Research Article
BibTex RIS Cite

DOĞA VE BİLİM KAMPLARININ ZENGİNLEŞTİRİLMESİ: ÖZEL YETENEKLİ ÖĞRENCİLERE YÖNELİK TASARLANAN BİR STEM KAMPININ İNCELENMESİ

Year 2022, , 1983 - 2008, 15.08.2022
https://doi.org/10.37669/milliegitim.910038

Abstract

Özel yeteneklilerin eğitiminde zenginleştirme modelleri okul dışı öğrenme ortamlardaki etkinlikler için geniş bir uygulama potansiyeline sahiptir. Mevcut araştırma, STEM eğitimi kapsamında özel yetenekli öğrenciler için Maker zenginleştirme modeline dayalı olarak tasarlanan bir doğa ve bilim kampının öğrenme ortamı, içerik, süreç ve ürün bağlamlarında nasıl zenginleştirdiğini incelemeyi amaçlamaktadır. STEM eğitimi temalı doğa ve bilim kampı, Türkiye Bilimsel ve Teknolojik Araştırma Kurumu (TÜBİTAK) tarafından desteklenen yedi günlük yoğunlaştırılmış bir programı içermektedir. Durum çalışmasına dayalı araştırmanın çalışma grubunu Türkiye’nin 13 farklı şehrinde yer alan Bilim ve Sanat Merkezlerine devam eden 29 (n = 15 kız ve n = 14 erkek) özel yetenekli öğrenci ve 14 kamp eğitmeni oluşmaktadır. Araştırma verileri etkinlik, kamp ve eğitmen değerlendirme formları ve araştırmacı gözlem notları ile toplanmıştır. Araştırma bulguları doğa ve bilim kampının özellikle öğrenme ortamı için bütünleşik bir yapıda olma, içerik bağlamında karmaşıklığa vurgu yapma, süreç temelinde üst düzey düşünmeyi öne çıkarma ve ürün temasında gerçek sorunların çözümüne yönelik tasarımlar oluşturma özelikleri ile zenginleştirildiğine işaret etmektedir. Bu sonuçlar doğa ve bilim kampının öğrenme ortamı, içerik, süreç ve ürün temelinde özgünleşerek özel yetenekli öğrencilerin STEM eğitimini desteklediğini ortaya koymuştur.

Supporting Institution

Türkiye Bilimsel ve Teknolojik Araştırma Kurumu (TÜBİTAK)

Project Number

TÜBİTAK 4004 218B182

Thanks

Bu çalışma Türkiye Bilimsel ve Teknolojik Araştırma Kurumu (TÜBİTAK) tarafından desteklenen 218B182 numaralı ve MUBEM & BİLSEM STEM Temelli Doğa Bilim Kampı II başlıklı projenin sonuçlarını içermektedir.

