BibTex RIS Kaynak Göster

Işık Yayan Diyot (LED) Teknolojisinin Meyve ve Sebzelerin Hasat Sonrası Dönemindeki Uygulamaları

Yıl 2017, Cilt: 2 - Özel Sayı (Sempozyum), 0 - 0, 04.10.2017

Öz

Katı-haldeki aydınlatma temeline dayanan, ışık yayan diyot (LED) aydınlatma teknolojisinin bahçe bitkilerinin üretimi sırasında ve sonrasında kullanımı son on yılda artış göstermiştir. LED aydınlatma; fotoperiyodizm oluşturmak amaçlı olarak sera üretimlerinde, doku kültürü çalışmalarında ve kontrollü çevre oluşturma çalışmalarında kullanılmaktadır. Kullanılan ışığın kalitesi ürünlerin verim ve kalitesini etkilemektedir. Kızıl ötesi ışık, uzun gün bitkilerinin çiçeklenmesini uyarırken, beyaz ışık fototropizm, kırmızı LED ışık ise fotosentezin arttırılmasında önemlidir. LED aydınlatma teknolojisi bitki büyüme fizyolojisinde olduğu kadar hasat sonrası döneminde de önemli etkilere sahiptir. LED aydınlatma, bitkilerin hasat sonrası depolanması sırasında ikincil metabolitleri etkilemektedir. Mavi LED, çileklerde antioksidant enzim aktivitesini arttırırken, beyaz ışık marullarda karotenoidlerin parçalanmasını yavaşlatmaktadır. Benzer şekilde kırmızı LED ışık, satsuma mandarinlerinde toplam karotenoidleri, brokolide askorbik asit miktarını arttırken, lahanada C vitaminin arttırılmasında mavi ışık daha etkilidir. Ayrıca LED aydınlatma hasat sonraki dönemde ürün yüzeyindeki mikroorganizmaların azaltılması amaçlı olarak da kullanılmaktadır. Tangerinlerde mavi ışık fungal gelişimi azaltırken, çileklerde ultraviyole LED ışık, Botrytis cinerea’nın neden olduğu kurşuni küf gelişimini azaltmıştır. Bu çalışmada, bahçe bitkileri ürünlerinin hasat öncesi döneminde verim ve kaliteyi arttırmada yoğun olarak kullanılan LED aydınlatma teknolojisinin, hasat sonrasındaki kullanım amaçları ve etkileri incelenmiştir.

Anahtar Kelimeler: LED, meyve, sebze, hasat sonrası, kalite, mikroorganizma.

