Review
BibTex RIS Cite

Under Long-Term Agricultural Systems, the Role of Mycorrhizae in Climate Change and Food Security

Year 2024, Volume: 14 Issue: 1, 101 - 115, 28.06.2024
https://doi.org/10.53518/mjavl.1355101

Abstract

Over the past 100 years, the rapid growth in population from 2 billion to 8 billion has significantly impacted the environment and climate change. In addition, food consumption has skyrocketed, and there are widespread worries about global food security. Due to inadequate soil and plant management techniques, including high soil tillage, chemical fertilizers, inappropriate irrigation, and genetically engineered crops, this spike has made it more difficult to guarantee food security for everyone on the planet. These actions have resulted in societal unrest, climatic change, and land degradation. With organic carbon mineralization, more CO2 is released into the atmosphere because of atmospheric heating and climate change. Long-term greenhouse gasses released into the atmosphere cause global climate change. Increasing climate changes and the inefficiency of soil productivity result in the natural effects of the rhizosphere on plant growth and food security. One of the most effective mechanisms of the rhizosphere is mycorrhizal fungi, which are injured microorganisms. Frequently disregarded mycorrhizal fungi present a potential solution. While sequestering carbon from the atmosphere, they can increase agricultural yields, plant health, and soil fertility. For sustainable agriculture and environmental preservation, it is essential to understand and take advantage of the potential of mycorrhizal fungi. A crucial area for study and practical application is the function of mycorrhizal fungi in reducing these difficulties and enhancing food security. Considering rising environmental challenges, understanding their contributions and researching their relationships may help create a more stable and secure global food system..

