Research Article
BibTex RIS Cite

BIOPHYSICAL INVESTIGATION OF MOLECULAR INTERACTIONS BETWEEN ALLIIN AND ANIONIC DMPG MODEL MEMBRANE: AN FTIR STUDY

Year 2024, Volume: 10 Issue: 2, 95 - 105, 30.12.2024
https://doi.org/10.51477/mejs.1546782

Abstract

Garlic, which contains bioactive compound alliin, is a medicinal herb that has been traditionally utilized for its therapeutic properties against a range of illnesses. Our aim is to investigate the interactions between alliin and anionic dimyristoyl phosphatidylglycerol (DMPG) multilamellar vesicles (MLVs) at various temperatures and alliin concentrations (1, 3, 6 and 9 mol%) using Fourier transform infrared (FTIR) spectroscopy. The PerkinElmer Frontier spectrometer was used to collect spectra within the region of 4000-1000 cm-1. The specimens were subjected to scanning within a temperature range of 0 to 40 °C using the Specac temperature control device. The analyses were conducted utilizing the Spectrum v10.3.7 program. By introducing both low and high concentrations of alliin to DMPG MLVs, the wavenumber values of the CH2 antisymmetric stretching band decreased, while the bandwidth values increased, both in the gel and liquid crystal phases. During the gel phase, the presence of alliin resulted in a downward shift of the C=O stretching bands' wavenumber values. Opposite evidence occurred in the liquid crystal phase. The wavenumber values of the PO2- antisymmetric stretching band exhibited a shift towards lower values both in the gel and liquid crystal phases. In the present study, we investigated the biophysical effects of alliin on DMPG model membranes using parameters such as lipid order, dynamics and hydrogen bonding ability. The addition of alliin altered the physical characteristics of the DMPG MLVs by ordering the system, enhancing its dynamics, and promoting hydrogen bond interactions between the phosphate group of DMPG and alliin or water molecules, both in the gel and liquid crystalline phases. Moreover, alliin enhanced the strength of hydrogen bonding in proximity to carbonyl groups in the gel phase.

Ethical Statement

Dear Professor Zülküf GÜLSÜN, In our study titled “Biophysical Investigation of Molecular Interactions between Alliin and Anionic DMPG Model Membrane: An FTIR Study”, scientific ethical rules were followed. The study does not have any data requiring “Ethics Committee Approval”. I declare as the responsible author that this study is one of the studies that does not require ethics committee approval. Yours sincerely, Assoc. Prof. İpek Şahin