References

  • Akkaş, E., ve Tortop, H. S. (2015). Üstün yetenekliler eğitiminde farklılaştırma: Temel kavramlar, modellerin karşılaştırılması ve öneriler. Üstün Zekâlılar Eğitimi ve Yaratıcılık Dergisi, 2(2), 31-44. https://doi.org/10.18200/JGEDC.2015214250
  • Aljughaiman, A. M. (2011). Evaluation of math and science summer enrichment programs in Saudi Arabia. Australasian Journal of Gifted Education, 20(2), 10.
  • Avan, Ç., Gülgün, C., Yılmaz, A., ve Doğanay, K. (2019). STEM eğitiminde okul dışı öğrenme ortamları: Kastamonu bilim kampı. Bilim, Teknoloji, Mühendislik, Matematik ve Sanat Eğitim Dergisi, 2(1), 39-51.
  • Ayar, M., Yalvaç, B., Uğurdağ, H. F., ve Şahin, A. (2013, 23-26 June). A robotics summer camp for high school students: Pipelines activities promoting careers in engineering fields [Oral presentation]. 120th ASEE Annual Conference, Atlanta.
  • Banerjee, P. A. (2016). A longitudinal evaluation of the impact of STEM enrichment and enhancement activities in improving educational outcomes: Research protocol. International Journal of Educational Research, 76, 1-11. https://doi.org/10.1016/j.ijer.2015.12.003
  • Barlow, A. E., ve Villarejo, M. (2004). Making a difference for minorities: Evaluation of an educational enrichment program. Journal of Research in Science Teaching, 41(9), 861-881. https://doi.org/10.1002/tea.20029
  • Binns, I. C., Polly, D., Conrad, J., ve Algozzine, B. (2016). Student perceptions of a summer ventures in science and mathematics camp experience. School Science and Mathematics, 116(8), 420–429. https://doi.org/10.1111/ssm.12196
  • Bromley, D. B. (1986). The case-study method in psychology and related disciplines. Wiley.
  • Bryan, L. A., Moore, T. J., Johnson, C. C., ve Roehrig, G. H. (2015). Integrated STEM education. In C. C. Johnson, E. E. Peters-Burton, & T. J. Moore (Eds.), STEM road map: A framework for integrated STEM education (pp. 23–37). Taylor & Francis.
  • Bui, S. A., Craig, S. G., ve Imberman, S. A. (2014). Is gifted education a bright idea? Assessing the impact of gifted and talented programs on students. American Economic Journal: Economic Policy, 6(3), 30-62. https://www.jstor.org/stable/43189391
  • Clark, B. (2008). Growing up gifted (7th ed.). Pearson.
  • Coxon, S. V. (2012). The malleability of spatial ability under treatment of a FIRST LEGO league-based robotics simulation. Journal for the Education of the Gifted, 35(3), 291-316. https://doi.org/10.1177/0162353212451788
  • Creswell, J. W. (2012). Educational research: Planning, conducting, and evaluating quantitative and qualitative research (4th ed.). Pearson.
  • Davis, G. A., Sylvia, B. R., ve Siegle, D. (2014). Grouping, differentiation, and enrichment. In G. A. Davis, B. R. Sylvia, & D. Siegle (Eds.), Education of the gifted and talented (6nd ed.) (pp. 147-166). Pearson.
  • Ejiwale, J. A. (2013). Barriers to successful implementation of STEM education. Journal of Education and Learning, 7(2), 63-74. http://dx.doi.org/10.11591/edulearn.v7i2.220
  • Feldhusen, J. F. (1998). Programs and services at the elementary level. In J. VanTassel-Baska (Ed.), Excellence in educating gifted and talented learners (pp. 211–223). Love.
  • Fraleigh-Lohrfink, K. J., Schneider, M. V., Whittington, D., ve Feinberg, A. P. (2013). Increase in science research commitment in a didactic and laboratory-based program targeted to gifted minority high-school students. Roeper Review, 35(1), 18-26. https://pubmed.ncbi.nlm.nih.gov/31223183/
  • George, A. L., ve Bennett, A. (2005). Case studies and theory development in the social sciences. MIT Press.
  • Gubbels, J., Segers, E., ve Verhoeven, L. (2014). Cognitive, socioemotional, and attitudinal effects of a triarchic enrichment program for gifted children. Journal for the Education of the Gifted, 37(4), 378-397. https://doi.org/10.1177/0162353214552565