Kaynakça

  • Kaynaklar
  • Braidot E, Petrussa E, Peresson C, Patui S, Bertolini A, Tubaro F, Wahlby U, Coan M, Vianello A, Zancani M, 2014. Lolw-intensity light cycles improve the quality of lamb’s lettuce (Valerianella olitoria L. Pollich) during storage at low temperature. Postharvest Biol. Technol. 90:15-23.
  • Brown CS, Schuerger AC, Sager JC, 1995. Growth and photomophogenesis of pepper plants grown under red ligth-emitting diodes supplemented with blue or far-red-illumination. J. Amer. Soc.Hort.Sci. 120: 808-813.
  • Costa L, millan Montano Y, Carrion C, Rolny N, Guiamet JJ, 2013. Application of low-intensity light pulses to delay postharvest senescence of Ocimum basilicum leaves. Postharvest Biol. Technol. 86:182-191.
  • Davis P, 2015. Light and lighting. Technical Guide. AHDB Horticulture, Stoneleigh Park, Kenilworth, Warwickshire, CV82TL. https://www.horticulture.ahdb.org.uk
  • Deng, L., Hu, C., Li, J., Ritenour, M.A., 2016. Effects of Blue or Red LED Light Irradiation on Postharvest Degreening of Citrus Fruit . American Society for Horticultural Science, ASHS, 2016. https://ashs.confex.com/ashs/2016/webprogram/Paper24941.html
  • Dhakel R, Baek KH, 2014a. Metabolic alternation in the accumulation of free amino acids and Ƴ-aminobutyric acid in postharvest mature green tomatoes following irradiaiton with blue light. Hortic Environ Biotechnol, 55:36-41.
  • Dhakel R, Baek KH, 2014b. Short period irradiation of single blue wavelength light exteds the storage period of mature green tomatoes. Postharvest Biol Technol, 90:73-77.
  • Dougher TAO, Bugbee B, 2001. Evidence for yellow light suppression of lettuce growth. Photochem Photobiol, 73:208-212.
  • Eltbaakh YA, ruslan MH, Alghoul MA, Othman MY, Sopian K, Fadhel MI, 2011. Measurement of total and spectral solar irrradiance: Overview of existing research. Renewable and sustainable Energy Reviews, 15:1403-1426.
  • Gergoff-Grozeff GE, Chaves AR, Bartoli CG, 2013. Low-irradiance pulses emprove postharvest qiality of spinach leaves (Spinacia oleraceaeL. Cv Bison), Postharvest Biol. Technol. 77:35-42.
  • Ghanem, W., Verdonk, J., Schouten, R., 2016. Effect of Post-harvest LED lighting on colour development in tomato. http://www.wageningenur.nl/en/article/The-influence-of-postharvest-light-treatments-on-strawberries-quality-aspects..htm
  • Glowacz M, Morgen LM, ReadeJPH, Cobb AH, Monaghan JM, 2014. High-but not low-intensity light leads to oxidative stress and quality loss of cold-stored baby leaf spinech. J. Sci. Food Agric. 95(9):1821-1829.
  • Goins GD, Ruffe LM, Cranston NA, Yorio NC, Wheeler RM, Sager JC, 2001. Salad crop production under different wavelengths of red light emitting diodes. SAE Technical Paper Series Paper no. 2001-01-2422.
  • Gong, D., Cao, S., Shenge, T., Shaoa, J., Song, C., Wo, F., Chena, W., Yanga, Z., 2015. Effect of blue light on ethylene biosynthesis, signalling and fruitripening in postharvest peaches. Scientia Horticulturae 197 (2015) 657–664
  • Jin P, Yao D, Xu F, Wang H, Zheng Y., 2015. Effect of light on quality and bioactive compounds in postharvest broccoli florets. Food Chem. 2015 Apr 1;172:705-9. doi: 10.1016/j.foodchem.2014.09.134. Epub 2014 Sep 30.
  • Kader AA, Rolle RS, 2004. “The Role of Post-harvest Management in Assuring the Quality and Safety Horticultural Crops”. Food and Agriculture Organization. Agricultural Services Bulletin 152, 52 p.
  • Kadomura-Ishikawa Y, Muyawaki K, Noji S, Takahasli A, 2013. Phototropin 2 is involved in blue light-induced anthocyanin accumulation in Fragaria-ananassa fruits. J. Plant Res. 126:847-857.
  • Kanazawa K, Hashimoto T, Yoshida S, Sungwon P, Fukuda S, 2012. Short photoirradiation induces flavonoid synthesis and increases its production in postharvest vegetables. J. Agric. Food Chem. 60:4359-4368.
  • Kim B, Lee H, Kim J, Kwon K, Cha H, Kim J, 2011. An effect of light emitting diode (LED) irradiation treatment on the amplification of functional components of immature strawberry. Hortic. Eenviron. Biotechnol. 52:35-39.
  • Kim HH, Goins GD, Wheeler RM, Sager JC, 2004. Green-light supplementation for enhanced lettuce growth under red- and blue-light-emitting diodes. HortScience, 39:1617-1622.
  • Kokalj, D., Hribar, J., Cigić, B., Zlatić, E., Demšar, L., Sinković, L., Sinkovič, L., Šircilj, H., Bizjak, G., Vidrih, R., 2016. Influence of Yellow Light-Emitting Diodes at 590 nm on Storage of Apple, Tomato and Bell Pepper Fruit. Food Technol. Biotechnol. 54 (2) 228–235 (2016)