References

  • Korkmaz, F., Severcan, F., “Effect of progesterone on DPPC membrane: Evidence for lateral phase separation and inverse action in lipid dynamics”, Archives of Biochemistry and Biophysics, 440(2), 141-147, 2005. Doi: 10.1016/j.abb.2005.06.013.
  • Aleskndrany, A., Sahin, I., “The effects of Levothyroxine on the structure and dynamics of DPPC liposome: FTIR and DSC studies”, Biochimica et Biophysica Acta (BBA) – Biomembranes, 1862(6), 183245, 2020. Doi: 10.1016/j.bbamem.2020.183245.
  • Bilge, D., Kazanci, N., Severcan, F., “Acyl chain length and charge effect on Tamoxifen–lipid model membrane interactions”, Journal of Molecular Structure, 1040, 75-82, 2013. Doi: 10.1016/j.molstruc.2013.02.031.
  • Banerjee, S.K., Maulik, S.K., “Effect of garlic on cardiovascular disorders: a review”, Nutrition Journal, 1(4), 1-14, 2002. Doi: 10.1186/1475-2891-1-4.
  • Magryś, A., Olender, A., Tchórzewska, D., “Antibacterial properties of Allium sativum L. against the most emerging multidrug-resistant bacteria and its synergy with antibiotics”, Archives of Microbiology, 203(5), 2257-2268, 2021. Doi: 10.1007/s00203-021-02248-z.
  • Ashraf, R., Khan, R.A., Ashraf, I., “Garlic [Allium sativum] supplementation with standard antidiabetic agent provides better diabetic control in type 2 diabetes patients”, Pakistan Journal of Pharmaceutical Sciences, 24(4), 565-70, 2011. PMID: 21959822.
  • Ried, K., Toben, C., Fakler, P., “Effect of garlic on serum lipids: an updated meta-analysis”, Nutrition Reviews, 71(5), 282-299, 2013. Doi: 10.1111/nure.12012.
  • Tsubura, A., Lai, Y.-C., Kuwata, M., Uehara, N., Yoshizawa, K., “Anticancer Effects of Garlic and garlic-derived Compounds for Breast Cancer Control”, Anti-Cancer Agents in Medicinal Chemistry, 11(3), 249-253, 2011. Doi: 10.2174/187152011795347441.
  • Omar, S.H., Al-Wabel, N.A., “Organosulfur compounds and possible mechanism of garlic in cancer”, Saudi Pharmaceutical Journal, 18(1), 51-58, 2010. Doi: 10.1016/j.jsps.2009.12.007.
  • Lu, X., Rasco, B.A., Jabal, J.M., Aston, D.E., Lin, M., Konkel, M.E., “Investigating Antibacterial Effects of Garlic [Allium sativum] Concentrate and Garlic-Derived Organosulfur Compounds on Campylobacter jejuni by Using Fourier Transform Infrared Spectroscopy, Raman Spectroscopy, and Electron Microscopy”, Applied and Environmental Microbiology, 77(15), 5257-5269, 2011. Doi: 10.1128/AEM.02845-10.
  • Akilan, S., Prabakar, K., “Spectral studies and antibacterial activity of Garlic [Allium sativum L.]”, Journal of Emerging Technologies and Innovative Research (JETIR), 5(7), 452-7, 2018. ISSN:2349-5162.
  • Nagarajan, D., Ramesh Kumar, T., “Fourier transform infrared spectroscopy analysis of garlic [Allium]”, International Journal of Zoology Studies (IJZS), 2(6), 11-14, 2017. ISSN: 2455-7269.
  • Huang, L., Jia, S., Wu, R., Chen, Y., Ding, S., Dai, C., He, R., “The structure, antioxidant and antibacterial properties of thiol-modified soy protein isolate induced by allicin”, Food Chemistry, 396, 133713, 2022. Doi: 10.1016/j.foodchem.2022.133713.
  • Tyagi, G., Pradhan, S., Srivastava, T., Mehrotra, R., “Nucleic acid binding properties of allicin: Spectroscopic analysis and estimation of anti-tumor potential”, Biochimica et Biophysica Acta (BBA) - General Subjects, 1840(1), 350-356, 2014. Doi: 10.1016/j.bbagen.2013.09.007.
