Oxidative Stress Caused by Lithium Exposure in the Carassius auratus (goldfish) Liver Tissue
Year 2023,
, 67 - 75, 01.07.2023
Leyla Mis
,
Aslı Çilingir Yeltekin
,
Sama El-tekreti
Abstract
Lithium is a therapeutic agent widely used in the treatment of some psychiatric disorders. The aim of this study was to investigate the effects lithium-induced oxidative stress in liver tissue. In this study, Carassius auratus fish was used as a model organism and total 20 control fish and 28 experimental fishes were divided 4 subgroups randomly. Lithium chloride at a concentration of 50 mg/L was added to the glass tank of the experimental group. Fish were placed in two separate glass tanks, 20 in the control group and 28 in the experimental group. Lithium chloride at a concentration of 50 mg/L was added to the glass tank, which is the experimental group. At the 24th, 48th, 72nd and 96th hours of the study, 5 samples from the control group and 7 samples from the experimental group were included in the study in four different time periods. At the end of the study, it was determined that the level of antioxidant enzymes superoxide dismutase (SOD), catalase (CAT), glutathione peroxidase (GSH-Px) and acetylcholinesterase(AchE) decreased in the group with lithium exposure, while the levels of Malondialdehyde (MDA) increased. It was determined that oxidative stress occurred in lithium exposure.
Supporting Institution
Yuzuncu Yil University, Scientific Research
Project Number
FBA-2021-9332
References
- Acaroz, U., Ince, S., Arslan-Acaroz, D., Gurler, Z., Demirel, H. H., Kucukkurt, I., & Zhu, K. (2019). Bisphenol-A
induced oxidative stress, inflammatory gene expression, and metabolic and histopathological changes in
male Wistar albino rats: protective role of boron. Toxicol Res. 8(2): 262–269.
- Acaroz, U., Ince, S., Arslan-Acaroz, D., Gurler, Z., Kucukkurt, I., Demirel, H. H., & Zhu, K. (2018). The ameliorative
effects of boron against acrylamide-induced oxidative stress, inflammatory response, and metabolic
changes in rats. Food and chemical toxicology. 118, 745-752.
- Aebi, H. (1984). Catalase in vitro. In Methods in enzymology. Academic press. 105: 121-126.
- Ahmad, M., Elnakady, Y., Farooq, M., & Wadaan, M. (2011). Lithiuminduced toxicity in rats: blood serum
chemistry, antioxidative Selenium Alleviate Li-induced Disturbances of Blood Parameters 363 enzymes in red
blood cells and histopathological studies. Biol Pharm Bull. 34:272–277.
- Aral, H., & Vecchio-Sadus, A. (2008). Toxicity of lithium to humans and the environment—a literature review.
Ecotox. Environ. Safe. 70 (3): 349–356.
- Bakhtiari, N., Hosseinkhani, S., Larijani, B., Mohajeri-Tehrani, MR., & Fallah, A. (2012). Red blood cell ATP/ADP &
nitric oxide: The best vasodilators in diabetic patients. J Diabetes Metab Disord. 11(1):9.
- Blanco, AM., Sundarrajan, L., Bertucci, JI., & Unniappan, S. (2018). Why goldfish? Merits and challenges in
employing goldfish as a model organism in comparative endocrinology research. General and Comparative
Endocrinology. 257:13-28.
- Brüning, CA., Prigol, M., Luchese, C., Pinton, S., & Nogueira, CW. (2012). Diphenyl diselenide ameliorates
behavioral and oxidative parametersin an animal model of mania induced by ouabain.
ProgNeuropsychopharmacol Biol Psychiatry. 38:168–174.
- Donato, MT., & Tolosa, L. (2021). High-content screening for the detection of drug-induced oxidative stress in
liver cells. Antioxidants.10:106.
- Ellman, GL., Courtney, KD., Andres, V., & Feather-Stone, R. M. (1961). A new and rapid colorimetric determination
of acetylcholinesterase activity. Biochemical Pharmacology. 7:88–95.
