Research Article
BibTex RIS Cite
Year 2022, Volume: 10 Issue: 1, 73 - 80, 30.06.2022
https://doi.org/10.51354/mjen.1053446

Abstract

References

  • [1] Bovik A (2010) Handbook of Image and Video Processing. Academic Press.
  • [2] Gonzales RC, Woods RE (2007) Digital Image Processing. Pearson Press.
  • [3] Umbaugh SE (1999) Computer Vision and Image Processing: A Practical Approach Using CVIPtools. Prentice Press.
  • [4] Solomon C, Breckon T (2011) Fundamentals of Digital Image Processing: A Practical Approach with Examples in Matlab. Wiley Press.
  • [5] Joyce KE, Bellis SE, Samsonov SV et al (2009) A review of the status of satellite remote sensing and image processing techniques for mapping natural hazards and disasters. Progress in Physical Geography 33(2): 183-207 DOI: 10.1177/0309133309339563
  • [6] Huang J, Zhang S, Metaxas D (2011) Efficient MR image reconstruction for compressed MR imaging. Medical Image Analysis 15(5): 670-679 DOI:10.1016/j.media.2011.06.001
  • [7] Liming X, Yanchao Z (2010) Automated strawberry grading system based on image processing. Computers and Electronics in Agriculture 71(1): 32-39 DOI: 10.1016/j.compag.2009.09.013
  • [8] Haralick RM (1984) Digital step edges from zero crossing of second directional derivatives. IEEE Transactions on Pattern Analysis and Machine Intelligence 6(1): 58–68 DOI: 10.1109/TPAMI.1984.4767475
  • [9] Marr D, Hildreth E (1980) Theory of edge detection. Proc. R. Soc. Lond. B 207: 187–217
  • [10] Heath MD, Sarkar S, Sanocki T, Bowyer KW (1997) A Robust Visual Method for Assessing the Relative Performance of Edge-Detection Algorithms. IEEE Transactions on Pattern Analysis and Machine Intelligence 19 (12): 1338-1359 DOI: 10.1109/34.643893
  • [11] Argyle E, Rosenfeld A (1971) Techniques for edge detection. Proceedings of the IEEE 59 (2): 285-287 DOI: 10.1109/PROC.1971.8136
  • [12] Maini R (2011) Analysis and Development of Image Edge Detection Techniques. PhD Thesis, Punjabi University
  • [13] Abdou IE, Pratt WK (1979) Quantitative design and evaluation of enhancement/ thresholding edge detectors. Proceedings of the IEEE 67(5): 753-763
  • [14] Bhardwaj S, Mittal A (2012) A survey on Various Edge Detector Techniques. Procedia Technology 4: 220-226.
  • [15] Giannarou S, Stathaki T (2011) Optimal edge detection using multiple operators for image understanding. EURASIP Journal on Advances in Signal Processing 28 DOI: 10.1186/1687-6180-2011-28
  • [16] Canny J (1986) A computational approach to edge detection. IEEE Transactions on Pattern Analysis and Machine Intelligence PAMI-8(6): 679-698 DOI: 10.1109/TPAMI.1986.4767851
  • [17] Roberts LG (1969) Machine perception of three-dimensional solids. US Government Printing Office Press.
  • [18] Prewitt JM (1970) Object enhancement and extraction. Picture Processing and Psychopictorics: 75-149
  • [19] Rao SS (2009) Engineering Optimization: Theory and practice (Fourth edition). Wiley Press
  • [20] Yang XS (2010) Nature-Inspired Metaheuristic Algorithms: Second edition. Luniver Press.
  • [21] Akay B (2009) Performance Analysis of Artificial Bee Colony Algorithm on Numerical Optimization Problems, Phd Thesis, Erciyes University.
  • [22] Akay B, Karaboga D (2012) A modified Artificial Bee Colony algorithm for real-parameter optimization. Information Science 192: 120-142 DOI:10.1016/j.ins.2010.07.015
  • [23] Karaboga D, Gorkemli B, Ozturk C, Karaboga N (2014). A comprehensive survey: Artificial Bee Colony (ABC) algorithm and applications. Artificial Intelligence Review 42(1): 21-57 DOI: 10.1007/s10462-012-9328-0
  • [24] Pan Q, Tasgetiren MF, Suganthan P.N, Chua TJ (2011) A discrete artificial bee colony algorithm for the streaming flow shop scheduling problem. Information Science 181: 2455-2468 DOI:10.1016/j.ins.2009.12.025
  • [25] Szeto WY, Wu Y, Ho SC (2011) An artificial bee colony algorithm for the capacitated vehicle routing problem. European Journal of Operational Research 215: 126-135 DOI: 10.1016/j.ejor.2011.06.006
  • [26] Horng M (2011) Multilevel thresholding selection based on the artificial bee colony algorithm for image segmentation. Expert Systems with Applications 38: 13785-13791 DOI: 10.1016/j.eswa.2011.04.
  • [27] Das P, Sadhu AK, Vyas RR, Konar A, Bhattacharyya D (2015) Arduino based multi-robot stick carrying by artificial bee colony optimization algorithm, Proceedings of the 2015 Third International Conference on Computer, Communication, Control and Information Technology (C3IT) IEEE Conference
  • [28] Ma M, Liang J, Guo M, Fan Y, Yin Y (2011) SAR image segmentation based on Artificial Bee Colony algorithm. Applied Soft Computing 11: 5205–5214 DOI: 10.1016/j.asoc/2011.05.039
  • [29] RADIUS/DARPA-IU Fort Hood Aerial image dataset (http://marathon.csee.usf.edu/edge/edgecompare_main.html (accessed in 2014))
  • [30] Karaboga D (2005) An Idea Based on Bee Swarm for Numerical Optimization. Technical Report-TR06
  • [31] Karaboga D, Basturk B (2007) A powerful and efficient algorithm for numerical function optimization: Artificial Bee Colony (ABC) algorithm. Journal of Global Optimization 39(3): 459–471 DOI: 10.1007/s10898-007-9149-x
  • [32] Karaboga D, Basturk B (2008) On the performance of artificial bee colony (ABC) algorithm. Applied Soft Computing 8: 687–697 DOI: 10.1016/j.asoc.2007.05.007
  • [33] Karaboga D, Akay B (2009) A survey: algorithms simulating bee swarm intelligence. Artificial Intelligence Review 31: 61–85 DOI: 10.1007/s10462-009-9127-4
  • [34] Özkaya S, Conker Ç, Bilgiç H H (2021) Esnek Robot Kol Sistemi için LQR Denetleyici Parametrelerinin Metzsezgisel Algoritmalar Kullanılarak Belirlenmesi. Konya Mühendislik Bilimleri Dergisi (Konya Journal of Engineering Sciences) 9(3): 735-752 DOI: 10.36306/konjes.896087
  • [35] Nezamabadi-pour H, Saryazdi S, Rashedi E (2006) Edge detection using ant algorithms. Soft Computing 10(7): 623-628
  • [36] Yigitbasi ED, Baykan NA (2013) Edge detection using Artificial Bee Colony Algorithm (ABC). International Journal of Information and Electronics Engineering 3(6): 634-638 DOI: 10.7763/IJIEE.2013.V3.394
  • [37] Yigitbasi ED (2014) Yapay arı kolonisi optimizasyonu ile kenar bulma [Edge detection with artificial bee colony optimization] Master thesis, The Graduate School of Natural and Applied Science, Selcuk University, Konya, Turkey (in Turkish)