  • Awan, U.A., Ali, S., Shahnawaz, A.M., Shafique, I., Zafar, A., Khan, M.A.R., Ghous, T., Saleem, A., Andleeb, S., “Biological activities of Allium sativum and Zingiber officinale extracts on clinically important bacterial pathogens, their phytochemical and FT-IR spectroscopic analysis”, Pakistan Journal of Pharmaceutical Sciences (PJPS), 30[3], 729-745, 2017. PMID: 28653916.
  • Sangeetha, T., Darlin Quine, S., “Preventive effect of S-allyl cysteine sulfoxide [alliin] on lysosomal hydrolases and membrane-bound ATPases in isoproterenol-induced myocardial infarction in Wistar rats”, Journal of Biochemical and Molecular Toxicology, 21(3), 118-124, 2007. Doi: 10.1002/jbt.20166.
  • Mansingh, D.P., Dalpati, N., Sali, V.K., Vasanthi, A.H.R., “Alliin the Precursor of Allicin in Garlic Extract Mitigates Proliferation of Gastric Adenocarcinoma Cells by Modulating Apoptosis”, Pharmacognosy Magazine, 14(55), 84-91, 2018. Doi: 10.4103/pm.pm_342_17.
  • Ji, T.-J., “Radioprotection of Alliin in Oogenesis Cells of a White Rat”, Journal of Radiological Science and Technology, 41(5), 471-478, 2018. Doi: 10.17946/10.17946/JRST.2018.41.5.471.
  • Tsuchiya, H., Nagayama, M., “Garlic allyl derivatives interact with membrane lipids to modify the membrane fluidity”, Journal of Biomedical Science, 15(5), 653-660, 2008. Doi: 10.1007/s11373-008-9257-8.
  • Ezer, N., Sahin I, Kazanci, N., “Alliin interacts with DMPC model membranes to modify the membrane dynamics: FTIR and DSC Studies”, Vibrational Spectroscopy, 89, 1-8, 2017. Doi: 10.1016/j.vibspec.2016.12.006.
  • Severcan, F., Sahin, I., Kazanci, N., “Melatonin strongly interacts with zwitterionic model membranes—evidence from Fourier transform infrared spectroscopy and differential scanning calorimetry”, Biochimica et Biophysica Acta [BBA] – Biomembranes, 1668(2), 215-222, 2005. Doi: 10.1016/j.bbamem.2004.12.009.
  • Turker, S., Wassall, S., Stillwell, W., Severcan, F., “Convulsant agent pentylenetetrazol does not alter the structural and dynamical properties of dipalmitoylphosphatidylcholine model membranes”, Journal of Pharmaceutical and Biomedical Analysis, 54(2), 379-386, 2011. Doi: 10.1016/j.jpba.2010.09.002.
  • Casal, H.L., Mantsch, H.H., “Polymorphic Phase Behaviour of Phospholipid Membranes Studied by Infrared Spectroscopy”, Biochimica et Biophysica Acta (BBA), 779, 381-401, 1984. Doi: 10.1016/0304-4157[84]90017-0.
  • Knobloch, J., Suhendro, D.K., Zieleniecki, J.L., Shapter, J.G., Köper, I., “Membrane-drug interactions studied using model membrane systems”, Saudi Journal of Biological Sciences, 22(6), 714-718, 2015. Doi: 10.1016/j.sjbs.2015.03.007.
  • Shinoda, W., “Permeability across lipid membranes”, Biochimica et Biophysica Acta [BBA] – Biomembranes, 1858(10), 2254-2265, 2016. Doi: 10.1016/j.bbamem.2016.03.032.
  • Xiang, T-X., Anderson, B.D., “Influence of Chain Ordering on the Selectivity of Dipalmitoylphosphatidylcholine Bilayer Membranes for Permeant Size and Shape”, Biophysical Journal, 75(6), 2658-2671, 1998. Doi: 10.1016/S0006-3495[98]77711-2.
  • Mathai, J.C., Tristram-Nagle, S., Nagle, J.F., Zeidel, M.L., “Structural Determinants of Water Permeability through the Lipid Membrane”, Journal of General Physiology (JGP), 131(1), 69-76, 2008. Doi: 10.1085/jgp.200709848.