Ethical Statement

Ethical statement is acepted

Thanks

Thanks to organisation for supporting

References

  • Amir, H., Lagrange, A., Hassaine, N., & Cavaloc, Y. (2013). Arbuscular mycorrhizal fungi from New Caledonian ultramafic soils improve tolerance to nickel of endemic plant species. Mycorrhiza, 23(7), 585-595. doi:10.1007/s00572-013-0499-6
  • Augé, R. M. (2001). Water relations, drought and vesicular-arbuscular mycorrhizal symbiosis. Mycorrhiza, 11(1), 3- 42.
  • Bago, B., Pfeffer, P. E., & Shachar-Hill, Y. (2000). Carbon metabolism and transport in arbuscular mycorrhizas. Plant Physiology, 124(3), 949-958.
  • Bahn, M., Rodeghiero, M., Anderson-Dunn, M., Dore, S., Gimeno, C., Drösler, M., . . . Flechard, C. (2008). Soil respiration in European grasslands in relation to climate and assimilate supply. Ecosystems, 11(8), 1352-1367.
  • Brussaard, L., De Ruiter, P. C., & Brown, G. G. (2007). Soil biodiversity for agricultural sustainability. Agriculture, Ecosystems & Environment, 121(3), 233-244.
  • Chen, M., Arato, M., Borghi, L., Nouri, E., & Reinhardt, D. (2018). Beneficial Services of Arbuscular Mycorrhizal Fungi - From Ecology to Application. Frontiers in Plant Science, 9, 14. doi:10.3389/fpls.2018.01270
  • Clemmensen, K. E., Bahr, A., Ovaskainen, O., Dahlberg, A., Ekblad, A., Wallander, H., . . . Lindahl, B. D. (2013). Roots and associated fungi drive long-term carbon sequestration in boreal forest. Science, 339(6127), 1615-1618. doi:10.1126/science.1231923
  • Compant, S., van der Heijden, M. G. A., & Sessitsch, A. (2010). Climate change effects on beneficial plant- microorganism interactions. Fems Microbiology Ecology, 73(2), 197-214. doi:10.1111/j.1574-6941.2010.00900.x
  • Cotton, T. E. A. (2018). Arbuscular mycorrhizal fungal communities and global change: an uncertain future. Fems Microbiology Ecology, 94(11), fiy179.
  • Douds, D. D., Johnson, C. R., & Koch, K. E. (1988). Carbon cost of the fungal symbiont relative to net leaf-P accumulatıon in a split-root VA mycorrhizal symbiosis. Plant Physiology, 86(2), 491-496.
  • Duarte, A. G., & Maherali, H. (2023). Plant response to arbuscular mycorrhizal fungi at CO2 and temperature levels of the past and present. Symbiosis, 89, 307-317. doi:10.1007/s13199-023-00906-y
  • Elbehri, A. (2015). Climate change and food systems: global assessments and implications for food security and trade. Rome, Italy: Food and Agriculture Organization of the United Nations (FAO).
  • FAOSTAT. (2023). FAOSTAT Statistical Database.
  • Field, K. J., Daniell, T., Johnson, D., & Helgason, T. (2020). Mycorrhizas for a changing world: Sustainability, conservation, and society. Plants People Planet, 2(2), 98-103. doi:10.1002/ppp3.10092
  • Field, K. J., & Pressel, S. (2018). Unity in diversity: structural and functional insights into the ancient partnerships between plants and fungi. New Phytologist, 220(4), 996-1011.
  • Gavito, M. E., Schweiger, P., & Jakobsen, I. (2003). P uptake by arbuscular mycorrhizal hyphae: effect of soil temperature and atmospheric CO2 enrichment. Global Change Biology, 9(1), 106-116.
  • Godfray, H. C. J., Beddington, J. R., Crute, I. R., Haddad, L., Lawrence, D., Muir, J. F., . . . Toulmin, C. (2010). Food Security: The Challenge of Feeding 9 Billion People. Science, 327(5967), 812-818. doi:10.1126/science.1185383
  • Grassini, P., Eskridge, K. M., & Cassman, K. G. (2013). Distinguishing between yield advances and yield plateaus in historical crop production trends. Nature Communications, 4(1), 2918.
  • Jansa, J., Mozafar, A., Kuhn, G., Anken, T., Ruh, R., Sanders, I. R., & Frossard, E. J. E. A. (2003). Soil tillage affects the community structure of mycorrhizal fungi in maize roots. Ecological Applications, 13(4), 1164-1176.
  • Jayachandran, K., & Fisher, J. (2008). Arbuscular mycorrhizae and their role in plant restoration in native ecosystems. Mycorrhizae: Sustainable Agriculture and Forestry, 195-209.
  • Jones, D. L., Nguyen, C. T., & Finlay, R. D. (2009). Carbon flow in the rhizosphere: carbon trading at the soil–root interface. Plant and Soil, 321, 5-33.
  • Li, X. L., George, E., Marschner, H., & Zhang, J. L. (1997). Phosphorus acquisition from compacted soil by hyphae of a mycorrhizal fungus associated with red clover (Trifolium pratense). Canadian Journal of Botany-Revue Canadienne De Botanique, 75(5), 723-729. doi:DOI 10.1139/b97-082
  • Lipper, L., Thornton, P. E., Campbell, B. M., Baedeker, T., Braimoh, A., Bwalya, M., . . . Henry, K. (2014). Climate-smart agriculture for food security. Nature Climate Change, 4(12), 1068-1072.
  • Lugtenberg, B., & Kamilova, F. (2009). Plant-growth-promoting rhizobacteria. Annual review of microbiology, 63, 541-556.
  • Mardhiah, U., Caruso, T., Gurnell, A., & Rillig, M. C. (2016). Arbuscular mycorrhizal fungal hyphae reduce soil erosion by surface water flow in a greenhouse experiment. Applied Soil Ecology, 99, 137-140.
