Research Article
BibTex RIS Cite

Oxidative Stress Caused by Lithium Exposure in the Carassius auratus (goldfish) Liver Tissue

Year 2023, , 67 - 75, 01.07.2023
https://doi.org/10.53518/mjavl.1280091

Abstract

Lithium is a therapeutic agent widely used in the treatment of some psychiatric disorders. The aim of this study was to investigate the effects lithium-induced oxidative stress in liver tissue. In this study, Carassius auratus fish was used as a model organism and total 20 control fish and 28 experimental fishes were divided 4 subgroups randomly. Lithium chloride at a concentration of 50 mg/L was added to the glass tank of the experimental group. Fish were placed in two separate glass tanks, 20 in the control group and 28 in the experimental group. Lithium chloride at a concentration of 50 mg/L was added to the glass tank, which is the experimental group. At the 24th, 48th, 72nd and 96th hours of the study, 5 samples from the control group and 7 samples from the experimental group were included in the study in four different time periods. At the end of the study, it was determined that the level of antioxidant enzymes superoxide dismutase (SOD), catalase (CAT), glutathione peroxidase (GSH-Px) and acetylcholinesterase(AchE) decreased in the group with lithium exposure, while the levels of Malondialdehyde (MDA) increased. It was determined that oxidative stress occurred in lithium exposure.