  • Heuser, B. L., Wang, K., ve Shahid, S. (2017). Global dimensions of gifted and talented education: The influence of national perceptions on policies and practices. Global Education Review, 4(1), 4-21. https://files.eric.ed.gov/fulltext/EJ1137994.pdf
  • Housand, A. M. (2016). In context: Gifted characteristics and the implications for curriculum. In K. R. Stephens & F. A. Karnes (eds.), Introduction to curriculum design in gifted education (pp. 1-19). Prufrock Press.
  • Maker, C. J. (1982). Curriculum development for the gifted. Aspen Systems Publication.
  • Maker, C. J. (1986). Enrichment versus acceleration: Is this a continuing controversy? In C. J. Maker (Ed.), Critical issues in gifted education: Defensible programs for the gifted (pp. 173-177). Aspen Systems Publication.
  • Maker, C. J. (2020). Identifying exceptional talent in science, technology, engineering, and mathematics: increasing diversity and assessing creative problem-solving. Journal of Advanced Academics, 31(3), 161–210. https://doi.org/10.1177/1932202X20918203
  • Maker, C. J., Jo, S., ve Muammar, O. M. (2008). Development of creativity: The influence of varying levels of implementation of the DISCOVER curriculum model, a non-traditional pedagogical approach. Learning and Individual Differences, 18(4), 402–417. https://doi.org/10.1016/j.lindif.2008.03.003
  • Martín‐Páez, T., Aguilera, D., Perales‐Palacios, F. J., ve Vílchez‐González, J. M. (2019). What are we talking about when we talk about STEM education? A review of literature. Science Education, 103(4), 799-822. https://doi.org/10.1002/sce.21522
  • Mccoach, D. B., Gubbins, E. J., Foreman, J., Rubenstein, L. D., ve Rambo-Hernandez, K. E. (2014). Evaluating the efficacy of using predifferentiated and enriched mathematics curricula for grade 3 students: A multisite cluster-randomized trial. Gifted Child Quarterly, 58(4), 272-286. https://doi.org/10.1177/0016986214547631
  • Merolla, D. M., ve Serpe, R. T. (2013). STEM enrichment programs and graduate school matriculation: the role of science identity salience. Social Psychology of Education, 16(4), https://doi.org/10.1007/s11218-013-9233-7
  • Mohr-Schroeder, M. J., Jackson, C., Miller, M., Walcott, B., Little, D. L., Speler, L. … ve Schroeder, D. C. (2014). Developing middle school students’ interests in STEM via summer learning experiences: See Blue STEM Camp. School Science and Mathematics, 114(6), 291-301. https://doi.org/10.1111/ssm.12079
  • Mullet, D. R., Kettler, T., ve Sabatini, A. (2018). Gifted students’ conceptions of their high school STEM education. Journal for the Education of the Gifted, 41(1), 60-92. https://doi.org/10.1177/0162353217745156
  • National Research Council. (2014). STEM integration in K-12 education: Status, prospects, and an agenda for research. National Academies Press.
  • National Science Board. (2010). Preparing the next generation of STEM innovators: Identifying and developing our nation’s human capital. National Science Foundation.
  • Neihart, M. (2017). Services that meet social and emotional needs of gifted children. In R. D. Eckert & J. H. Robins (Eds.), Designing services and programs for high ability learners: A guidebook for gifted education (2nd ed.) (pp. 112-124). Corwin.
  • Okulu, H. Z., Oğuz-Ünver A., ve Arabacıoğlu, S. (2019). MUBEM & SAC: STEM based science and nature camp. Journal of Education in Science, Environment and Health, 5(2), 266-282. https://doi.org/10.21891/jeseh.586326
  • Olszewski-Kubilius, P. (2009). Special schools and other options for gifted STEM students. Roeper Review, 32(1), 61-70. https://doi.org/10.1080/02783190903386892
  • Özçelik, A., ve Akgündüz, D. (2018). Üstün/özel yetenekli öğrencilerle yapılan okul dışı STEM eğitiminin değerlendirilmesi. Trakya Üniversitesi Eğitim Fakültesi Dergisi, 8(2), 334-351. https://doi.org/10.24315/trkefd.331579
  • Pease, R., Vuke, M., June Maker, C., ve Muammar, O. M. (2020). A practical guide for implementing the STEM assessment results in classrooms: Using strength-based reports and real engagement in active problem solving. Journal of Advanced Academics, 31(3), 367–406. https://doi.org/10.1177/1932202X20911643