  • Martinez-Garcia, L. B., De Deyn, G. B., Pugnaire, F. I., Kothamasi, D., & van der Heijden, M. G. A. (2017). Symbiotic soil fungi enhance ecosystem resilience to climate change. Global Change Biology, 23(12), 5228-5236. doi:10.1111/gcb.13785
  • McGonigle, T. P., Evans, D. G., & Miller, M. H. (1990). Effect of degree of soil disturbance on mycorrhizal colonization and phosphorus absorption by maize in growth chamber and field experiments. New Phytologist, 116(4), 629-636.
  • McGonigle, T. P., & Miller, M. H. (1999). Winter survival of extraradical hyphae and spores of arbuscular mycorrhizal fungi in the field. Applied Soil Ecology, 12(1), 41-50. doi:10.1016/s0929-1393(98)00165-6
  • McGonigle, T. P., Miller, M. H., & Young, D. (1999). Mycorrhizae, crop growth, and crop phosphorus nutrition in maize-soybean rotations given various tillage treatments. Plant and Soil, 210(1), 33-42.
  • Metz, B., Davidson, O., Bosch, P., Dave, R., & Meyer, L. (2007). Climate change 2007-mitigation of climate change. Retrieved from
  • Orr, J. A., Rillig, M. C., & Jackson, M. C. (2021). Similarity of anthropogenic stressors is multifaceted and scale dependent. Natural Sciences.
  • Ortas, I. (2019a). Role of Microorganisms (Mycorrhizae) in Organic Farming. In S. Chandran, M. R. Unni, & S. Thomas (Eds.), Organic Farming: Global Perspectives and Methods (pp. 181-211): Elsevier.
  • Ortas, I. (2019b). Under filed conditions, mycorrhizal inoculum effectiveness depends on plant species and phosphorus nutrition. Journal of Plant Nutrition, 42(18), 2349-2362. doi:10.1080/01904167.2019.1659336
  • Ortas, I. (2022). The role of mycorrhiza in food security and the challenge of climate change. International Journal of Agricultural and Applied Sciences, 3(11), 1-11. doi:
  • https://doi.org/10.52804/ijaas2022.311
  • Ortas, I., Rafique, M., & Çekiç, F. Ö. (2021). Do Mycorrhizal Fungi Enable Plants to Cope with Abiotic Stresses by Overcoming the Detrimental Effects of Salinity and Improving Drought Tolerance? Symbiotic Soil Microorganisms (pp. 391-428): Springer.
  • Ortas, I., & Ustuner, O. (2014). The effects of single species, dual species and indigenous mycorrhiza inoculation on citrus growth and nutrient uptake. European Journal of Soil Biology, 63, 64-69. doi:10.1016/j.ejsobi.2014.05.007
  • Poorter, H., & Navas, M. L. (2003). Plant growth and competition at elevated CO2: on winners, losers and functional groups. New Phytologist, 157(2), 175-198.
  • Redecker, D., Szaro, T. M., Bowman, R. J., & Bruns, T. D. (2001). Small genets of Lactarius xanthogalactus, Russula cremoricolor and Amanita francheti in late‐stage ectomycorrhizal successions. Molecular Ecology, 10(4), 1025- 1034.
  • Rillig, M. C., & Allen, M. F. (1999). What is the role of arbuscular mycorrhizal fungi in plant-to-ecosystem responses to Elevated atmospheric CO2? Mycorrhiza, 9(1), 1-8.
  • Simon, L., Bousquet, J., Lévesque, R. C., & Lalonde, M. (1993). Origin and diversification of endomycorrhizal fungi and coincidence with vascular land plants. Nature, 363(6424), 67-69.
  • Sitoe, S. N. M., & Dames, J. F. (2022). Mitigating Climate Change: The Influence of Arbuscular Mycorrhizal Fungi on Maize Production and Food Security Arbuscular Mycorrhizal Fungi in Agriculture - New Insights: IntechOpen.
  • Smith, S. E., & Read, D. J. (2010). Mycorrhizal symbiosis: Academic press.
  • Sosa-Hernández, M. A., Leifheit, E. F., Ingraffia, R., & Rillig, M. C. (2019). Subsoil arbuscular mycorrhizal fungi for sustainability and climate-smart agriculture: a solution right under our feet? Frontiers in Microbiology, 10, 744.
  • Soudzilovskaia, N. A., van der Heijden, M. G. A., Cornelissen, J. H. C., Makarov, M. I., Onipchenko, V. G., Maslov, M. N., . . . van Bodegom, P. M. (2015). Quantitative assessment of the differential impacts of arbuscular and ectomycorrhiza on soil carbon cycling. New Phytologist, 208(1), 280-293. doi:10.1111/nph.13447
  • Sumarsih, E., Nugroho, B., & Widyastuti, R. (2017). Study of root exudate organic acids and microbial population in the rhizosphere of oil palm seedling. Journal of Tropical Soils, 22(1), 29-36.
  • Thirkell, T. J., Charters, M. D., Elliott, A. J., Sait, S. M., & Field, K. J. (2017). Are mycorrhizal fungi our sustainable saviours? Considerations for achieving food security. Journal of Ecology, 105(4), 921-929.
  • Wilson, G. W. T., Hickman, K. R., & Williamson, M. M. (2012). Invasive warm-season grasses reduce mycorrhizal root colonization and biomass production of native prairie grasses. Mycorrhiza, 22(5), 327-336. doi:10.1007/s00572-011-0407-x
  • Wrage, N., Chapuis-Lardy, L., & Isselstein, J. (2010). Phosphorus, Plant Biodiversity and Climate Change. In E. Lichtfouse (Ed.), Sociology, Organic Farming, Climate Change and Soil Science (Vol. 3, pp. 147-169). New York: Springer.
Year 2024, Volume: 14 Issue: 1, 101 - 115, 28.06.2024
https://doi.org/10.53518/mjavl.1355101