Supporting Institution

Yuzuncu Yil University, Scientific Research

Project Number

FBA-2021-9332

References

  • Acaroz, U., Ince, S., Arslan-Acaroz, D., Gurler, Z., Demirel, H. H., Kucukkurt, I., & Zhu, K. (2019). Bisphenol-A induced oxidative stress, inflammatory gene expression, and metabolic and histopathological changes in male Wistar albino rats: protective role of boron. Toxicol Res. 8(2): 262–269.
  • Acaroz, U., Ince, S., Arslan-Acaroz, D., Gurler, Z., Kucukkurt, I., Demirel, H. H., & Zhu, K. (2018). The ameliorative effects of boron against acrylamide-induced oxidative stress, inflammatory response, and metabolic changes in rats. Food and chemical toxicology. 118, 745-752.
  • Aebi, H. (1984). Catalase in vitro. In Methods in enzymology. Academic press. 105: 121-126.
  • Ahmad, M., Elnakady, Y., Farooq, M., & Wadaan, M. (2011). Lithiuminduced toxicity in rats: blood serum chemistry, antioxidative Selenium Alleviate Li-induced Disturbances of Blood Parameters 363 enzymes in red blood cells and histopathological studies. Biol Pharm Bull. 34:272–277.
  • Aral, H., & Vecchio-Sadus, A. (2008). Toxicity of lithium to humans and the environment—a literature review. Ecotox. Environ. Safe. 70 (3): 349–356.
  • Bakhtiari, N., Hosseinkhani, S., Larijani, B., Mohajeri-Tehrani, MR., & Fallah, A. (2012). Red blood cell ATP/ADP & nitric oxide: The best vasodilators in diabetic patients. J Diabetes Metab Disord. 11(1):9.
  • Blanco, AM., Sundarrajan, L., Bertucci, JI., & Unniappan, S. (2018). Why goldfish? Merits and challenges in employing goldfish as a model organism in comparative endocrinology research. General and Comparative Endocrinology. 257:13-28.
  • Brüning, CA., Prigol, M., Luchese, C., Pinton, S., & Nogueira, CW. (2012). Diphenyl diselenide ameliorates behavioral and oxidative parametersin an animal model of mania induced by ouabain. ProgNeuropsychopharmacol Biol Psychiatry. 38:168–174.
  • Donato, MT., & Tolosa, L. (2021). High-content screening for the detection of drug-induced oxidative stress in liver cells. Antioxidants.10:106.
  • Ellman, GL., Courtney, KD., Andres, V., & Feather-Stone, R. M. (1961). A new and rapid colorimetric determination of acetylcholinesterase activity. Biochemical Pharmacology. 7:88–95.
  • El-Tekreti, S., & Çilingir Yeltekin, A. (2022). The Effect of Lithium Toxicity on the Goldfish (Carassius auratus) Brain. Avrupa Bilim ve Teknoloji Dergisi. 38, 435-439.
  • Eskandari, MR., Fard, JK., Hosseini, MJ., & Pourahmad, J. (2012). Glutathione mediated reductive activation and mitochondrial dysfunction play key roles in lithium induced oxidativestress and cytotoxicity in liver. Biometals. 25: 863-873.
  • Ferna´ndez-Vega, C., Sancho, E., Ferrando, MD., & Andreu, E. (2002). Thiobencarb-Induced Changes in Acetylcholinesterase Activity of the Fish Anguilla anguilla. Pesticide Biochemistry and Physiology. 72: 55–63.
  • Pizzino, G., Irrera, N., Cucinotta, M., Pallio, G., Mannino, F., Arcoraci, V., Squadrito, F., Altavilla, D., & Bitto, A. (2017). Oxidative Stress: Harms and Benefits for Human Health. Oxidative medicine and cellular longevity, 2017, 8416763. https://doi.org/10.1155/2017/8416763
  • Jing, H., Zhang, Q., & Gao, XJ. (2021). Excessive lithium of water induced a toxic effect on kidney via oxidative damage and inflammation in carp. Aquaculture. 535, 736282.
  • Khairova, R., Pawar, R., Salvadore, G., Juruena, M. F., de Sousa, R. T., Soeiro-de-Souza, M. G., Salvador, M., Zarate, C. A., Gattaz, W. F., & Machado-Vieira, R. (2012). Effects of lithium on oxidative stress parameters in healthy subjects. Molecular medicine reports, 5(3), 680–682. https://doi.org/10.3892/mmr.2011.732.
  • Kiełczykowska, M., Kocot, J., Kurzepa, J., Lewandowska, A., Żelazowska, R., & Musik, I. (2014). Could selenium administration alleviate the disturbances of blood parameters caused by lithium administration in rats? Biol. Trace Elem. Res. 158 (3), 359–364.
  • Lee, Y., Kim, SM., Jung, EH., Park, J., & Han, IO. (2019). Lithium chloride promotes lipid accumulation through increased reactive oxygen species generation. Mol. Cell. Biol. L.1865 (2), 158552.
  • Liu, D., Gao, L., Zhang, Z., Tao, S., Pang, Q., Li, A., Deng, H., & Yu, H. (2018). Lithium promotes the production of reactive oxygen species via GSK-3β/TSC2/TOR signaling in the gill of zebrafish (Danio rerio). Chemosphere. 195:854–863.
  • McGhee, C. E., Zhenglin, Y., Weijie, G., Yuting, W., Mingkuan, L., … & Lu, Y. (2021). DNAzyme-Based Lithium- Selective Imaging Reveals Higher Lithium Accumulation in Bipolar Disorder Patient-Derived Neurons. ACS Central Science.7(11):1809-1820.