  • Rakich, S. S., ve Tran, V. (2016). A balanced approach to building stem college and career readiness in high school: Combining STEM intervention and enrichment programs. European Journal of STEM Education, 1(3), 59. https://doi.org/10.20897/lectito.201659
  • Reis, S. M., Gentry, M., ve Maxfield, L. R. (1998). The application of enrichment clusters to teachers’ classroom practices. Journal for the Education of the Gifted, 21(3), 310-334.
  • Renzulli, J. S. (1977). The Enrichment Triad Model: A guide for developing defensible programs for the gifted and talented. Creative Learning Press.
  • Sala, A. L., Sitaram, P., ve Spendlove, T. (2014, 15-18 June). Stimulating an interest in engineering through an "Explore Engineering and Technology" summer camp for high school students [Oral presentation]. 121th ASEE Annual Conference, Indianapolis.
  • Stake, J. E., ve Mares, K. R. (2001). Science enrichment programs for gifted high school girls and boys: Predictors of program impact on science confidence and motivation. Journal of Research in Science Teaching, 38(10), 1065-1088. https://doi.org/10.1002/tea.10001
  • Steenbergen-Hu, S., ve Olszewski-Kubilius, P. (2017). Factors that contributed to gifted students’ success on STEM pathways: The role of race, personal interests, and aspects of high school experience. Journal for the Education of the Gifted, 40(2), 99-134. https://doi.org/10.1177/0162353217701022
  • Strauss, A., ve Corbin, J. (2015). Basics of qualitative research: Techniques and procedures for developing grounded theory (4th ed.). Sage Publishing.
  • Subotnik, R., Orland, M., Rayhack, K., Schuck, J., Edmiston, A., Earle, J. ... ve Fuchs, B. (2009). Identifying and developing talent in science, technology, engineering, and mathematics (STEM): An agenda for research, policy, and practice. In L. V. Shavinina (Ed.), International handbook on giftedness (pp. 1313-1326). Springer.
  • Tan, L. S., Ponnusamy, L. D., Lee, S. S., Koh, E., Koh, L., Tan, J. Y. ... ve Chia, T. T. S. A. (2020). Intricacies of designing and implementing enrichment programs for high-ability students. Gifted Education International, 36(2), 130-153. https://doi.org/10.1177/0261429420917469
  • Tomlinson, C. A., Kaplan, S. N., Renzulli, J. S., Purcell, J., Leppien, J., ve Burns, D. E. (2002). The parallel curriculum: A design to develop high potential and challenge high-ability learners. Corwin.
  • United States Department of Education. (1993). National excellence: A case for developing America’s talent. https://files.eric.ed.gov/fulltext/ED359743.pdf
  • Vantassel-Baska, J. (2011). An introduction to the integrated curriculum model. In J. VanTassel-Baska & C. A. Little (Eds.), Content based curriculum for high-ability learners (2nd ed.) (pp. 9–32). Prufrock Press.
  • Vantassel-Baska, J., ve Brown, E. (2007). Toward best practice: An analysis of the efficacy of curriculum models in gifted education. Gifted Child Quarterly, 51(4), 342-358. https://doi.org/10.1177/0016986207306323
  • Vantassel-Baska, J., ve Wood, S. (2010). The integrated curriculum model (ICM). Learning and individual differences, 20(4), 345-357. https://doi.org/10.1016/j.lindif.2009.12.006
  • Wu, I. C., Pease, R., ve Maker, C. J. (2019). Students’ perceptions of a special program for developing exceptional talent in STEM. Journal of Advanced Academics, 30(4), 474–499. https://doi.org/10.1177/1932202X19864690
  • Yıldırım, A., ve Şimşek, H. (2008). Sosyal bilimlerde nitel araştırma yöntemleri (5. baskı). Seçkin Yayıncılık.
  • Young, J. R., Ortiz, N., ve Young, J. L. (2017). STEMulating interest: A meta-analysis of the effects of out-of-school time on student STEM interest. International Journal of Education in Mathematics, Science and Technology, 5(1), 62-74. https://doi.org/10.18404/ijemst.61149