Abstract

References

  • Amir, H., Lagrange, A., Hassaine, N., & Cavaloc, Y. (2013). Arbuscular mycorrhizal fungi from New Caledonian ultramafic soils improve tolerance to nickel of endemic plant species. Mycorrhiza, 23(7), 585-595. doi:10.1007/s00572-013-0499-6
  • Augé, R. M. (2001). Water relations, drought and vesicular-arbuscular mycorrhizal symbiosis. Mycorrhiza, 11(1), 3- 42.
  • Bago, B., Pfeffer, P. E., & Shachar-Hill, Y. (2000). Carbon metabolism and transport in arbuscular mycorrhizas. Plant Physiology, 124(3), 949-958.
  • Bahn, M., Rodeghiero, M., Anderson-Dunn, M., Dore, S., Gimeno, C., Drösler, M., . . . Flechard, C. (2008). Soil respiration in European grasslands in relation to climate and assimilate supply. Ecosystems, 11(8), 1352-1367.
  • Brussaard, L., De Ruiter, P. C., & Brown, G. G. (2007). Soil biodiversity for agricultural sustainability. Agriculture, Ecosystems & Environment, 121(3), 233-244.
  • Chen, M., Arato, M., Borghi, L., Nouri, E., & Reinhardt, D. (2018). Beneficial Services of Arbuscular Mycorrhizal Fungi - From Ecology to Application. Frontiers in Plant Science, 9, 14. doi:10.3389/fpls.2018.01270
  • Clemmensen, K. E., Bahr, A., Ovaskainen, O., Dahlberg, A., Ekblad, A., Wallander, H., . . . Lindahl, B. D. (2013). Roots and associated fungi drive long-term carbon sequestration in boreal forest. Science, 339(6127), 1615-1618. doi:10.1126/science.1231923
  • Compant, S., van der Heijden, M. G. A., & Sessitsch, A. (2010). Climate change effects on beneficial plant- microorganism interactions. Fems Microbiology Ecology, 73(2), 197-214. doi:10.1111/j.1574-6941.2010.00900.x
  • Cotton, T. E. A. (2018). Arbuscular mycorrhizal fungal communities and global change: an uncertain future. Fems Microbiology Ecology, 94(11), fiy179.
  • Douds, D. D., Johnson, C. R., & Koch, K. E. (1988). Carbon cost of the fungal symbiont relative to net leaf-P accumulatıon in a split-root VA mycorrhizal symbiosis. Plant Physiology, 86(2), 491-496.
  • Duarte, A. G., & Maherali, H. (2023). Plant response to arbuscular mycorrhizal fungi at CO2 and temperature levels of the past and present. Symbiosis, 89, 307-317. doi:10.1007/s13199-023-00906-y
  • Elbehri, A. (2015). Climate change and food systems: global assessments and implications for food security and trade. Rome, Italy: Food and Agriculture Organization of the United Nations (FAO).
  • FAOSTAT. (2023). FAOSTAT Statistical Database.
  • Field, K. J., Daniell, T., Johnson, D., & Helgason, T. (2020). Mycorrhizas for a changing world: Sustainability, conservation, and society. Plants People Planet, 2(2), 98-103. doi:10.1002/ppp3.10092
  • Field, K. J., & Pressel, S. (2018). Unity in diversity: structural and functional insights into the ancient partnerships between plants and fungi. New Phytologist, 220(4), 996-1011.
  • Gavito, M. E., Schweiger, P., & Jakobsen, I. (2003). P uptake by arbuscular mycorrhizal hyphae: effect of soil temperature and atmospheric CO2 enrichment. Global Change Biology, 9(1), 106-116.
  • Godfray, H. C. J., Beddington, J. R., Crute, I. R., Haddad, L., Lawrence, D., Muir, J. F., . . . Toulmin, C. (2010). Food Security: The Challenge of Feeding 9 Billion People. Science, 327(5967), 812-818. doi:10.1126/science.1185383
  • Grassini, P., Eskridge, K. M., & Cassman, K. G. (2013). Distinguishing between yield advances and yield plateaus in historical crop production trends. Nature Communications, 4(1), 2918.