  • Meng, F., McNeice, J., Zadeh, SS., & Ghahreman, A. (2021). Review of lithium production and recovery from minerals, brines, and lithium-ion batteries. Mineral Processing and Extractive Metallurgy Review. 42(2): 123-141.
  • Mezni, A., Aoua, H., Khazri, O., Limam, F., Aouani, E. (2017). Lithium inducedoxidative damage and inflammation in the rat’s heart: protective effect of grape seed and skin extract.Biomed. Pharmacother. 95, 1103–1111.
  • Mis, L., Baydas, B., & Yaşar, S. (2021). Evaluation of the effect of pomegranate flowers on antioxidant activity and BDNF levels in experimental renal failure in rats. Fresenius Environmental Bulletin.30 (6) :5669-5675.
  • Mis, L., Comba, B., Uslu, S., & Yeltekin, A. (2018). Effect of wheatgrass on DNA damage, oxidative stress index and histological findings in diabetic rats. International journal of morphology. 36,4.
  • Mis, L., & Oğuz, B. (2022). Anaplasma phagocytophilum in Horses - Evaluation of Proinflammatory Biomarkers. Acta Scientiae Veterinariae. 50.
  • Nciri, R., Allagui, M. S., Bourogaa, E., Saoudi, M., Murat, J. C., Croute, F., & Elfeki, A. (2012). Lipid peroxidation, antioxidant activities and stress protein (HSP72/73, GRP94) expression in kidney and liver of rats under lithium treatment. Journal of physiology and biochemistry, 68(1), 11–18. https://doi.org/10.1007/s13105-011-0113-3.
  • Oliveira, RL., Seibt, K. J., Rico, E. P., Bogo, MR., & Bonan, CD. (2011). Inhibitory effect of lithium on nucleotide hydrolysis and acetylcholinesterase activity in zebrafish (Danio rerio) brain. Neurotoxicology and Teratology. 33(6): 651-657.
  • Oruç, EÖ. (2010). Oxidative stress, steroid hormone concentrations and acetylcholinesterase activity in Oreochromis niloticus exposed to chlorpyrifos. Pesticide Biochemistry and physiology. 96 (3): 160-166.
  • Oz, M., Nurullahoglu Atalik, KE., Yerlikaya, FH., & Demir, EA. (2015). Neurobiol. Learn. Mem. 123: 43.
  • Öter, Ç., Çilingir Yeltekin, A., & Ammer Abbas El-Tekreti, S. (2023). Removal of lithium from aqueous solutions by solid-phase extraction using sawdust loaded with magnetite nanoparticles and study of apoptosis, MDA and 8-OHdG caused by lithium toxicity in fish brain. Toxicol Ind Health. Mar. 39(3):158-168.
  • Özdek, U., Bekir, O., Kömüroğlu, A. U., Değer, Y. (2020). Determination of the levels of serum oxidative indicator, cytokine and some biochemical parameters in horses naturally infected with Theileria equi. Ankara Üniversitesi Veteriner Fakültesi Dergisi. 67(3): 257-263.
  • Placer, ZA., Cushman, LL., & Johnson, BC. (1966). Estimation of product of lipid peroxidation (malonyl dialdehyde) in biochemical systems. Analytical Biochemistry. 16:359–364.
  • Sabzi, E., Mohammadiazarm, H., Salati, AP. (2017). Effect of dietary L-carnitine and lipid levels on growth performance, blood biochemical parameters and antioxidant status in juvenile common carp (Cyprinus carpio). Aquaculture. 480, 89–93.
  • Shahzad, B., Mughal, M. N., Tanveer, M., Gupta, D., & Abbas, G. (2017). Is lithium biologically an important or toxic element to living organisms? An overview. Environmental Science and Pollution Research. 24, 103-115.
  • Shaldubina, A., Agam, G., & Belmaker, R.H. (2001). The mechanism of lithium action: state of the art, ten years later. Prog. Neuro-Psychopharmacol. Biol. Psychiatry 4, 855−866.
  • Toplan, S., Dariyerli, N., Ozdemir, S., Ozcelik, D., Zengin, EU., Akyolcu, MC. (2013). Lithium-induced hypothyroidism: oxidative stress and osmotic fragility status in rats. Biol Trace Elem Res. 152:373–378.
  • Varga, S. I., & Matkovics, B. (1997). Organophosphate effects on antioxidant system of carp (Cyprinus carpio) and catfish (Ictalurus nebulosus). Comparative Biochemistry and Physiology Part C: Pharmacology Toxicology and Endocrinology.117(1): 83-88.
  • Vijaimohan, K., Devi, CS., & Mallika, J. (2010). Chemoprotective effect of sobatum against lithium-induced oxidative damage in rats. Journal of Young Pharmacists. 2(1): 68-73.
  • Ilkaya, S., Değer, Y., Bekir, O., & Özdek, U. (2020). Investigating erythrocyte membrane lipid and protein oxidation with Na+/K+ ATPase activity in caprine Anaplasmosis. Large Animal Review. 26(5): 231-237.
  • Zhou, YL., Guo, JL., Tang, RJ., Ma, HJ., Chen,YJ., & Lin, SM. (2020). High dietary lipid levelalters the growth, hepatic metabolism enzyme, and anti-oxidative capacity in juvenile largemouth bass Micropterus salmoides. Fish Physiol. Biochem. 46 (1) :125–134.
Year 2023, , 67 - 75, 01.07.2023
https://doi.org/10.53518/mjavl.1280091