- El-Tekreti, S., & Çilingir Yeltekin, A. (2022). The Effect of Lithium Toxicity on the Goldfish (Carassius auratus)
Brain. Avrupa Bilim ve Teknoloji Dergisi. 38, 435-439.
- Eskandari, MR., Fard, JK., Hosseini, MJ., & Pourahmad, J. (2012). Glutathione mediated reductive activation and
mitochondrial dysfunction play key roles in lithium induced oxidativestress and cytotoxicity in liver. Biometals.
25: 863-873.
- Ferna´ndez-Vega, C., Sancho, E., Ferrando, MD., & Andreu, E. (2002). Thiobencarb-Induced Changes in
Acetylcholinesterase Activity of the Fish Anguilla anguilla. Pesticide Biochemistry and Physiology. 72: 55–63.
- Pizzino, G., Irrera, N., Cucinotta, M., Pallio, G., Mannino, F., Arcoraci, V., Squadrito, F., Altavilla, D., & Bitto, A. (2017).
Oxidative Stress: Harms and Benefits for Human Health. Oxidative medicine and cellular longevity, 2017,
8416763. https://doi.org/10.1155/2017/8416763
- Jing, H., Zhang, Q., & Gao, XJ. (2021). Excessive lithium of water induced a toxic effect on kidney via oxidative
damage and inflammation in carp. Aquaculture. 535, 736282.
- Khairova, R., Pawar, R., Salvadore, G., Juruena, M. F., de Sousa, R. T., Soeiro-de-Souza, M. G., Salvador, M.,
Zarate, C. A., Gattaz, W. F., & Machado-Vieira, R. (2012). Effects of lithium on oxidative stress parameters in
healthy subjects. Molecular medicine reports, 5(3), 680–682. https://doi.org/10.3892/mmr.2011.732.
- Kiełczykowska, M., Kocot, J., Kurzepa, J., Lewandowska, A., Żelazowska, R., & Musik, I. (2014). Could selenium
administration alleviate the disturbances of blood parameters caused by lithium administration in rats? Biol.
Trace Elem. Res. 158 (3), 359–364.
- Lee, Y., Kim, SM., Jung, EH., Park, J., & Han, IO. (2019). Lithium chloride promotes lipid accumulation through
increased reactive oxygen species generation. Mol. Cell. Biol. L.1865 (2), 158552.
- Liu, D., Gao, L., Zhang, Z., Tao, S., Pang, Q., Li, A., Deng, H., & Yu, H. (2018). Lithium promotes the production of
reactive oxygen species via GSK-3β/TSC2/TOR signaling in the gill of zebrafish (Danio rerio). Chemosphere.
195:854–863.
- McGhee, C. E., Zhenglin, Y., Weijie, G., Yuting, W., Mingkuan, L., … & Lu, Y. (2021). DNAzyme-Based Lithium-
Selective Imaging Reveals Higher Lithium Accumulation in Bipolar Disorder Patient-Derived Neurons. ACS
Central Science.7(11):1809-1820.
- Meng, F., McNeice, J., Zadeh, SS., & Ghahreman, A. (2021). Review of lithium production and recovery from
minerals, brines, and lithium-ion batteries. Mineral Processing and Extractive Metallurgy Review. 42(2): 123-141.
- Mezni, A., Aoua, H., Khazri, O., Limam, F., Aouani, E. (2017). Lithium inducedoxidative damage and inflammation
in the rat’s heart: protective effect of grape seed and skin extract.Biomed. Pharmacother. 95, 1103–1111.
- Mis, L., Baydas, B., & Yaşar, S. (2021). Evaluation of the effect of pomegranate flowers on antioxidant activity
and BDNF levels in experimental renal failure in rats. Fresenius Environmental Bulletin.30 (6) :5669-5675.