  • Jansa, J., Mozafar, A., Kuhn, G., Anken, T., Ruh, R., Sanders, I. R., & Frossard, E. J. E. A. (2003). Soil tillage affects the community structure of mycorrhizal fungi in maize roots. Ecological Applications, 13(4), 1164-1176.
  • Jayachandran, K., & Fisher, J. (2008). Arbuscular mycorrhizae and their role in plant restoration in native ecosystems. Mycorrhizae: Sustainable Agriculture and Forestry, 195-209.
  • Jones, D. L., Nguyen, C. T., & Finlay, R. D. (2009). Carbon flow in the rhizosphere: carbon trading at the soil–root interface. Plant and Soil, 321, 5-33.
  • Li, X. L., George, E., Marschner, H., & Zhang, J. L. (1997). Phosphorus acquisition from compacted soil by hyphae of a mycorrhizal fungus associated with red clover (Trifolium pratense). Canadian Journal of Botany-Revue Canadienne De Botanique, 75(5), 723-729. doi:DOI 10.1139/b97-082
  • Lipper, L., Thornton, P. E., Campbell, B. M., Baedeker, T., Braimoh, A., Bwalya, M., . . . Henry, K. (2014). Climate-smart agriculture for food security. Nature Climate Change, 4(12), 1068-1072.
  • Lugtenberg, B., & Kamilova, F. (2009). Plant-growth-promoting rhizobacteria. Annual review of microbiology, 63, 541-556.
  • Mardhiah, U., Caruso, T., Gurnell, A., & Rillig, M. C. (2016). Arbuscular mycorrhizal fungal hyphae reduce soil erosion by surface water flow in a greenhouse experiment. Applied Soil Ecology, 99, 137-140.
  • Martinez-Garcia, L. B., De Deyn, G. B., Pugnaire, F. I., Kothamasi, D., & van der Heijden, M. G. A. (2017). Symbiotic soil fungi enhance ecosystem resilience to climate change. Global Change Biology, 23(12), 5228-5236. doi:10.1111/gcb.13785
  • McGonigle, T. P., Evans, D. G., & Miller, M. H. (1990). Effect of degree of soil disturbance on mycorrhizal colonization and phosphorus absorption by maize in growth chamber and field experiments. New Phytologist, 116(4), 629-636.
  • McGonigle, T. P., & Miller, M. H. (1999). Winter survival of extraradical hyphae and spores of arbuscular mycorrhizal fungi in the field. Applied Soil Ecology, 12(1), 41-50. doi:10.1016/s0929-1393(98)00165-6
  • McGonigle, T. P., Miller, M. H., & Young, D. (1999). Mycorrhizae, crop growth, and crop phosphorus nutrition in maize-soybean rotations given various tillage treatments. Plant and Soil, 210(1), 33-42.
  • Metz, B., Davidson, O., Bosch, P., Dave, R., & Meyer, L. (2007). Climate change 2007-mitigation of climate change. Retrieved from
  • Orr, J. A., Rillig, M. C., & Jackson, M. C. (2021). Similarity of anthropogenic stressors is multifaceted and scale dependent. Natural Sciences.
  • Ortas, I. (2019a). Role of Microorganisms (Mycorrhizae) in Organic Farming. In S. Chandran, M. R. Unni, & S. Thomas (Eds.), Organic Farming: Global Perspectives and Methods (pp. 181-211): Elsevier.
  • Ortas, I. (2019b). Under filed conditions, mycorrhizal inoculum effectiveness depends on plant species and phosphorus nutrition. Journal of Plant Nutrition, 42(18), 2349-2362. doi:10.1080/01904167.2019.1659336
  • Ortas, I. (2022). The role of mycorrhiza in food security and the challenge of climate change. International Journal of Agricultural and Applied Sciences, 3(11), 1-11. doi:
  • https://doi.org/10.52804/ijaas2022.311
  • Ortas, I., Rafique, M., & Çekiç, F. Ö. (2021). Do Mycorrhizal Fungi Enable Plants to Cope with Abiotic Stresses by Overcoming the Detrimental Effects of Salinity and Improving Drought Tolerance? Symbiotic Soil Microorganisms (pp. 391-428): Springer.