  • Kondo S, Tomiyama H, Rodyoung A, Okawa K, Ohara H, Sugaya S, Terahara N, Hirai N, 2014. Abscisic acid metabolism and anthocyanin synthesis in grape skin are affected by light-emitting diode (LED) irradiation at night. J. Plant Physiol. 171:823-829.
  • Lee, Y.J., Ha, J.Y., Oh, J.E. Cho, M.S., 2014. The effect of LED irradiation on the quality of cabbage stored at a low temperature. Food Sci Biotechnol (2014) 23: 1087. doi:10.1007/s10068-014-0149
  • Lester GE, Makus DJ, Hodges DM, 2010. Relationship between fresh-packaged spinach leaves expose to continuous light or dark and bioactive contents: effects of cultivar, leaf size, and storage duration. J. Agric. Food Chem. 58:2980-2987.
  • Li, S., Schouten, R.E., Verdonk, J. 2016. The influence of postharvest light treatments on strawberries quality aspects. http://www.wageningenur.nl/en/article/The-influence-of-postharvest-light-treatments-on-strawberries-quality-aspects..htm
  • Ma G, Zhang L, Kato M, Yamawaki K, Kiriiwa, Y, Yahata M, İkoma Y, Matsumoto H, 2011. Effect of blue and red led light irradiation on ß-cryptoxanthin accumulation in the flavedo of citrus fruits. J. agric. Food Chem. 60:197-201.
  • Ma, G., Zhang, L., Kato, M., Yamawaki, K., Kriiwa, Y., Yahata, M., Ikoma, Y., Matsumoto, H., 2015. Effect of the combination of ethylene and red LED light irradiationon carotenoid accumulation and carotenogenic gene expressionin the flavedo of citrus fruit. Postharvest Biology and Technology 99 (2015) 99–104
  • Ma, G., Zhang, L., Kato, M., Yamawaki, K., Kriiwa, Y., Yahata, M., Ikoma, Y., Matsumoto, H., 2012. Effect of Blue and Red LED Light Irradiation on β-Cryptoxanthin Accumulation in the Flavedo of Citrus Fruits. J. Agric. Food Chem., 2012, 60 (1), pp 197–201, DOI: 10.1021/jf203364m
  • Massa GD, Kim HH, Wheeler RM, Mitchell CA, 2008. Plant productivity in response to LED lighting. HortScience, 43:1951-1956.
  • Morrow, R., C., 2008. LED Lighting in Horticulture. HortScience, 43(7): 1947-1950.
  • Nijssen C, Kuhn O, Verbeek W, 1990. Method and device for lighting seeds or plant. U.S. Patent4,914,858. Issued 4/10/1990.
  • Noichinda S, Bodhipadma K, Mahamontri C, Narongruk T, Ketsa S, 2007. Light during storage prevents loss of ascorbic acid, and increases glucose and fructose levels in Chinese kale (Brassica oleracea var. Alboglabra). Postharvest Bio. Technol. 44: 312-315.
  • Noodén LD, Schneider MJ, 2004. Light control of senescence. In: Nooden LD, editor. Plant Cell death Processes. San Diego, Academic Press. P:375-383.
  • Pogson BJ, Morris SC, 2004. Postharvest senescence of vegetables and its regulation. In: Nooden LD, editor. Plant Cell Death Processes. San Diego: Academic Press. P:319-329.
  • Schuerger AC, Brown CS, Stryjewski EC, 1997. Anatomical features of pepper plants (Capsicum annuum L.) grown under red light-emittign diodes supplemented with blue or far-red light. Ann. Bot. (Lond.) 79:273-282.
  • Tennessen DJ, bula RJ, Sharkey TD, 1995. Efficiency of photosynthesis in continuous and pulsed light emitting diode irradiation. Photosynth. Res. 44:261-269.
  • Tennessen DF, Singsaas EL, Sharkey TD, 1994. Light-emitting diodes as a lihgt source for photosynthesis research. Photosynth. Res. 39:85-92.
  • Xu, F., Cao, S., Shi, L., Yang, Z., 2014a. Blue Light Irradiation Affects Anthocyanin Content and Enzymes Activities Involved In Postharvest Strawberry Fruit. Journal of Agricultural and Food Chemistry, 62(20).
  • Xu F, Shi L, Chen W, Cao S, Su X, Yang Z, 2014b. Effect of blue light treatment on fruit wuality, antioxidant enymes and radical-scavenging activity in strawberry fruit. Sci. Hortic. 175:181-186.
  • Yamaga, I., Takahashi, T., Ishii, K., Kato, M., Kobayashi, Y., 2015. Antifungal effect of blue LED irradiation on the Blue mold Penicillium italicum in Satsuma mandarin fruits. Horticultural Research (Japan), 14(1):83-87.
  • Yorio NC, Goins GD, Kagie HR, Wheeler RM, Sager JC, 2001. Improving spinach, radish and lettuce growth under red light-emitting diodes (LEDs) with blue light supplementation. HortSCİENCE, 36:380-383.
  • Zoratti, L., Karppinen, K., Escobar, A.L., Häggman, H., Jaakola, L., 2014. Light-controlled flavonoid biosynthesis in fruits. Front Plant Sci. 5:534.
Yıl 2017, Cilt: 2 - Özel Sayı (Sempozyum), 0 - 0, 04.10.2017