ENRICHMENT OF NATURE AND SCIENCE CAMPS: INVESTIGATION OF A STEM CAMP DESIGNED FOR GIFTED STUDENTS

Year 2022, , 1983 - 2008, 15.08.2022
https://doi.org/10.37669/milliegitim.910038

Abstract

Enrichment models for the education of gifted students have a wide transferability potential for the activities in out-of-school learning environments. This study aims to investigate how nature and science camp designed based on the Maker enrichment model for gifted students in STEM education enriches the contexts of learning environment, content, process, and product. STEM education-themed nature and science camp, which is supported by The Scientific and Technological Research Council of Turkey (TUBITAK), has offered an intensive seven-day program for the participants. The study group of this case study research consists of 29 (n = 15 boys, n = 14 girls) gifted students who attended the Science and Art Centers from 13 different cities of Turkey and 14 camp instructors. The data were collected using activity, camp and instructor evaluation forms, and researcher observation notes. Findings indicate that the camp has been enriched with the features of being a complex structure especially for the learning environment, emphasizing complexity in the context of the content, highlighting higher levels of thinking based on the process, and creating designs for the solutions of real problems in the theme of the product. The results revealed that nature and science camp supported STEM education of gifted students by being unique based on learning environment, content, process, and product.

Project Number

TÜBİTAK 4004 218B182

References

  • Akkaş, E., ve Tortop, H. S. (2015). Üstün yetenekliler eğitiminde farklılaştırma: Temel kavramlar, modellerin karşılaştırılması ve öneriler. Üstün Zekâlılar Eğitimi ve Yaratıcılık Dergisi, 2(2), 31-44. https://doi.org/10.18200/JGEDC.2015214250
  • Aljughaiman, A. M. (2011). Evaluation of math and science summer enrichment programs in Saudi Arabia. Australasian Journal of Gifted Education, 20(2), 10.
  • Avan, Ç., Gülgün, C., Yılmaz, A., ve Doğanay, K. (2019). STEM eğitiminde okul dışı öğrenme ortamları: Kastamonu bilim kampı. Bilim, Teknoloji, Mühendislik, Matematik ve Sanat Eğitim Dergisi, 2(1), 39-51.
  • Ayar, M., Yalvaç, B., Uğurdağ, H. F., ve Şahin, A. (2013, 23-26 June). A robotics summer camp for high school students: Pipelines activities promoting careers in engineering fields [Oral presentation]. 120th ASEE Annual Conference, Atlanta.
  • Banerjee, P. A. (2016). A longitudinal evaluation of the impact of STEM enrichment and enhancement activities in improving educational outcomes: Research protocol. International Journal of Educational Research, 76, 1-11. https://doi.org/10.1016/j.ijer.2015.12.003
  • Barlow, A. E., ve Villarejo, M. (2004). Making a difference for minorities: Evaluation of an educational enrichment program. Journal of Research in Science Teaching, 41(9), 861-881. https://doi.org/10.1002/tea.20029
  • Binns, I. C., Polly, D., Conrad, J., ve Algozzine, B. (2016). Student perceptions of a summer ventures in science and mathematics camp experience. School Science and Mathematics, 116(8), 420–429. https://doi.org/10.1111/ssm.12196
  • Bromley, D. B. (1986). The case-study method in psychology and related disciplines. Wiley.
  • Bryan, L. A., Moore, T. J., Johnson, C. C., ve Roehrig, G. H. (2015). Integrated STEM education. In C. C. Johnson, E. E. Peters-Burton, & T. J. Moore (Eds.), STEM road map: A framework for integrated STEM education (pp. 23–37). Taylor & Francis.