- Mis, L., Comba, B., Uslu, S., & Yeltekin, A. (2018). Effect of wheatgrass on DNA damage, oxidative stress index
and histological findings in diabetic rats. International journal of morphology. 36,4.
- Mis, L., & Oğuz, B. (2022). Anaplasma phagocytophilum in Horses - Evaluation of Proinflammatory Biomarkers.
Acta Scientiae Veterinariae. 50.
- Nciri, R., Allagui, M. S., Bourogaa, E., Saoudi, M., Murat, J. C., Croute, F., & Elfeki, A. (2012). Lipid peroxidation,
antioxidant activities and stress protein (HSP72/73, GRP94) expression in kidney and liver of rats under lithium
treatment. Journal of physiology and biochemistry, 68(1), 11–18. https://doi.org/10.1007/s13105-011-0113-3.
- Oliveira, RL., Seibt, K. J., Rico, E. P., Bogo, MR., & Bonan, CD. (2011). Inhibitory effect of lithium on nucleotide
hydrolysis and acetylcholinesterase activity in zebrafish (Danio rerio) brain. Neurotoxicology and Teratology.
33(6): 651-657.
- Oruç, EÖ. (2010). Oxidative stress, steroid hormone concentrations and acetylcholinesterase activity in
Oreochromis niloticus exposed to chlorpyrifos. Pesticide Biochemistry and physiology. 96 (3): 160-166.
- Oz, M., Nurullahoglu Atalik, KE., Yerlikaya, FH., & Demir, EA. (2015). Neurobiol. Learn. Mem. 123: 43.
- Öter, Ç., Çilingir Yeltekin, A., & Ammer Abbas El-Tekreti, S. (2023). Removal of lithium from aqueous solutions by
solid-phase extraction using sawdust loaded with magnetite nanoparticles and study of apoptosis, MDA and
8-OHdG caused by lithium toxicity in fish brain. Toxicol Ind Health. Mar. 39(3):158-168.
- Özdek, U., Bekir, O., Kömüroğlu, A. U., Değer, Y. (2020). Determination of the levels of serum oxidative indicator,
cytokine and some biochemical parameters in horses naturally infected with Theileria equi. Ankara
Üniversitesi Veteriner Fakültesi Dergisi. 67(3): 257-263.
- Placer, ZA., Cushman, LL., & Johnson, BC. (1966). Estimation of product of lipid peroxidation (malonyl
dialdehyde) in biochemical systems. Analytical Biochemistry. 16:359–364.
- Sabzi, E., Mohammadiazarm, H., Salati, AP. (2017). Effect of dietary L-carnitine and lipid levels on growth
performance, blood biochemical parameters and antioxidant status in juvenile common carp (Cyprinus
carpio). Aquaculture. 480, 89–93.
- Shahzad, B., Mughal, M. N., Tanveer, M., Gupta, D., & Abbas, G. (2017). Is lithium biologically an important or toxic
element to living organisms? An overview. Environmental Science and Pollution Research. 24, 103-115.
- Shaldubina, A., Agam, G., & Belmaker, R.H. (2001). The mechanism of lithium action: state of the art, ten years
later. Prog. Neuro-Psychopharmacol. Biol. Psychiatry 4, 855−866.
- Toplan, S., Dariyerli, N., Ozdemir, S., Ozcelik, D., Zengin, EU., Akyolcu, MC. (2013). Lithium-induced hypothyroidism:
oxidative stress and osmotic fragility status in rats. Biol Trace Elem Res. 152:373–378.
- Varga, S. I., & Matkovics, B. (1997). Organophosphate effects on antioxidant system of carp (Cyprinus carpio)
and catfish (Ictalurus nebulosus). Comparative Biochemistry and Physiology Part C: Pharmacology
Toxicology and Endocrinology.117(1): 83-88.
- Vijaimohan, K., Devi, CS., & Mallika, J. (2010). Chemoprotective effect of sobatum against lithium-induced
oxidative damage in rats. Journal of Young Pharmacists. 2(1): 68-73.