Abstract

Project Number

FBA-2021-9332

References

  • Acaroz, U., Ince, S., Arslan-Acaroz, D., Gurler, Z., Demirel, H. H., Kucukkurt, I., & Zhu, K. (2019). Bisphenol-A induced oxidative stress, inflammatory gene expression, and metabolic and histopathological changes in male Wistar albino rats: protective role of boron. Toxicol Res. 8(2): 262–269.
  • Acaroz, U., Ince, S., Arslan-Acaroz, D., Gurler, Z., Kucukkurt, I., Demirel, H. H., & Zhu, K. (2018). The ameliorative effects of boron against acrylamide-induced oxidative stress, inflammatory response, and metabolic changes in rats. Food and chemical toxicology. 118, 745-752.
  • Aebi, H. (1984). Catalase in vitro. In Methods in enzymology. Academic press. 105: 121-126.
  • Ahmad, M., Elnakady, Y., Farooq, M., & Wadaan, M. (2011). Lithiuminduced toxicity in rats: blood serum chemistry, antioxidative Selenium Alleviate Li-induced Disturbances of Blood Parameters 363 enzymes in red blood cells and histopathological studies. Biol Pharm Bull. 34:272–277.
  • Aral, H., & Vecchio-Sadus, A. (2008). Toxicity of lithium to humans and the environment—a literature review. Ecotox. Environ. Safe. 70 (3): 349–356.
  • Bakhtiari, N., Hosseinkhani, S., Larijani, B., Mohajeri-Tehrani, MR., & Fallah, A. (2012). Red blood cell ATP/ADP & nitric oxide: The best vasodilators in diabetic patients. J Diabetes Metab Disord. 11(1):9.
  • Blanco, AM., Sundarrajan, L., Bertucci, JI., & Unniappan, S. (2018). Why goldfish? Merits and challenges in employing goldfish as a model organism in comparative endocrinology research. General and Comparative Endocrinology. 257:13-28.
  • Brüning, CA., Prigol, M., Luchese, C., Pinton, S., & Nogueira, CW. (2012). Diphenyl diselenide ameliorates behavioral and oxidative parametersin an animal model of mania induced by ouabain. ProgNeuropsychopharmacol Biol Psychiatry. 38:168–174.
  • Donato, MT., & Tolosa, L. (2021). High-content screening for the detection of drug-induced oxidative stress in liver cells. Antioxidants.10:106.
  • Ellman, GL., Courtney, KD., Andres, V., & Feather-Stone, R. M. (1961). A new and rapid colorimetric determination of acetylcholinesterase activity. Biochemical Pharmacology. 7:88–95.
  • El-Tekreti, S., & Çilingir Yeltekin, A. (2022). The Effect of Lithium Toxicity on the Goldfish (Carassius auratus) Brain. Avrupa Bilim ve Teknoloji Dergisi. 38, 435-439.
  • Eskandari, MR., Fard, JK., Hosseini, MJ., & Pourahmad, J. (2012). Glutathione mediated reductive activation and mitochondrial dysfunction play key roles in lithium induced oxidativestress and cytotoxicity in liver. Biometals. 25: 863-873.
  • Ferna´ndez-Vega, C., Sancho, E., Ferrando, MD., & Andreu, E. (2002). Thiobencarb-Induced Changes in Acetylcholinesterase Activity of the Fish Anguilla anguilla. Pesticide Biochemistry and Physiology. 72: 55–63.
  • Pizzino, G., Irrera, N., Cucinotta, M., Pallio, G., Mannino, F., Arcoraci, V., Squadrito, F., Altavilla, D., & Bitto, A. (2017). Oxidative Stress: Harms and Benefits for Human Health. Oxidative medicine and cellular longevity, 2017, 8416763. https://doi.org/10.1155/2017/8416763
  • Jing, H., Zhang, Q., & Gao, XJ. (2021). Excessive lithium of water induced a toxic effect on kidney via oxidative damage and inflammation in carp. Aquaculture. 535, 736282.