  • Bui, S. A., Craig, S. G., ve Imberman, S. A. (2014). Is gifted education a bright idea? Assessing the impact of gifted and talented programs on students. American Economic Journal: Economic Policy, 6(3), 30-62. https://www.jstor.org/stable/43189391
  • Clark, B. (2008). Growing up gifted (7th ed.). Pearson.
  • Coxon, S. V. (2012). The malleability of spatial ability under treatment of a FIRST LEGO league-based robotics simulation. Journal for the Education of the Gifted, 35(3), 291-316. https://doi.org/10.1177/0162353212451788
  • Creswell, J. W. (2012). Educational research: Planning, conducting, and evaluating quantitative and qualitative research (4th ed.). Pearson.
  • Davis, G. A., Sylvia, B. R., ve Siegle, D. (2014). Grouping, differentiation, and enrichment. In G. A. Davis, B. R. Sylvia, & D. Siegle (Eds.), Education of the gifted and talented (6nd ed.) (pp. 147-166). Pearson.
  • Ejiwale, J. A. (2013). Barriers to successful implementation of STEM education. Journal of Education and Learning, 7(2), 63-74. http://dx.doi.org/10.11591/edulearn.v7i2.220
  • Feldhusen, J. F. (1998). Programs and services at the elementary level. In J. VanTassel-Baska (Ed.), Excellence in educating gifted and talented learners (pp. 211–223). Love.
  • Fraleigh-Lohrfink, K. J., Schneider, M. V., Whittington, D., ve Feinberg, A. P. (2013). Increase in science research commitment in a didactic and laboratory-based program targeted to gifted minority high-school students. Roeper Review, 35(1), 18-26. https://pubmed.ncbi.nlm.nih.gov/31223183/
  • George, A. L., ve Bennett, A. (2005). Case studies and theory development in the social sciences. MIT Press.
  • Gubbels, J., Segers, E., ve Verhoeven, L. (2014). Cognitive, socioemotional, and attitudinal effects of a triarchic enrichment program for gifted children. Journal for the Education of the Gifted, 37(4), 378-397. https://doi.org/10.1177/0162353214552565
  • Heuser, B. L., Wang, K., ve Shahid, S. (2017). Global dimensions of gifted and talented education: The influence of national perceptions on policies and practices. Global Education Review, 4(1), 4-21. https://files.eric.ed.gov/fulltext/EJ1137994.pdf
  • Housand, A. M. (2016). In context: Gifted characteristics and the implications for curriculum. In K. R. Stephens & F. A. Karnes (eds.), Introduction to curriculum design in gifted education (pp. 1-19). Prufrock Press.
  • Maker, C. J. (1982). Curriculum development for the gifted. Aspen Systems Publication.
  • Maker, C. J. (1986). Enrichment versus acceleration: Is this a continuing controversy? In C. J. Maker (Ed.), Critical issues in gifted education: Defensible programs for the gifted (pp. 173-177). Aspen Systems Publication.
  • Maker, C. J. (2020). Identifying exceptional talent in science, technology, engineering, and mathematics: increasing diversity and assessing creative problem-solving. Journal of Advanced Academics, 31(3), 161–210. https://doi.org/10.1177/1932202X20918203
  • Maker, C. J., Jo, S., ve Muammar, O. M. (2008). Development of creativity: The influence of varying levels of implementation of the DISCOVER curriculum model, a non-traditional pedagogical approach. Learning and Individual Differences, 18(4), 402–417. https://doi.org/10.1016/j.lindif.2008.03.003
  • Martín‐Páez, T., Aguilera, D., Perales‐Palacios, F. J., ve Vílchez‐González, J. M. (2019). What are we talking about when we talk about STEM education? A review of literature. Science Education, 103(4), 799-822. https://doi.org/10.1002/sce.21522