  • Ortas, I., & Ustuner, O. (2014). The effects of single species, dual species and indigenous mycorrhiza inoculation on citrus growth and nutrient uptake. European Journal of Soil Biology, 63, 64-69. doi:10.1016/j.ejsobi.2014.05.007
  • Poorter, H., & Navas, M. L. (2003). Plant growth and competition at elevated CO2: on winners, losers and functional groups. New Phytologist, 157(2), 175-198.
  • Redecker, D., Szaro, T. M., Bowman, R. J., & Bruns, T. D. (2001). Small genets of Lactarius xanthogalactus, Russula cremoricolor and Amanita francheti in late‐stage ectomycorrhizal successions. Molecular Ecology, 10(4), 1025- 1034.
  • Rillig, M. C., & Allen, M. F. (1999). What is the role of arbuscular mycorrhizal fungi in plant-to-ecosystem responses to Elevated atmospheric CO2? Mycorrhiza, 9(1), 1-8.
  • Simon, L., Bousquet, J., Lévesque, R. C., & Lalonde, M. (1993). Origin and diversification of endomycorrhizal fungi and coincidence with vascular land plants. Nature, 363(6424), 67-69.
  • Sitoe, S. N. M., & Dames, J. F. (2022). Mitigating Climate Change: The Influence of Arbuscular Mycorrhizal Fungi on Maize Production and Food Security Arbuscular Mycorrhizal Fungi in Agriculture - New Insights: IntechOpen.
  • Smith, S. E., & Read, D. J. (2010). Mycorrhizal symbiosis: Academic press.
  • Sosa-Hernández, M. A., Leifheit, E. F., Ingraffia, R., & Rillig, M. C. (2019). Subsoil arbuscular mycorrhizal fungi for sustainability and climate-smart agriculture: a solution right under our feet? Frontiers in Microbiology, 10, 744.
  • Soudzilovskaia, N. A., van der Heijden, M. G. A., Cornelissen, J. H. C., Makarov, M. I., Onipchenko, V. G., Maslov, M. N., . . . van Bodegom, P. M. (2015). Quantitative assessment of the differential impacts of arbuscular and ectomycorrhiza on soil carbon cycling. New Phytologist, 208(1), 280-293. doi:10.1111/nph.13447
  • Sumarsih, E., Nugroho, B., & Widyastuti, R. (2017). Study of root exudate organic acids and microbial population in the rhizosphere of oil palm seedling. Journal of Tropical Soils, 22(1), 29-36.
  • Thirkell, T. J., Charters, M. D., Elliott, A. J., Sait, S. M., & Field, K. J. (2017). Are mycorrhizal fungi our sustainable saviours? Considerations for achieving food security. Journal of Ecology, 105(4), 921-929.
  • Wilson, G. W. T., Hickman, K. R., & Williamson, M. M. (2012). Invasive warm-season grasses reduce mycorrhizal root colonization and biomass production of native prairie grasses. Mycorrhiza, 22(5), 327-336. doi:10.1007/s00572-011-0407-x
  • Wrage, N., Chapuis-Lardy, L., & Isselstein, J. (2010). Phosphorus, Plant Biodiversity and Climate Change. In E. Lichtfouse (Ed.), Sociology, Organic Farming, Climate Change and Soil Science (Vol. 3, pp. 147-169). New York: Springer.
There are 49 citations in total.

Details

Primary Language English
Subjects Soil Ecology
Journal Section Review Article
Authors

İbrahim Ortaş 0000-0003-4496-3960

Publication Date June 28, 2024
Submission Date September 5, 2023
Published in Issue Year 2024 Volume: 14 Issue: 1

Cite

APA Ortaş, İ. (2024). Under Long-Term Agricultural Systems, the Role of Mycorrhizae in Climate Change and Food Security. Manas Journal of Agriculture Veterinary and Life Sciences, 14(1), 101-115. https://doi.org/10.53518/mjavl.1355101