Research Article
BibTex RIS Cite

Estimating the efficacy of solar photovoltaic panels in Lebanon using a digital surface model: A geospatial approach

Year 2024, Volume: 6 Issue: 1, 22 - 31, 15.06.2024
https://doi.org/10.53093/mephoj.1401603

Abstract

With the escalating need for alternative energy sources due to economic crises and fossil fuel shortages in Lebanon, solar photovoltaic (PV) panels have emerged as an attractive solution. This study examines the capacity and efficacy of rooftop-installed PV solar panels. Using geospatial technologies, including Digital Surface Models drone-based photogrammetry, the study assesses geometric and solar characteristics, seasonal solar radiation, solar duration, and power for 40 PV units installed in the study area. This research presents specific quantitative values for optimal orientations that result in high solar radiation across various seasons and identifies varying slopes influencing the performance of PV solar panels. Employing the Agglomerative Hierarchical Clustering (AHC) technique, PV units are systematically classified into clusters labeled as Moderate, High, Low, and Very Low solar power, offering quantitative metrics regarding the effectiveness of distinct panels. The high-efficiency Cluster exhibits an average solar power of 1868.114 kWh/m² during the summer season, whereas the Very Low Cluster, comprising panels with minimal solar power output, averages 150.578 kWh/m² in the same season. In conclusion, the most effective PV solar panels within the study area are those oriented between 195 and 225 degrees, with shallow inclination angles and larger surface areas contributing to enhanced performance in capturing solar radiation and generating power. These precise quantitative insights contribute to informed decision-making for optimizing the placement of PV panels to enhance energy generation. The study's recommendations are substantiated by specific numerical data, guiding future solar installations to maximize solar energy generation.

References

  • Milbrandt, A. R., Heimiller, D. M., & Schwabe, P. D. (2018). Techno-economic renewable energy potential on tribal lands. National Renewable Energy Laboratory, NREL/TP-6A20-70807. https://doi.org/10.2172/1459502
  • Charabi, Y., & Gastli, A. (2011). PV site suitability analysis using GIS-based spatial fuzzy multi-criteria evaluation. Renewable Energy, 36(9), 2554-2561. https://doi.org/10.1016/j.renene.2010.10.037
  • Gerbo, A., Suryabhagavan, K. V., & Kumar Raghuvanshi, T. (2022). GIS-based approach for modeling grid-connected solar power potential sites: a case study of East Shewa Zone, Ethiopia. Geology, Ecology, and Landscapes, 6(3), 159-173. https://doi.org/10.1080/24749508.2020.1809059
  • Strzalka, A., Alam, N., Duminil, E., Coors, V., & Eicker, U. (2012). Large scale integration of photovoltaics in cities. Applied Energy, 93, 413-421. https://doi.org/10.1016/j.apenergy.2011.12.033
  • Chaves, A., Bahill, A. T. (2010). Locating sites for photovoltaic solar panels pilot study uses DEM derived from LiDAR. ArcUser Fall 2010, 24-27
  • ESMAP. (2020). Global photovoltaic power potential by country. Washington, DC: World Bank
  • Šúri, M., Huld, T. A., Dunlop, E. D., & Ossenbrink, H. A. (2007). Potential of solar electricity generation in the European Union member states and candidate countries. Solar Energy, 81(10), 1295-1305. https://doi.org/10.1016/j.solener.2006.12.007
  • Choi, Y., Suh, J., & Kim, S. M. (2019). GIS-based solar radiation mapping, site evaluation, and potential assessment: A review. Applied Sciences, 9(9), 1960. https://doi.org/10.3390/app9091960
  • Clifton, J., & Boruff, B. (2010). Site options for concentrated solar power generation in the Wheatbelt. Wheatbelt Development Commission.
  • An, Y., Chen, T., Shi, L., Heng, C. K., & Fan, J. (2023). Solar energy potential using GIS-based urban residential environmental data: A case study of Shenzhen, China. Sustainable Cities and Society, 93, 104547. https://doi.org/10.1016/j.scs.2023.104547
  • Sun, Y. W., Hof, A., Wang, R., Liu, J., Lin, Y. J., & Yang, D. W. (2013). GIS-based approach for potential analysis of solar PV generation at the regional scale: A case study of Fujian Province. Energy Policy, 58, 248-259. https://doi.org/10.1016/j.enpol.2013.03.002
  • Charabi, Y., & Gastli, A. (2010). GIS assessment of large CSP plant in Duqum, Oman. Renewable and Sustainable Energy Reviews, 14(2), 835-841. https://doi.org/10.1016/j.rser.2009.08.019
  • Lara, E. G., & Garcia, F. S. (2021). Review on viability and implementation of residential PV-battery systems: Considering the case of Dominican Republic. Energy Reports, 7, 8868-8899. https://doi.org/10.1016/j.egyr.2021.11.208
  • Ramadhan, M., & Naseeb, A. (2011). The cost benefit analysis of implementing photovoltaic solar system in the state of Kuwait. Renewable Energy, 36(4), 1272-1276. https://doi.org/10.1016/j.renene.2010.10.004
  • Böhner, J., & Antonić, O. (2009). Land-surface parameters specific to topo-climatology. Developments in Soil Science, 33, 195-226. https://doi.org/10.1016/S0166-2481(08)00008-1
  • Dubayah, R., & Rich, P. M. (1996). GIS-based solar radiation modeling. GIS and Environmental Modeling: Progress and Research Issues, 129-134.
  • Global Solar Atlas 2.0, Solaris database version 2.1. https://solargis.com/maps-and-gis-data/download/lebanon
  • Mulherin, A. (2011). A spatial approach to determine solar PV potential for Durham homeowners. [Master’s Thesis, Duke University].
  • Carrión, J. A., Estrella, A. E., Dols, F. A., Toro, M. Z., Rodríguez, M., & Ridao, A. R. (2008). Environmental decision-support systems for evaluating the carrying capacity of land areas: Optimal site selection for grid-connected photovoltaic power plants. Renewable and Sustainable Energy Reviews, 12(9), 2358-2380. https://doi.org/10.1016/j.rser.2007.06.011
  • Reijenga, T., & Ruoss, D. (2005). Technologies and integration concepts. Designing with solar power: a source book for building integrated photovoltaics, 22-52.
  • NREL (2022). 2022 Annual Technology Baseline. Golden, CO: National Renewable Energy Laboratory. https://atb.nrel.gov/electricity/2022/commercial_pv
  • Kaufman, L., & Rousseeuw, P. J. (1990). Finding groups in data: An introduction to cluster analysis. Wiley, New Jersey.
Year 2024, Volume: 6 Issue: 1, 22 - 31, 15.06.2024
https://doi.org/10.53093/mephoj.1401603