  • Gruhlke, M.C.H., Hemmis, B., Noll, U., Wagner, R., Lühring, H., Slusarenko, A.J., “The defense substance allicin from garlic permeabilizes membranes of Beta vulgaris, Rhoeo discolor, Chara corallina and artificial lipid bilayers”, Biochimica et Biophysica Acta (BBA) - General Subjects, 1850(4), 602-611, 2015. Doi: 10.1016/j.bbagen.2014.11.020.
  • Miron, T., Rabinkov, A., Mirelman, D., Wilchek, M., Weiner, L., “The mode of action of allicin: its ready permeability through phospholipid membranes may contribute to its biological activity”, Biochimica et Biophysica Acta (BBA), 1463(1), 20-30, 2000. Doi: 10.1016/s0005-2736[99]00174-1.
  • Kučerka, N., Nieh, M., Pencer, J., Sachs, J., Katsaras, J., “What determines the thickness of a biological membrane”, General Physiology and Biophysics, 28(2), 117-125, 2009. Doi: 10.4149/gpb_2009_02_117.
  • Balakrishnan, M., Kenworthy, A.K., “Lipid peroxidation drives liquid-liquid phase separation and disrupts raft protein partitioning in biological membranes”, BioRxiv [Preprint]. 2023.09.12.557355, 2023. Update in: Journal of the American Chemical Society, 146(2), 1374-1387, 2024. Doi: 10.1101/2023.09.12.557355.
  • Zhang, Z., Lei, M., Liu, R., Gao, Y., Xu, M., Zhang, M., “Evaluation of Alliin, Saccharide Contents and Antioxidant Activities of Black Garlic During Thermal Processing”, Journal of Food Biochemistry, 39(1), 39-47, 2015. Doi: 10.1111/jfbc.12102.
  • Xiao, H., Parkin, K.L., “Antioxidant Functions of Selected Allium Thiosulfinates and S-Alk[en]yl-L-Cysteine Sulfoxides”, Journal of Agricultural and Food Chemistry, 50(9), 2488-2493, 2002. Doi: 10.1021/jf011137r.
  • Bhandari, S.R., Yoon, M.K., Kwak, J.H., “Contents of Phytochemical Constituents and Antioxidant Activity of 19 Garlic [Allium sativum L.] Parental Lines and Cultivars”, Horticulture, Environment, and Biotechnology, 55, 138-147, 2014. Doi: 10.1007/s13580-014-0155-x.
  • Horn, A., Jaiswal, J.K., “Structural and signaling role of lipids in plasma membrane repair”, Current Topics in Membranes, 84, 67-98, 2019. Doi: 10.1016/bs.ctm.2019.07.001.
  • Furdak, P., Bartosz, G., Stefaniuk, I., Cieniek, B., Bieszczad-Bedrejczuk, E., Soszyński, M., Sadowska-Bartosz I., “Effect of Garlic Extract on the Erythrocyte as a Simple Model Cell”, International Journal of Molecular Sciences, 25(10), 5115, 2024. Doi: 10.3390/ijms25105115.
  • Tsuchiya, H., Nagayama, M., “Garlic allyl derivatives interact with membrane lipids to modify the membrane fluidity”, Journal of Biomedical Science, 15(5), 653-660, 2008. Doi: 10.1007/s11373-008-9257-8.
  • Pinilla, C.M.B., Thys, R.C.S., Brandelli, A., “Antifungal properties of phosphatidylcholine-oleic acid liposomes encapsulating garlic against environmental fungal in wheat bread”, International Journal of Food Microbiology, 293, 72-78, 2019. Doi: 10.1016/j.ijfoodmicro.2019.01.006.
  • Lu, Q., Lu, P.-M., Piao, J.-H., Xu, X.-L., Chen, J., Zhu, L., Jiang, J.-G., “Preparation and physicochemical characteristics of an allicin nanoliposome and its release behavior”, LWT - Food Science and Technology, 57(2), 686-695, 2014. Doi: 10.1016/j.lwt.2014.01.044.
  • Rønnest, A.K., Peters, G.H., Hansen, F.Y., Taub, H., Miskowiec, A., “Structure and dynamics of water and lipid molecules in charged anionic DMPG lipid bilayer membranes”, The Journal of Chemical Physics, 144(14), 144904, 2016. Doi: 10.1063/1.4945278.
Year 2024, Volume: 10 Issue: 2, 95 - 105, 30.12.2024
https://doi.org/10.51477/mejs.1546782