  • Mccoach, D. B., Gubbins, E. J., Foreman, J., Rubenstein, L. D., ve Rambo-Hernandez, K. E. (2014). Evaluating the efficacy of using predifferentiated and enriched mathematics curricula for grade 3 students: A multisite cluster-randomized trial. Gifted Child Quarterly, 58(4), 272-286. https://doi.org/10.1177/0016986214547631
  • Merolla, D. M., ve Serpe, R. T. (2013). STEM enrichment programs and graduate school matriculation: the role of science identity salience. Social Psychology of Education, 16(4), https://doi.org/10.1007/s11218-013-9233-7
  • Mohr-Schroeder, M. J., Jackson, C., Miller, M., Walcott, B., Little, D. L., Speler, L. … ve Schroeder, D. C. (2014). Developing middle school students’ interests in STEM via summer learning experiences: See Blue STEM Camp. School Science and Mathematics, 114(6), 291-301. https://doi.org/10.1111/ssm.12079
  • Mullet, D. R., Kettler, T., ve Sabatini, A. (2018). Gifted students’ conceptions of their high school STEM education. Journal for the Education of the Gifted, 41(1), 60-92. https://doi.org/10.1177/0162353217745156
  • National Research Council. (2014). STEM integration in K-12 education: Status, prospects, and an agenda for research. National Academies Press.
  • National Science Board. (2010). Preparing the next generation of STEM innovators: Identifying and developing our nation’s human capital. National Science Foundation.
  • Neihart, M. (2017). Services that meet social and emotional needs of gifted children. In R. D. Eckert & J. H. Robins (Eds.), Designing services and programs for high ability learners: A guidebook for gifted education (2nd ed.) (pp. 112-124). Corwin.
  • Okulu, H. Z., Oğuz-Ünver A., ve Arabacıoğlu, S. (2019). MUBEM & SAC: STEM based science and nature camp. Journal of Education in Science, Environment and Health, 5(2), 266-282. https://doi.org/10.21891/jeseh.586326
  • Olszewski-Kubilius, P. (2009). Special schools and other options for gifted STEM students. Roeper Review, 32(1), 61-70. https://doi.org/10.1080/02783190903386892
  • Özçelik, A., ve Akgündüz, D. (2018). Üstün/özel yetenekli öğrencilerle yapılan okul dışı STEM eğitiminin değerlendirilmesi. Trakya Üniversitesi Eğitim Fakültesi Dergisi, 8(2), 334-351. https://doi.org/10.24315/trkefd.331579
  • Pease, R., Vuke, M., June Maker, C., ve Muammar, O. M. (2020). A practical guide for implementing the STEM assessment results in classrooms: Using strength-based reports and real engagement in active problem solving. Journal of Advanced Academics, 31(3), 367–406. https://doi.org/10.1177/1932202X20911643
  • Rakich, S. S., ve Tran, V. (2016). A balanced approach to building stem college and career readiness in high school: Combining STEM intervention and enrichment programs. European Journal of STEM Education, 1(3), 59. https://doi.org/10.20897/lectito.201659
  • Reis, S. M., Gentry, M., ve Maxfield, L. R. (1998). The application of enrichment clusters to teachers’ classroom practices. Journal for the Education of the Gifted, 21(3), 310-334.
  • Renzulli, J. S. (1977). The Enrichment Triad Model: A guide for developing defensible programs for the gifted and talented. Creative Learning Press.
  • Sala, A. L., Sitaram, P., ve Spendlove, T. (2014, 15-18 June). Stimulating an interest in engineering through an "Explore Engineering and Technology" summer camp for high school students [Oral presentation]. 121th ASEE Annual Conference, Indianapolis.