Öz

Kaynakça

  • Kaynaklar
  • Braidot E, Petrussa E, Peresson C, Patui S, Bertolini A, Tubaro F, Wahlby U, Coan M, Vianello A, Zancani M, 2014. Lolw-intensity light cycles improve the quality of lamb’s lettuce (Valerianella olitoria L. Pollich) during storage at low temperature. Postharvest Biol. Technol. 90:15-23.
  • Brown CS, Schuerger AC, Sager JC, 1995. Growth and photomophogenesis of pepper plants grown under red ligth-emitting diodes supplemented with blue or far-red-illumination. J. Amer. Soc.Hort.Sci. 120: 808-813.
  • Costa L, millan Montano Y, Carrion C, Rolny N, Guiamet JJ, 2013. Application of low-intensity light pulses to delay postharvest senescence of Ocimum basilicum leaves. Postharvest Biol. Technol. 86:182-191.
  • Davis P, 2015. Light and lighting. Technical Guide. AHDB Horticulture, Stoneleigh Park, Kenilworth, Warwickshire, CV82TL. https://www.horticulture.ahdb.org.uk
  • Deng, L., Hu, C., Li, J., Ritenour, M.A., 2016. Effects of Blue or Red LED Light Irradiation on Postharvest Degreening of Citrus Fruit . American Society for Horticultural Science, ASHS, 2016. https://ashs.confex.com/ashs/2016/webprogram/Paper24941.html
  • Dhakel R, Baek KH, 2014a. Metabolic alternation in the accumulation of free amino acids and Ƴ-aminobutyric acid in postharvest mature green tomatoes following irradiaiton with blue light. Hortic Environ Biotechnol, 55:36-41.
  • Dhakel R, Baek KH, 2014b. Short period irradiation of single blue wavelength light exteds the storage period of mature green tomatoes. Postharvest Biol Technol, 90:73-77.
  • Dougher TAO, Bugbee B, 2001. Evidence for yellow light suppression of lettuce growth. Photochem Photobiol, 73:208-212.
  • Eltbaakh YA, ruslan MH, Alghoul MA, Othman MY, Sopian K, Fadhel MI, 2011. Measurement of total and spectral solar irrradiance: Overview of existing research. Renewable and sustainable Energy Reviews, 15:1403-1426.
  • Gergoff-Grozeff GE, Chaves AR, Bartoli CG, 2013. Low-irradiance pulses emprove postharvest qiality of spinach leaves (Spinacia oleraceaeL. Cv Bison), Postharvest Biol. Technol. 77:35-42.
  • Ghanem, W., Verdonk, J., Schouten, R., 2016. Effect of Post-harvest LED lighting on colour development in tomato. http://www.wageningenur.nl/en/article/The-influence-of-postharvest-light-treatments-on-strawberries-quality-aspects..htm
  • Glowacz M, Morgen LM, ReadeJPH, Cobb AH, Monaghan JM, 2014. High-but not low-intensity light leads to oxidative stress and quality loss of cold-stored baby leaf spinech. J. Sci. Food Agric. 95(9):1821-1829.
  • Goins GD, Ruffe LM, Cranston NA, Yorio NC, Wheeler RM, Sager JC, 2001. Salad crop production under different wavelengths of red light emitting diodes. SAE Technical Paper Series Paper no. 2001-01-2422.
  • Gong, D., Cao, S., Shenge, T., Shaoa, J., Song, C., Wo, F., Chena, W., Yanga, Z., 2015. Effect of blue light on ethylene biosynthesis, signalling and fruitripening in postharvest peaches. Scientia Horticulturae 197 (2015) 657–664