Abstract

References

  • Korkmaz, F., Severcan, F., “Effect of progesterone on DPPC membrane: Evidence for lateral phase separation and inverse action in lipid dynamics”, Archives of Biochemistry and Biophysics, 440(2), 141-147, 2005. Doi: 10.1016/j.abb.2005.06.013.
  • Aleskndrany, A., Sahin, I., “The effects of Levothyroxine on the structure and dynamics of DPPC liposome: FTIR and DSC studies”, Biochimica et Biophysica Acta (BBA) – Biomembranes, 1862(6), 183245, 2020. Doi: 10.1016/j.bbamem.2020.183245.
  • Bilge, D., Kazanci, N., Severcan, F., “Acyl chain length and charge effect on Tamoxifen–lipid model membrane interactions”, Journal of Molecular Structure, 1040, 75-82, 2013. Doi: 10.1016/j.molstruc.2013.02.031.
  • Banerjee, S.K., Maulik, S.K., “Effect of garlic on cardiovascular disorders: a review”, Nutrition Journal, 1(4), 1-14, 2002. Doi: 10.1186/1475-2891-1-4.
  • Magryś, A., Olender, A., Tchórzewska, D., “Antibacterial properties of Allium sativum L. against the most emerging multidrug-resistant bacteria and its synergy with antibiotics”, Archives of Microbiology, 203(5), 2257-2268, 2021. Doi: 10.1007/s00203-021-02248-z.
  • Ashraf, R., Khan, R.A., Ashraf, I., “Garlic [Allium sativum] supplementation with standard antidiabetic agent provides better diabetic control in type 2 diabetes patients”, Pakistan Journal of Pharmaceutical Sciences, 24(4), 565-70, 2011. PMID: 21959822.
  • Ried, K., Toben, C., Fakler, P., “Effect of garlic on serum lipids: an updated meta-analysis”, Nutrition Reviews, 71(5), 282-299, 2013. Doi: 10.1111/nure.12012.
  • Tsubura, A., Lai, Y.-C., Kuwata, M., Uehara, N., Yoshizawa, K., “Anticancer Effects of Garlic and garlic-derived Compounds for Breast Cancer Control”, Anti-Cancer Agents in Medicinal Chemistry, 11(3), 249-253, 2011. Doi: 10.2174/187152011795347441.
  • Omar, S.H., Al-Wabel, N.A., “Organosulfur compounds and possible mechanism of garlic in cancer”, Saudi Pharmaceutical Journal, 18(1), 51-58, 2010. Doi: 10.1016/j.jsps.2009.12.007.
  • Lu, X., Rasco, B.A., Jabal, J.M., Aston, D.E., Lin, M., Konkel, M.E., “Investigating Antibacterial Effects of Garlic [Allium sativum] Concentrate and Garlic-Derived Organosulfur Compounds on Campylobacter jejuni by Using Fourier Transform Infrared Spectroscopy, Raman Spectroscopy, and Electron Microscopy”, Applied and Environmental Microbiology, 77(15), 5257-5269, 2011. Doi: 10.1128/AEM.02845-10.
  • Akilan, S., Prabakar, K., “Spectral studies and antibacterial activity of Garlic [Allium sativum L.]”, Journal of Emerging Technologies and Innovative Research (JETIR), 5(7), 452-7, 2018. ISSN:2349-5162.
  • Nagarajan, D., Ramesh Kumar, T., “Fourier transform infrared spectroscopy analysis of garlic [Allium]”, International Journal of Zoology Studies (IJZS), 2(6), 11-14, 2017. ISSN: 2455-7269.
  • Huang, L., Jia, S., Wu, R., Chen, Y., Ding, S., Dai, C., He, R., “The structure, antioxidant and antibacterial properties of thiol-modified soy protein isolate induced by allicin”, Food Chemistry, 396, 133713, 2022. Doi: 10.1016/j.foodchem.2022.133713.
  • Tyagi, G., Pradhan, S., Srivastava, T., Mehrotra, R., “Nucleic acid binding properties of allicin: Spectroscopic analysis and estimation of anti-tumor potential”, Biochimica et Biophysica Acta (BBA) - General Subjects, 1840(1), 350-356, 2014. Doi: 10.1016/j.bbagen.2013.09.007.
  • Awan, U.A., Ali, S., Shahnawaz, A.M., Shafique, I., Zafar, A., Khan, M.A.R., Ghous, T., Saleem, A., Andleeb, S., “Biological activities of Allium sativum and Zingiber officinale extracts on clinically important bacterial pathogens, their phytochemical and FT-IR spectroscopic analysis”, Pakistan Journal of Pharmaceutical Sciences (PJPS), 30[3], 729-745, 2017. PMID: 28653916.