Abstract

References

  • Milbrandt, A. R., Heimiller, D. M., & Schwabe, P. D. (2018). Techno-economic renewable energy potential on tribal lands. National Renewable Energy Laboratory, NREL/TP-6A20-70807. https://doi.org/10.2172/1459502
  • Charabi, Y., & Gastli, A. (2011). PV site suitability analysis using GIS-based spatial fuzzy multi-criteria evaluation. Renewable Energy, 36(9), 2554-2561. https://doi.org/10.1016/j.renene.2010.10.037
  • Gerbo, A., Suryabhagavan, K. V., & Kumar Raghuvanshi, T. (2022). GIS-based approach for modeling grid-connected solar power potential sites: a case study of East Shewa Zone, Ethiopia. Geology, Ecology, and Landscapes, 6(3), 159-173. https://doi.org/10.1080/24749508.2020.1809059
  • Strzalka, A., Alam, N., Duminil, E., Coors, V., & Eicker, U. (2012). Large scale integration of photovoltaics in cities. Applied Energy, 93, 413-421. https://doi.org/10.1016/j.apenergy.2011.12.033
  • Chaves, A., Bahill, A. T. (2010). Locating sites for photovoltaic solar panels pilot study uses DEM derived from LiDAR. ArcUser Fall 2010, 24-27
  • ESMAP. (2020). Global photovoltaic power potential by country. Washington, DC: World Bank
  • Šúri, M., Huld, T. A., Dunlop, E. D., & Ossenbrink, H. A. (2007). Potential of solar electricity generation in the European Union member states and candidate countries. Solar Energy, 81(10), 1295-1305. https://doi.org/10.1016/j.solener.2006.12.007
  • Choi, Y., Suh, J., & Kim, S. M. (2019). GIS-based solar radiation mapping, site evaluation, and potential assessment: A review. Applied Sciences, 9(9), 1960. https://doi.org/10.3390/app9091960
  • Clifton, J., & Boruff, B. (2010). Site options for concentrated solar power generation in the Wheatbelt. Wheatbelt Development Commission.
  • An, Y., Chen, T., Shi, L., Heng, C. K., & Fan, J. (2023). Solar energy potential using GIS-based urban residential environmental data: A case study of Shenzhen, China. Sustainable Cities and Society, 93, 104547. https://doi.org/10.1016/j.scs.2023.104547
  • Sun, Y. W., Hof, A., Wang, R., Liu, J., Lin, Y. J., & Yang, D. W. (2013). GIS-based approach for potential analysis of solar PV generation at the regional scale: A case study of Fujian Province. Energy Policy, 58, 248-259. https://doi.org/10.1016/j.enpol.2013.03.002
  • Charabi, Y., & Gastli, A. (2010). GIS assessment of large CSP plant in Duqum, Oman. Renewable and Sustainable Energy Reviews, 14(2), 835-841. https://doi.org/10.1016/j.rser.2009.08.019
  • Lara, E. G., & Garcia, F. S. (2021). Review on viability and implementation of residential PV-battery systems: Considering the case of Dominican Republic. Energy Reports, 7, 8868-8899. https://doi.org/10.1016/j.egyr.2021.11.208
  • Ramadhan, M., & Naseeb, A. (2011). The cost benefit analysis of implementing photovoltaic solar system in the state of Kuwait. Renewable Energy, 36(4), 1272-1276. https://doi.org/10.1016/j.renene.2010.10.004
  • Böhner, J., & Antonić, O. (2009). Land-surface parameters specific to topo-climatology. Developments in Soil Science, 33, 195-226. https://doi.org/10.1016/S0166-2481(08)00008-1
  • Dubayah, R., & Rich, P. M. (1996). GIS-based solar radiation modeling. GIS and Environmental Modeling: Progress and Research Issues, 129-134.
  • Global Solar Atlas 2.0, Solaris database version 2.1. https://solargis.com/maps-and-gis-data/download/lebanon
  • Mulherin, A. (2011). A spatial approach to determine solar PV potential for Durham homeowners. [Master’s Thesis, Duke University].
  • Carrión, J. A., Estrella, A. E., Dols, F. A., Toro, M. Z., Rodríguez, M., & Ridao, A. R. (2008). Environmental decision-support systems for evaluating the carrying capacity of land areas: Optimal site selection for grid-connected photovoltaic power plants. Renewable and Sustainable Energy Reviews, 12(9), 2358-2380. https://doi.org/10.1016/j.rser.2007.06.011
  • Reijenga, T., & Ruoss, D. (2005). Technologies and integration concepts. Designing with solar power: a source book for building integrated photovoltaics, 22-52.
  • NREL (2022). 2022 Annual Technology Baseline. Golden, CO: National Renewable Energy Laboratory. https://atb.nrel.gov/electricity/2022/commercial_pv
  • Kaufman, L., & Rousseeuw, P. J. (1990). Finding groups in data: An introduction to cluster analysis. Wiley, New Jersey.
There are 22 citations in total.