- Ilkaya, S., Değer, Y., Bekir, O., & Özdek, U. (2020). Investigating erythrocyte membrane lipid and protein
oxidation with Na+/K+ ATPase activity in caprine Anaplasmosis. Large Animal Review. 26(5): 231-237.
- Zhou, YL., Guo, JL., Tang, RJ., Ma, HJ., Chen,YJ., & Lin, SM. (2020). High dietary lipid levelalters the growth,
hepatic metabolism enzyme, and anti-oxidative capacity in juvenile largemouth bass Micropterus salmoides.
Fish Physiol. Biochem. 46 (1) :125–134.
Year 2023,
, 67 - 75, 01.07.2023
Leyla Mis
,
Aslı Çilingir Yeltekin
,
Sama El-tekreti
Project Number
FBA-2021-9332
References
- Acaroz, U., Ince, S., Arslan-Acaroz, D., Gurler, Z., Demirel, H. H., Kucukkurt, I., & Zhu, K. (2019). Bisphenol-A
induced oxidative stress, inflammatory gene expression, and metabolic and histopathological changes in
male Wistar albino rats: protective role of boron. Toxicol Res. 8(2): 262–269.
- Acaroz, U., Ince, S., Arslan-Acaroz, D., Gurler, Z., Kucukkurt, I., Demirel, H. H., & Zhu, K. (2018). The ameliorative
effects of boron against acrylamide-induced oxidative stress, inflammatory response, and metabolic
changes in rats. Food and chemical toxicology. 118, 745-752.
- Aebi, H. (1984). Catalase in vitro. In Methods in enzymology. Academic press. 105: 121-126.
- Ahmad, M., Elnakady, Y., Farooq, M., & Wadaan, M. (2011). Lithiuminduced toxicity in rats: blood serum
chemistry, antioxidative Selenium Alleviate Li-induced Disturbances of Blood Parameters 363 enzymes in red
blood cells and histopathological studies. Biol Pharm Bull. 34:272–277.
- Aral, H., & Vecchio-Sadus, A. (2008). Toxicity of lithium to humans and the environment—a literature review.
Ecotox. Environ. Safe. 70 (3): 349–356.
- Bakhtiari, N., Hosseinkhani, S., Larijani, B., Mohajeri-Tehrani, MR., & Fallah, A. (2012). Red blood cell ATP/ADP &
nitric oxide: The best vasodilators in diabetic patients. J Diabetes Metab Disord. 11(1):9.
- Blanco, AM., Sundarrajan, L., Bertucci, JI., & Unniappan, S. (2018). Why goldfish? Merits and challenges in
employing goldfish as a model organism in comparative endocrinology research. General and Comparative
Endocrinology. 257:13-28.
- Brüning, CA., Prigol, M., Luchese, C., Pinton, S., & Nogueira, CW. (2012). Diphenyl diselenide ameliorates
behavioral and oxidative parametersin an animal model of mania induced by ouabain.
ProgNeuropsychopharmacol Biol Psychiatry. 38:168–174.
- Donato, MT., & Tolosa, L. (2021). High-content screening for the detection of drug-induced oxidative stress in
liver cells. Antioxidants.10:106.
- Ellman, GL., Courtney, KD., Andres, V., & Feather-Stone, R. M. (1961). A new and rapid colorimetric determination
of acetylcholinesterase activity. Biochemical Pharmacology. 7:88–95.
- El-Tekreti, S., & Çilingir Yeltekin, A. (2022). The Effect of Lithium Toxicity on the Goldfish (Carassius auratus)
Brain. Avrupa Bilim ve Teknoloji Dergisi. 38, 435-439.
- Eskandari, MR., Fard, JK., Hosseini, MJ., & Pourahmad, J. (2012). Glutathione mediated reductive activation and
mitochondrial dysfunction play key roles in lithium induced oxidativestress and cytotoxicity in liver. Biometals.
25: 863-873.