  • Stake, J. E., ve Mares, K. R. (2001). Science enrichment programs for gifted high school girls and boys: Predictors of program impact on science confidence and motivation. Journal of Research in Science Teaching, 38(10), 1065-1088. https://doi.org/10.1002/tea.10001
  • Steenbergen-Hu, S., ve Olszewski-Kubilius, P. (2017). Factors that contributed to gifted students’ success on STEM pathways: The role of race, personal interests, and aspects of high school experience. Journal for the Education of the Gifted, 40(2), 99-134. https://doi.org/10.1177/0162353217701022
  • Strauss, A., ve Corbin, J. (2015). Basics of qualitative research: Techniques and procedures for developing grounded theory (4th ed.). Sage Publishing.
  • Subotnik, R., Orland, M., Rayhack, K., Schuck, J., Edmiston, A., Earle, J. ... ve Fuchs, B. (2009). Identifying and developing talent in science, technology, engineering, and mathematics (STEM): An agenda for research, policy, and practice. In L. V. Shavinina (Ed.), International handbook on giftedness (pp. 1313-1326). Springer.
  • Tan, L. S., Ponnusamy, L. D., Lee, S. S., Koh, E., Koh, L., Tan, J. Y. ... ve Chia, T. T. S. A. (2020). Intricacies of designing and implementing enrichment programs for high-ability students. Gifted Education International, 36(2), 130-153. https://doi.org/10.1177/0261429420917469
  • Tomlinson, C. A., Kaplan, S. N., Renzulli, J. S., Purcell, J., Leppien, J., ve Burns, D. E. (2002). The parallel curriculum: A design to develop high potential and challenge high-ability learners. Corwin.
  • United States Department of Education. (1993). National excellence: A case for developing America’s talent. https://files.eric.ed.gov/fulltext/ED359743.pdf
  • Vantassel-Baska, J. (2011). An introduction to the integrated curriculum model. In J. VanTassel-Baska & C. A. Little (Eds.), Content based curriculum for high-ability learners (2nd ed.) (pp. 9–32). Prufrock Press.
  • Vantassel-Baska, J., ve Brown, E. (2007). Toward best practice: An analysis of the efficacy of curriculum models in gifted education. Gifted Child Quarterly, 51(4), 342-358. https://doi.org/10.1177/0016986207306323
  • Vantassel-Baska, J., ve Wood, S. (2010). The integrated curriculum model (ICM). Learning and individual differences, 20(4), 345-357. https://doi.org/10.1016/j.lindif.2009.12.006
  • Wu, I. C., Pease, R., ve Maker, C. J. (2019). Students’ perceptions of a special program for developing exceptional talent in STEM. Journal of Advanced Academics, 30(4), 474–499. https://doi.org/10.1177/1932202X19864690
  • Yıldırım, A., ve Şimşek, H. (2008). Sosyal bilimlerde nitel araştırma yöntemleri (5. baskı). Seçkin Yayıncılık.
  • Young, J. R., Ortiz, N., ve Young, J. L. (2017). STEMulating interest: A meta-analysis of the effects of out-of-school time on student STEM interest. International Journal of Education in Mathematics, Science and Technology, 5(1), 62-74. https://doi.org/10.18404/ijemst.61149
There are 54 citations in total.

Details

Primary Language Turkish
Journal Section Research Article
Authors

Hasan Zühtü Okulu 0000-0002-2832-9620

Sertaç Arabacıoğlu 0000-0003-0002-8647

Ayse Oguz Unver 0000-0003-2938-5269

Project Number TÜBİTAK 4004 218B182
Publication Date August 15, 2022
Published in Issue Year 2022

Cite

APA Okulu, H. Z., Arabacıoğlu, S., & Oguz Unver, A. (2022). DOĞA VE BİLİM KAMPLARININ ZENGİNLEŞTİRİLMESİ: ÖZEL YETENEKLİ ÖĞRENCİLERE YÖNELİK TASARLANAN BİR STEM KAMPININ İNCELENMESİ. Milli Eğitim Dergisi, 51(235), 1983-2008. https://doi.org/10.37669/milliegitim.910038