  • Khairova, R., Pawar, R., Salvadore, G., Juruena, M. F., de Sousa, R. T., Soeiro-de-Souza, M. G., Salvador, M., Zarate, C. A., Gattaz, W. F., & Machado-Vieira, R. (2012). Effects of lithium on oxidative stress parameters in healthy subjects. Molecular medicine reports, 5(3), 680–682. https://doi.org/10.3892/mmr.2011.732.
  • Kiełczykowska, M., Kocot, J., Kurzepa, J., Lewandowska, A., Żelazowska, R., & Musik, I. (2014). Could selenium administration alleviate the disturbances of blood parameters caused by lithium administration in rats? Biol. Trace Elem. Res. 158 (3), 359–364.
  • Lee, Y., Kim, SM., Jung, EH., Park, J., & Han, IO. (2019). Lithium chloride promotes lipid accumulation through increased reactive oxygen species generation. Mol. Cell. Biol. L.1865 (2), 158552.
  • Liu, D., Gao, L., Zhang, Z., Tao, S., Pang, Q., Li, A., Deng, H., & Yu, H. (2018). Lithium promotes the production of reactive oxygen species via GSK-3β/TSC2/TOR signaling in the gill of zebrafish (Danio rerio). Chemosphere. 195:854–863.
  • McGhee, C. E., Zhenglin, Y., Weijie, G., Yuting, W., Mingkuan, L., … & Lu, Y. (2021). DNAzyme-Based Lithium- Selective Imaging Reveals Higher Lithium Accumulation in Bipolar Disorder Patient-Derived Neurons. ACS Central Science.7(11):1809-1820.
  • Meng, F., McNeice, J., Zadeh, SS., & Ghahreman, A. (2021). Review of lithium production and recovery from minerals, brines, and lithium-ion batteries. Mineral Processing and Extractive Metallurgy Review. 42(2): 123-141.
  • Mezni, A., Aoua, H., Khazri, O., Limam, F., Aouani, E. (2017). Lithium inducedoxidative damage and inflammation in the rat’s heart: protective effect of grape seed and skin extract.Biomed. Pharmacother. 95, 1103–1111.
  • Mis, L., Baydas, B., & Yaşar, S. (2021). Evaluation of the effect of pomegranate flowers on antioxidant activity and BDNF levels in experimental renal failure in rats. Fresenius Environmental Bulletin.30 (6) :5669-5675.
  • Mis, L., Comba, B., Uslu, S., & Yeltekin, A. (2018). Effect of wheatgrass on DNA damage, oxidative stress index and histological findings in diabetic rats. International journal of morphology. 36,4.
  • Mis, L., & Oğuz, B. (2022). Anaplasma phagocytophilum in Horses - Evaluation of Proinflammatory Biomarkers. Acta Scientiae Veterinariae. 50.
  • Nciri, R., Allagui, M. S., Bourogaa, E., Saoudi, M., Murat, J. C., Croute, F., & Elfeki, A. (2012). Lipid peroxidation, antioxidant activities and stress protein (HSP72/73, GRP94) expression in kidney and liver of rats under lithium treatment. Journal of physiology and biochemistry, 68(1), 11–18. https://doi.org/10.1007/s13105-011-0113-3.
  • Oliveira, RL., Seibt, K. J., Rico, E. P., Bogo, MR., & Bonan, CD. (2011). Inhibitory effect of lithium on nucleotide hydrolysis and acetylcholinesterase activity in zebrafish (Danio rerio) brain. Neurotoxicology and Teratology. 33(6): 651-657.
  • Oruç, EÖ. (2010). Oxidative stress, steroid hormone concentrations and acetylcholinesterase activity in Oreochromis niloticus exposed to chlorpyrifos. Pesticide Biochemistry and physiology. 96 (3): 160-166.
  • Oz, M., Nurullahoglu Atalik, KE., Yerlikaya, FH., & Demir, EA. (2015). Neurobiol. Learn. Mem. 123: 43.