  • Jin P, Yao D, Xu F, Wang H, Zheng Y., 2015. Effect of light on quality and bioactive compounds in postharvest broccoli florets. Food Chem. 2015 Apr 1;172:705-9. doi: 10.1016/j.foodchem.2014.09.134. Epub 2014 Sep 30.
  • Kader AA, Rolle RS, 2004. “The Role of Post-harvest Management in Assuring the Quality and Safety Horticultural Crops”. Food and Agriculture Organization. Agricultural Services Bulletin 152, 52 p.
  • Kadomura-Ishikawa Y, Muyawaki K, Noji S, Takahasli A, 2013. Phototropin 2 is involved in blue light-induced anthocyanin accumulation in Fragaria-ananassa fruits. J. Plant Res. 126:847-857.
  • Kanazawa K, Hashimoto T, Yoshida S, Sungwon P, Fukuda S, 2012. Short photoirradiation induces flavonoid synthesis and increases its production in postharvest vegetables. J. Agric. Food Chem. 60:4359-4368.
  • Kim B, Lee H, Kim J, Kwon K, Cha H, Kim J, 2011. An effect of light emitting diode (LED) irradiation treatment on the amplification of functional components of immature strawberry. Hortic. Eenviron. Biotechnol. 52:35-39.
  • Kim HH, Goins GD, Wheeler RM, Sager JC, 2004. Green-light supplementation for enhanced lettuce growth under red- and blue-light-emitting diodes. HortScience, 39:1617-1622.
  • Kokalj, D., Hribar, J., Cigić, B., Zlatić, E., Demšar, L., Sinković, L., Sinkovič, L., Šircilj, H., Bizjak, G., Vidrih, R., 2016. Influence of Yellow Light-Emitting Diodes at 590 nm on Storage of Apple, Tomato and Bell Pepper Fruit. Food Technol. Biotechnol. 54 (2) 228–235 (2016)
  • Kondo S, Tomiyama H, Rodyoung A, Okawa K, Ohara H, Sugaya S, Terahara N, Hirai N, 2014. Abscisic acid metabolism and anthocyanin synthesis in grape skin are affected by light-emitting diode (LED) irradiation at night. J. Plant Physiol. 171:823-829.
  • Lee, Y.J., Ha, J.Y., Oh, J.E. Cho, M.S., 2014. The effect of LED irradiation on the quality of cabbage stored at a low temperature. Food Sci Biotechnol (2014) 23: 1087. doi:10.1007/s10068-014-0149
  • Lester GE, Makus DJ, Hodges DM, 2010. Relationship between fresh-packaged spinach leaves expose to continuous light or dark and bioactive contents: effects of cultivar, leaf size, and storage duration. J. Agric. Food Chem. 58:2980-2987.
  • Li, S., Schouten, R.E., Verdonk, J. 2016. The influence of postharvest light treatments on strawberries quality aspects. http://www.wageningenur.nl/en/article/The-influence-of-postharvest-light-treatments-on-strawberries-quality-aspects..htm
  • Ma G, Zhang L, Kato M, Yamawaki K, Kiriiwa, Y, Yahata M, İkoma Y, Matsumoto H, 2011. Effect of blue and red led light irradiation on ß-cryptoxanthin accumulation in the flavedo of citrus fruits. J. agric. Food Chem. 60:197-201.
  • Ma, G., Zhang, L., Kato, M., Yamawaki, K., Kriiwa, Y., Yahata, M., Ikoma, Y., Matsumoto, H., 2015. Effect of the combination of ethylene and red LED light irradiationon carotenoid accumulation and carotenogenic gene expressionin the flavedo of citrus fruit. Postharvest Biology and Technology 99 (2015) 99–104
