Spirulina platensis. Mediterranean Agricultural Sciences. December 2022;35(3):135-139. doi:10.29136/mediterranean.1097816
Chicago Padgaonkar, Amruta, Additiya Paramanya, Payal Poojari, and Ahmad Ali. “Metal Tolerance of Spirulina Platensis”. Mediterranean Agricultural Sciences 35, no. 3 (December 2022): 135-39. https://doi.org/10.29136/mediterranean.1097816.
EndNote Padgaonkar A, Paramanya A, Poojari P, Ali A (December 1, 2022) Metal tolerance of Spirulina platensis. Mediterranean Agricultural Sciences 35 3 135–139.
IEEE A. Padgaonkar, A. Paramanya, P. Poojari, and A. Ali, “Metal tolerance of Spirulina platensis”, Mediterranean Agricultural Sciences, vol. 35, no. 3, pp. 135–139, 2022, doi: 10.29136/mediterranean.1097816.
ISNAD Padgaonkar, Amruta et al. “Metal Tolerance of Spirulina Platensis”. Mediterranean Agricultural Sciences 35/3 (December 2022), 135-139. https://doi.org/10.29136/mediterranean.1097816.
JAMA Padgaonkar A, Paramanya A, Poojari P, Ali A. Metal tolerance of Spirulina platensis. Mediterranean Agricultural Sciences. 2022;35:135–139.
MLA Padgaonkar, Amruta et al. “Metal Tolerance of Spirulina Platensis”. Mediterranean Agricultural Sciences, vol. 35, no. 3, 2022, pp. 135-9, doi:10.29136/mediterranean.1097816.
Vancouver Padgaonkar A, Paramanya A, Poojari P, Ali A. Metal tolerance of Spirulina platensis. Mediterranean Agricultural Sciences. 2022;35(3):135-9.

Creative Commons License

Mediterranean Agricultural Sciences is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.