  • Öter, Ç., Çilingir Yeltekin, A., & Ammer Abbas El-Tekreti, S. (2023). Removal of lithium from aqueous solutions by solid-phase extraction using sawdust loaded with magnetite nanoparticles and study of apoptosis, MDA and 8-OHdG caused by lithium toxicity in fish brain. Toxicol Ind Health. Mar. 39(3):158-168.
  • Özdek, U., Bekir, O., Kömüroğlu, A. U., Değer, Y. (2020). Determination of the levels of serum oxidative indicator, cytokine and some biochemical parameters in horses naturally infected with Theileria equi. Ankara Üniversitesi Veteriner Fakültesi Dergisi. 67(3): 257-263.
  • Placer, ZA., Cushman, LL., & Johnson, BC. (1966). Estimation of product of lipid peroxidation (malonyl dialdehyde) in biochemical systems. Analytical Biochemistry. 16:359–364.
  • Sabzi, E., Mohammadiazarm, H., Salati, AP. (2017). Effect of dietary L-carnitine and lipid levels on growth performance, blood biochemical parameters and antioxidant status in juvenile common carp (Cyprinus carpio). Aquaculture. 480, 89–93.
  • Shahzad, B., Mughal, M. N., Tanveer, M., Gupta, D., & Abbas, G. (2017). Is lithium biologically an important or toxic element to living organisms? An overview. Environmental Science and Pollution Research. 24, 103-115.
  • Shaldubina, A., Agam, G., & Belmaker, R.H. (2001). The mechanism of lithium action: state of the art, ten years later. Prog. Neuro-Psychopharmacol. Biol. Psychiatry 4, 855−866.
  • Toplan, S., Dariyerli, N., Ozdemir, S., Ozcelik, D., Zengin, EU., Akyolcu, MC. (2013). Lithium-induced hypothyroidism: oxidative stress and osmotic fragility status in rats. Biol Trace Elem Res. 152:373–378.
  • Varga, S. I., & Matkovics, B. (1997). Organophosphate effects on antioxidant system of carp (Cyprinus carpio) and catfish (Ictalurus nebulosus). Comparative Biochemistry and Physiology Part C: Pharmacology Toxicology and Endocrinology.117(1): 83-88.
  • Vijaimohan, K., Devi, CS., & Mallika, J. (2010). Chemoprotective effect of sobatum against lithium-induced oxidative damage in rats. Journal of Young Pharmacists. 2(1): 68-73.
  • Ilkaya, S., Değer, Y., Bekir, O., & Özdek, U. (2020). Investigating erythrocyte membrane lipid and protein oxidation with Na+/K+ ATPase activity in caprine Anaplasmosis. Large Animal Review. 26(5): 231-237.
  • Zhou, YL., Guo, JL., Tang, RJ., Ma, HJ., Chen,YJ., & Lin, SM. (2020). High dietary lipid levelalters the growth, hepatic metabolism enzyme, and anti-oxidative capacity in juvenile largemouth bass Micropterus salmoides. Fish Physiol. Biochem. 46 (1) :125–134.
There are 40 citations in total.

Details

Primary Language English
Subjects Veterinary Surgery
Journal Section Research Article
Authors

Leyla Mis 0000-0002-5110-2862

Aslı Çilingir Yeltekin 0000-0003-0071-7434

Sama El-tekreti 0000-0003-0071-7434

Project Number FBA-2021-9332
Early Pub Date June 24, 2023
Publication Date July 1, 2023
Submission Date April 10, 2023
Published in Issue Year 2023

Cite

APA Mis, L., Çilingir Yeltekin, A., & El-tekreti, S. (2023). Oxidative Stress Caused by Lithium Exposure in the Carassius auratus (goldfish) Liver Tissue. Manas Journal of Agriculture Veterinary and Life Sciences, 13(1), 67-75. https://doi.org/10.53518/mjavl.1280091