  • Ma, G., Zhang, L., Kato, M., Yamawaki, K., Kriiwa, Y., Yahata, M., Ikoma, Y., Matsumoto, H., 2012. Effect of Blue and Red LED Light Irradiation on β-Cryptoxanthin Accumulation in the Flavedo of Citrus Fruits. J. Agric. Food Chem., 2012, 60 (1), pp 197–201, DOI: 10.1021/jf203364m
  • Massa GD, Kim HH, Wheeler RM, Mitchell CA, 2008. Plant productivity in response to LED lighting. HortScience, 43:1951-1956.
  • Morrow, R., C., 2008. LED Lighting in Horticulture. HortScience, 43(7): 1947-1950.
  • Nijssen C, Kuhn O, Verbeek W, 1990. Method and device for lighting seeds or plant. U.S. Patent4,914,858. Issued 4/10/1990.
  • Noichinda S, Bodhipadma K, Mahamontri C, Narongruk T, Ketsa S, 2007. Light during storage prevents loss of ascorbic acid, and increases glucose and fructose levels in Chinese kale (Brassica oleracea var. Alboglabra). Postharvest Bio. Technol. 44: 312-315.
  • Noodén LD, Schneider MJ, 2004. Light control of senescence. In: Nooden LD, editor. Plant Cell death Processes. San Diego, Academic Press. P:375-383.
  • Pogson BJ, Morris SC, 2004. Postharvest senescence of vegetables and its regulation. In: Nooden LD, editor. Plant Cell Death Processes. San Diego: Academic Press. P:319-329.
  • Schuerger AC, Brown CS, Stryjewski EC, 1997. Anatomical features of pepper plants (Capsicum annuum L.) grown under red light-emittign diodes supplemented with blue or far-red light. Ann. Bot. (Lond.) 79:273-282.
  • Tennessen DJ, bula RJ, Sharkey TD, 1995. Efficiency of photosynthesis in continuous and pulsed light emitting diode irradiation. Photosynth. Res. 44:261-269.
  • Tennessen DF, Singsaas EL, Sharkey TD, 1994. Light-emitting diodes as a lihgt source for photosynthesis research. Photosynth. Res. 39:85-92.
  • Xu, F., Cao, S., Shi, L., Yang, Z., 2014a. Blue Light Irradiation Affects Anthocyanin Content and Enzymes Activities Involved In Postharvest Strawberry Fruit. Journal of Agricultural and Food Chemistry, 62(20).
  • Xu F, Shi L, Chen W, Cao S, Su X, Yang Z, 2014b. Effect of blue light treatment on fruit wuality, antioxidant enymes and radical-scavenging activity in strawberry fruit. Sci. Hortic. 175:181-186.
  • Yamaga, I., Takahashi, T., Ishii, K., Kato, M., Kobayashi, Y., 2015. Antifungal effect of blue LED irradiation on the Blue mold Penicillium italicum in Satsuma mandarin fruits. Horticultural Research (Japan), 14(1):83-87.
  • Yorio NC, Goins GD, Kagie HR, Wheeler RM, Sager JC, 2001. Improving spinach, radish and lettuce growth under red light-emitting diodes (LEDs) with blue light supplementation. HortSCİENCE, 36:380-383.
  • Zoratti, L., Karppinen, K., Escobar, A.L., Häggman, H., Jaakola, L., 2014. Light-controlled flavonoid biosynthesis in fruits. Front Plant Sci. 5:534.
Toplam 43 adet kaynakça vardır.

Ayrıntılar

Bölüm Makaleler
Yazarlar

Rezzan Kasım

Yayımlanma Tarihi 4 Ekim 2017
Yayımlandığı Sayı Yıl 2017 Cilt: 2 - Özel Sayı (Sempozyum)

Kaynak Göster