Edge detection of aerial images using artificial bee colony algorithm

Year 2022, Volume: 10 Issue: 1, 73 - 80, 30.06.2022
https://doi.org/10.51354/mjen.1053446

Abstract

Edge detection techniques are the one of the best popular and significant implementation areas of the image processing. Moreover, image processing is very widely used in so many fields. Therefore, lots of methods are used in the development and the developed studies provide a variety of solutions to problems of computer vision systems. In many studies, metaheuristic algorithms have been used for obtaining better results. In this paper, aerial images are used for edge information extraction by using Artificial Bee Colony (ABC) Optimization Algorithm. Procedures were performed on gray scale aerial images which are taken from RADIUS/DARPA-IU Fort Hood database. Initially bee colony size was specified according to sizes of images. Then a threshold value was set for each image, which related with images’ standard deviation of gray scale values. After the bees were distributed, fitness values and probability values were computed according to gray scale value. While appropriate pixels were specified, the other ones were being abandoned and labeled as banned pixels therefore bees never located on these pixels again. So the edges were found without the need to examine all pixels in the image. Our improved method’s results are compared with other results found in the literature according to detection error and similarity calculations’. All the experimental results show that ABC can be used for obtaining edge information from images.

References

  • [1] Bovik A (2010) Handbook of Image and Video Processing. Academic Press.
  • [2] Gonzales RC, Woods RE (2007) Digital Image Processing. Pearson Press.
  • [3] Umbaugh SE (1999) Computer Vision and Image Processing: A Practical Approach Using CVIPtools. Prentice Press.
  • [4] Solomon C, Breckon T (2011) Fundamentals of Digital Image Processing: A Practical Approach with Examples in Matlab. Wiley Press.
  • [5] Joyce KE, Bellis SE, Samsonov SV et al (2009) A review of the status of satellite remote sensing and image processing techniques for mapping natural hazards and disasters. Progress in Physical Geography 33(2): 183-207 DOI: 10.1177/0309133309339563
  • [6] Huang J, Zhang S, Metaxas D (2011) Efficient MR image reconstruction for compressed MR imaging. Medical Image Analysis 15(5): 670-679 DOI:10.1016/j.media.2011.06.001
  • [7] Liming X, Yanchao Z (2010) Automated strawberry grading system based on image processing. Computers and Electronics in Agriculture 71(1): 32-39 DOI: 10.1016/j.compag.2009.09.013
  • [8] Haralick RM (1984) Digital step edges from zero crossing of second directional derivatives. IEEE Transactions on Pattern Analysis and Machine Intelligence 6(1): 58–68 DOI: 10.1109/TPAMI.1984.4767475
  • [9] Marr D, Hildreth E (1980) Theory of edge detection. Proc. R. Soc. Lond. B 207: 187–217
  • [10] Heath MD, Sarkar S, Sanocki T, Bowyer KW (1997) A Robust Visual Method for Assessing the Relative Performance of Edge-Detection Algorithms. IEEE Transactions on Pattern Analysis and Machine Intelligence 19 (12): 1338-1359 DOI: 10.1109/34.643893
  • [11] Argyle E, Rosenfeld A (1971) Techniques for edge detection. Proceedings of the IEEE 59 (2): 285-287 DOI: 10.1109/PROC.1971.8136
  • [12] Maini R (2011) Analysis and Development of Image Edge Detection Techniques. PhD Thesis, Punjabi University