- Ferna´ndez-Vega, C., Sancho, E., Ferrando, MD., & Andreu, E. (2002). Thiobencarb-Induced Changes in
Acetylcholinesterase Activity of the Fish Anguilla anguilla. Pesticide Biochemistry and Physiology. 72: 55–63.
- Pizzino, G., Irrera, N., Cucinotta, M., Pallio, G., Mannino, F., Arcoraci, V., Squadrito, F., Altavilla, D., & Bitto, A. (2017).
Oxidative Stress: Harms and Benefits for Human Health. Oxidative medicine and cellular longevity, 2017,
8416763. https://doi.org/10.1155/2017/8416763
- Jing, H., Zhang, Q., & Gao, XJ. (2021). Excessive lithium of water induced a toxic effect on kidney via oxidative
damage and inflammation in carp. Aquaculture. 535, 736282.
- Khairova, R., Pawar, R., Salvadore, G., Juruena, M. F., de Sousa, R. T., Soeiro-de-Souza, M. G., Salvador, M.,
Zarate, C. A., Gattaz, W. F., & Machado-Vieira, R. (2012). Effects of lithium on oxidative stress parameters in
healthy subjects. Molecular medicine reports, 5(3), 680–682. https://doi.org/10.3892/mmr.2011.732.
- Kiełczykowska, M., Kocot, J., Kurzepa, J., Lewandowska, A., Żelazowska, R., & Musik, I. (2014). Could selenium
administration alleviate the disturbances of blood parameters caused by lithium administration in rats? Biol.
Trace Elem. Res. 158 (3), 359–364.
- Lee, Y., Kim, SM., Jung, EH., Park, J., & Han, IO. (2019). Lithium chloride promotes lipid accumulation through
increased reactive oxygen species generation. Mol. Cell. Biol. L.1865 (2), 158552.
- Liu, D., Gao, L., Zhang, Z., Tao, S., Pang, Q., Li, A., Deng, H., & Yu, H. (2018). Lithium promotes the production of
reactive oxygen species via GSK-3β/TSC2/TOR signaling in the gill of zebrafish (Danio rerio). Chemosphere.
195:854–863.
- McGhee, C. E., Zhenglin, Y., Weijie, G., Yuting, W., Mingkuan, L., … & Lu, Y. (2021). DNAzyme-Based Lithium-
Selective Imaging Reveals Higher Lithium Accumulation in Bipolar Disorder Patient-Derived Neurons. ACS
Central Science.7(11):1809-1820.
- Meng, F., McNeice, J., Zadeh, SS., & Ghahreman, A. (2021). Review of lithium production and recovery from
minerals, brines, and lithium-ion batteries. Mineral Processing and Extractive Metallurgy Review. 42(2): 123-141.
- Mezni, A., Aoua, H., Khazri, O., Limam, F., Aouani, E. (2017). Lithium inducedoxidative damage and inflammation
in the rat’s heart: protective effect of grape seed and skin extract.Biomed. Pharmacother. 95, 1103–1111.
- Mis, L., Baydas, B., & Yaşar, S. (2021). Evaluation of the effect of pomegranate flowers on antioxidant activity
and BDNF levels in experimental renal failure in rats. Fresenius Environmental Bulletin.30 (6) :5669-5675.
- Mis, L., Comba, B., Uslu, S., & Yeltekin, A. (2018). Effect of wheatgrass on DNA damage, oxidative stress index
and histological findings in diabetic rats. International journal of morphology. 36,4.
- Mis, L., & Oğuz, B. (2022). Anaplasma phagocytophilum in Horses - Evaluation of Proinflammatory Biomarkers.
Acta Scientiae Veterinariae. 50.
- Nciri, R., Allagui, M. S., Bourogaa, E., Saoudi, M., Murat, J. C., Croute, F., & Elfeki, A. (2012). Lipid peroxidation,
antioxidant activities and stress protein (HSP72/73, GRP94) expression in kidney and liver of rats under lithium
treatment. Journal of physiology and biochemistry, 68(1), 11–18. https://doi.org/10.1007/s13105-011-0113-3.