  • Sangeetha, T., Darlin Quine, S., “Preventive effect of S-allyl cysteine sulfoxide [alliin] on lysosomal hydrolases and membrane-bound ATPases in isoproterenol-induced myocardial infarction in Wistar rats”, Journal of Biochemical and Molecular Toxicology, 21(3), 118-124, 2007. Doi: 10.1002/jbt.20166.
  • Mansingh, D.P., Dalpati, N., Sali, V.K., Vasanthi, A.H.R., “Alliin the Precursor of Allicin in Garlic Extract Mitigates Proliferation of Gastric Adenocarcinoma Cells by Modulating Apoptosis”, Pharmacognosy Magazine, 14(55), 84-91, 2018. Doi: 10.4103/pm.pm_342_17.
  • Ji, T.-J., “Radioprotection of Alliin in Oogenesis Cells of a White Rat”, Journal of Radiological Science and Technology, 41(5), 471-478, 2018. Doi: 10.17946/10.17946/JRST.2018.41.5.471.
  • Tsuchiya, H., Nagayama, M., “Garlic allyl derivatives interact with membrane lipids to modify the membrane fluidity”, Journal of Biomedical Science, 15(5), 653-660, 2008. Doi: 10.1007/s11373-008-9257-8.
  • Ezer, N., Sahin I, Kazanci, N., “Alliin interacts with DMPC model membranes to modify the membrane dynamics: FTIR and DSC Studies”, Vibrational Spectroscopy, 89, 1-8, 2017. Doi: 10.1016/j.vibspec.2016.12.006.
  • Severcan, F., Sahin, I., Kazanci, N., “Melatonin strongly interacts with zwitterionic model membranes—evidence from Fourier transform infrared spectroscopy and differential scanning calorimetry”, Biochimica et Biophysica Acta [BBA] – Biomembranes, 1668(2), 215-222, 2005. Doi: 10.1016/j.bbamem.2004.12.009.
  • Turker, S., Wassall, S., Stillwell, W., Severcan, F., “Convulsant agent pentylenetetrazol does not alter the structural and dynamical properties of dipalmitoylphosphatidylcholine model membranes”, Journal of Pharmaceutical and Biomedical Analysis, 54(2), 379-386, 2011. Doi: 10.1016/j.jpba.2010.09.002.
  • Casal, H.L., Mantsch, H.H., “Polymorphic Phase Behaviour of Phospholipid Membranes Studied by Infrared Spectroscopy”, Biochimica et Biophysica Acta (BBA), 779, 381-401, 1984. Doi: 10.1016/0304-4157[84]90017-0.
  • Knobloch, J., Suhendro, D.K., Zieleniecki, J.L., Shapter, J.G., Köper, I., “Membrane-drug interactions studied using model membrane systems”, Saudi Journal of Biological Sciences, 22(6), 714-718, 2015. Doi: 10.1016/j.sjbs.2015.03.007.
  • Shinoda, W., “Permeability across lipid membranes”, Biochimica et Biophysica Acta [BBA] – Biomembranes, 1858(10), 2254-2265, 2016. Doi: 10.1016/j.bbamem.2016.03.032.
  • Xiang, T-X., Anderson, B.D., “Influence of Chain Ordering on the Selectivity of Dipalmitoylphosphatidylcholine Bilayer Membranes for Permeant Size and Shape”, Biophysical Journal, 75(6), 2658-2671, 1998. Doi: 10.1016/S0006-3495[98]77711-2.
  • Mathai, J.C., Tristram-Nagle, S., Nagle, J.F., Zeidel, M.L., “Structural Determinants of Water Permeability through the Lipid Membrane”, Journal of General Physiology (JGP), 131(1), 69-76, 2008. Doi: 10.1085/jgp.200709848.
  • Gruhlke, M.C.H., Hemmis, B., Noll, U., Wagner, R., Lühring, H., Slusarenko, A.J., “The defense substance allicin from garlic permeabilizes membranes of Beta vulgaris, Rhoeo discolor, Chara corallina and artificial lipid bilayers”, Biochimica et Biophysica Acta (BBA) - General Subjects, 1850(4), 602-611, 2015. Doi: 10.1016/j.bbagen.2014.11.020.
  • Miron, T., Rabinkov, A., Mirelman, D., Wilchek, M., Weiner, L., “The mode of action of allicin: its ready permeability through phospholipid membranes may contribute to its biological activity”, Biochimica et Biophysica Acta (BBA), 1463(1), 20-30, 2000. Doi: 10.1016/s0005-2736[99]00174-1.