Details

Primary Language English
Subjects Photogrammetry and Remote Sensing
Journal Section Research Articles
Authors

Jean Doumit 0000-0002-7472-8139

Early Pub Date March 16, 2024
Publication Date June 15, 2024
Submission Date December 7, 2023
Acceptance Date January 15, 2024
Published in Issue Year 2024 Volume: 6 Issue: 1

Cite

APA Doumit, J. (2024). Estimating the efficacy of solar photovoltaic panels in Lebanon using a digital surface model: A geospatial approach. Mersin Photogrammetry Journal, 6(1), 22-31. https://doi.org/10.53093/mephoj.1401603
AMA Doumit J. Estimating the efficacy of solar photovoltaic panels in Lebanon using a digital surface model: A geospatial approach. MEPHOJ. June 2024;6(1):22-31. doi:10.53093/mephoj.1401603
Chicago Doumit, Jean. “Estimating the Efficacy of Solar Photovoltaic Panels in Lebanon Using a Digital Surface Model: A Geospatial Approach”. Mersin Photogrammetry Journal 6, no. 1 (June 2024): 22-31. https://doi.org/10.53093/mephoj.1401603.
EndNote Doumit J (June 1, 2024) Estimating the efficacy of solar photovoltaic panels in Lebanon using a digital surface model: A geospatial approach. Mersin Photogrammetry Journal 6 1 22–31.
IEEE J. Doumit, “Estimating the efficacy of solar photovoltaic panels in Lebanon using a digital surface model: A geospatial approach”, MEPHOJ, vol. 6, no. 1, pp. 22–31, 2024, doi: 10.53093/mephoj.1401603.
ISNAD Doumit, Jean. “Estimating the Efficacy of Solar Photovoltaic Panels in Lebanon Using a Digital Surface Model: A Geospatial Approach”. Mersin Photogrammetry Journal 6/1 (June 2024), 22-31. https://doi.org/10.53093/mephoj.1401603.
JAMA Doumit J. Estimating the efficacy of solar photovoltaic panels in Lebanon using a digital surface model: A geospatial approach. MEPHOJ. 2024;6:22–31.
MLA Doumit, Jean. “Estimating the Efficacy of Solar Photovoltaic Panels in Lebanon Using a Digital Surface Model: A Geospatial Approach”. Mersin Photogrammetry Journal, vol. 6, no. 1, 2024, pp. 22-31, doi:10.53093/mephoj.1401603.
Vancouver Doumit J. Estimating the efficacy of solar photovoltaic panels in Lebanon using a digital surface model: A geospatial approach. MEPHOJ. 2024;6(1):22-31.