- Oliveira, RL., Seibt, K. J., Rico, E. P., Bogo, MR., & Bonan, CD. (2011). Inhibitory effect of lithium on nucleotide
hydrolysis and acetylcholinesterase activity in zebrafish (Danio rerio) brain. Neurotoxicology and Teratology.
33(6): 651-657.
- Oruç, EÖ. (2010). Oxidative stress, steroid hormone concentrations and acetylcholinesterase activity in
Oreochromis niloticus exposed to chlorpyrifos. Pesticide Biochemistry and physiology. 96 (3): 160-166.
- Oz, M., Nurullahoglu Atalik, KE., Yerlikaya, FH., & Demir, EA. (2015). Neurobiol. Learn. Mem. 123: 43.
- Öter, Ç., Çilingir Yeltekin, A., & Ammer Abbas El-Tekreti, S. (2023). Removal of lithium from aqueous solutions by
solid-phase extraction using sawdust loaded with magnetite nanoparticles and study of apoptosis, MDA and
8-OHdG caused by lithium toxicity in fish brain. Toxicol Ind Health. Mar. 39(3):158-168.
- Özdek, U., Bekir, O., Kömüroğlu, A. U., Değer, Y. (2020). Determination of the levels of serum oxidative indicator,
cytokine and some biochemical parameters in horses naturally infected with Theileria equi. Ankara
Üniversitesi Veteriner Fakültesi Dergisi. 67(3): 257-263.
- Placer, ZA., Cushman, LL., & Johnson, BC. (1966). Estimation of product of lipid peroxidation (malonyl
dialdehyde) in biochemical systems. Analytical Biochemistry. 16:359–364.
- Sabzi, E., Mohammadiazarm, H., Salati, AP. (2017). Effect of dietary L-carnitine and lipid levels on growth
performance, blood biochemical parameters and antioxidant status in juvenile common carp (Cyprinus
carpio). Aquaculture. 480, 89–93.
- Shahzad, B., Mughal, M. N., Tanveer, M., Gupta, D., & Abbas, G. (2017). Is lithium biologically an important or toxic
element to living organisms? An overview. Environmental Science and Pollution Research. 24, 103-115.
- Shaldubina, A., Agam, G., & Belmaker, R.H. (2001). The mechanism of lithium action: state of the art, ten years
later. Prog. Neuro-Psychopharmacol. Biol. Psychiatry 4, 855−866.
- Toplan, S., Dariyerli, N., Ozdemir, S., Ozcelik, D., Zengin, EU., Akyolcu, MC. (2013). Lithium-induced hypothyroidism:
oxidative stress and osmotic fragility status in rats. Biol Trace Elem Res. 152:373–378.
- Varga, S. I., & Matkovics, B. (1997). Organophosphate effects on antioxidant system of carp (Cyprinus carpio)
and catfish (Ictalurus nebulosus). Comparative Biochemistry and Physiology Part C: Pharmacology
Toxicology and Endocrinology.117(1): 83-88.
- Vijaimohan, K., Devi, CS., & Mallika, J. (2010). Chemoprotective effect of sobatum against lithium-induced
oxidative damage in rats. Journal of Young Pharmacists. 2(1): 68-73.
- Ilkaya, S., Değer, Y., Bekir, O., & Özdek, U. (2020). Investigating erythrocyte membrane lipid and protein
oxidation with Na+/K+ ATPase activity in caprine Anaplasmosis. Large Animal Review. 26(5): 231-237.
- Zhou, YL., Guo, JL., Tang, RJ., Ma, HJ., Chen,YJ., & Lin, SM. (2020). High dietary lipid levelalters the growth,
hepatic metabolism enzyme, and anti-oxidative capacity in juvenile largemouth bass Micropterus salmoides.
Fish Physiol. Biochem. 46 (1) :125–134.