  • Kučerka, N., Nieh, M., Pencer, J., Sachs, J., Katsaras, J., “What determines the thickness of a biological membrane”, General Physiology and Biophysics, 28(2), 117-125, 2009. Doi: 10.4149/gpb_2009_02_117.
  • Balakrishnan, M., Kenworthy, A.K., “Lipid peroxidation drives liquid-liquid phase separation and disrupts raft protein partitioning in biological membranes”, BioRxiv [Preprint]. 2023.09.12.557355, 2023. Update in: Journal of the American Chemical Society, 146(2), 1374-1387, 2024. Doi: 10.1101/2023.09.12.557355.
  • Zhang, Z., Lei, M., Liu, R., Gao, Y., Xu, M., Zhang, M., “Evaluation of Alliin, Saccharide Contents and Antioxidant Activities of Black Garlic During Thermal Processing”, Journal of Food Biochemistry, 39(1), 39-47, 2015. Doi: 10.1111/jfbc.12102.
  • Xiao, H., Parkin, K.L., “Antioxidant Functions of Selected Allium Thiosulfinates and S-Alk[en]yl-L-Cysteine Sulfoxides”, Journal of Agricultural and Food Chemistry, 50(9), 2488-2493, 2002. Doi: 10.1021/jf011137r.
  • Bhandari, S.R., Yoon, M.K., Kwak, J.H., “Contents of Phytochemical Constituents and Antioxidant Activity of 19 Garlic [Allium sativum L.] Parental Lines and Cultivars”, Horticulture, Environment, and Biotechnology, 55, 138-147, 2014. Doi: 10.1007/s13580-014-0155-x.
  • Horn, A., Jaiswal, J.K., “Structural and signaling role of lipids in plasma membrane repair”, Current Topics in Membranes, 84, 67-98, 2019. Doi: 10.1016/bs.ctm.2019.07.001.
  • Furdak, P., Bartosz, G., Stefaniuk, I., Cieniek, B., Bieszczad-Bedrejczuk, E., Soszyński, M., Sadowska-Bartosz I., “Effect of Garlic Extract on the Erythrocyte as a Simple Model Cell”, International Journal of Molecular Sciences, 25(10), 5115, 2024. Doi: 10.3390/ijms25105115.
  • Tsuchiya, H., Nagayama, M., “Garlic allyl derivatives interact with membrane lipids to modify the membrane fluidity”, Journal of Biomedical Science, 15(5), 653-660, 2008. Doi: 10.1007/s11373-008-9257-8.
  • Pinilla, C.M.B., Thys, R.C.S., Brandelli, A., “Antifungal properties of phosphatidylcholine-oleic acid liposomes encapsulating garlic against environmental fungal in wheat bread”, International Journal of Food Microbiology, 293, 72-78, 2019. Doi: 10.1016/j.ijfoodmicro.2019.01.006.
  • Lu, Q., Lu, P.-M., Piao, J.-H., Xu, X.-L., Chen, J., Zhu, L., Jiang, J.-G., “Preparation and physicochemical characteristics of an allicin nanoliposome and its release behavior”, LWT - Food Science and Technology, 57(2), 686-695, 2014. Doi: 10.1016/j.lwt.2014.01.044.
  • Rønnest, A.K., Peters, G.H., Hansen, F.Y., Taub, H., Miskowiec, A., “Structure and dynamics of water and lipid molecules in charged anionic DMPG lipid bilayer membranes”, The Journal of Chemical Physics, 144(14), 144904, 2016. Doi: 10.1063/1.4945278.
There are 40 citations in total.

Details

Primary Language English
Subjects Biophysics
Journal Section Article
Authors

Nazlı Ezer Özer 0000-0002-2313-4218

Burcu Karagöz Toptaş 0000-0001-5818-8614

İpek Şahin 0000-0002-2233-9852

Publication Date December 30, 2024
Submission Date September 10, 2024
Acceptance Date December 21, 2024
Published in Issue Year 2024 Volume: 10 Issue: 2

Cite

IEEE N. Ezer Özer, B. Karagöz Toptaş, and İ. Şahin, “BIOPHYSICAL INVESTIGATION OF MOLECULAR INTERACTIONS BETWEEN ALLIIN AND ANIONIC DMPG MODEL MEMBRANE: AN FTIR STUDY”, MEJS, vol. 10, no. 2, pp. 95–105, 2024, doi: 10.51477/mejs.1546782.

Creative Commons License

This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License

TRDizinlogo_live-e1586763957746.png   ici2.png     scholar_logo_64dp.png    CenterLogo.png     crossref-logo-landscape-200.png  logo.png         logo1.jpg   DRJI_Logo.jpg  17826265674769  logo.png