  • [13] Abdou IE, Pratt WK (1979) Quantitative design and evaluation of enhancement/ thresholding edge detectors. Proceedings of the IEEE 67(5): 753-763
  • [14] Bhardwaj S, Mittal A (2012) A survey on Various Edge Detector Techniques. Procedia Technology 4: 220-226.
  • [15] Giannarou S, Stathaki T (2011) Optimal edge detection using multiple operators for image understanding. EURASIP Journal on Advances in Signal Processing 28 DOI: 10.1186/1687-6180-2011-28
  • [16] Canny J (1986) A computational approach to edge detection. IEEE Transactions on Pattern Analysis and Machine Intelligence PAMI-8(6): 679-698 DOI: 10.1109/TPAMI.1986.4767851
  • [17] Roberts LG (1969) Machine perception of three-dimensional solids. US Government Printing Office Press.
  • [18] Prewitt JM (1970) Object enhancement and extraction. Picture Processing and Psychopictorics: 75-149
  • [19] Rao SS (2009) Engineering Optimization: Theory and practice (Fourth edition). Wiley Press
  • [20] Yang XS (2010) Nature-Inspired Metaheuristic Algorithms: Second edition. Luniver Press.
  • [21] Akay B (2009) Performance Analysis of Artificial Bee Colony Algorithm on Numerical Optimization Problems, Phd Thesis, Erciyes University.
  • [22] Akay B, Karaboga D (2012) A modified Artificial Bee Colony algorithm for real-parameter optimization. Information Science 192: 120-142 DOI:10.1016/j.ins.2010.07.015
  • [23] Karaboga D, Gorkemli B, Ozturk C, Karaboga N (2014). A comprehensive survey: Artificial Bee Colony (ABC) algorithm and applications. Artificial Intelligence Review 42(1): 21-57 DOI: 10.1007/s10462-012-9328-0
  • [24] Pan Q, Tasgetiren MF, Suganthan P.N, Chua TJ (2011) A discrete artificial bee colony algorithm for the streaming flow shop scheduling problem. Information Science 181: 2455-2468 DOI:10.1016/j.ins.2009.12.025
  • [25] Szeto WY, Wu Y, Ho SC (2011) An artificial bee colony algorithm for the capacitated vehicle routing problem. European Journal of Operational Research 215: 126-135 DOI: 10.1016/j.ejor.2011.06.006
  • [26] Horng M (2011) Multilevel thresholding selection based on the artificial bee colony algorithm for image segmentation. Expert Systems with Applications 38: 13785-13791 DOI: 10.1016/j.eswa.2011.04.
  • [27] Das P, Sadhu AK, Vyas RR, Konar A, Bhattacharyya D (2015) Arduino based multi-robot stick carrying by artificial bee colony optimization algorithm, Proceedings of the 2015 Third International Conference on Computer, Communication, Control and Information Technology (C3IT) IEEE Conference
  • [28] Ma M, Liang J, Guo M, Fan Y, Yin Y (2011) SAR image segmentation based on Artificial Bee Colony algorithm. Applied Soft Computing 11: 5205–5214 DOI: 10.1016/j.asoc/2011.05.039
  • [29] RADIUS/DARPA-IU Fort Hood Aerial image dataset (http://marathon.csee.usf.edu/edge/edgecompare_main.html (accessed in 2014))
  • [30] Karaboga D (2005) An Idea Based on Bee Swarm for Numerical Optimization. Technical Report-TR06
  • [31] Karaboga D, Basturk B (2007) A powerful and efficient algorithm for numerical function optimization: Artificial Bee Colony (ABC) algorithm. Journal of Global Optimization 39(3): 459–471 DOI: 10.1007/s10898-007-9149-x
  • [32] Karaboga D, Basturk B (2008) On the performance of artificial bee colony (ABC) algorithm. Applied Soft Computing 8: 687–697 DOI: 10.1016/j.asoc.2007.05.007
  • [33] Karaboga D, Akay B (2009) A survey: algorithms simulating bee swarm intelligence. Artificial Intelligence Review 31: 61–85 DOI: 10.1007/s10462-009-9127-4
  • [34] Özkaya S, Conker Ç, Bilgiç H H (2021) Esnek Robot Kol Sistemi için LQR Denetleyici Parametrelerinin Metzsezgisel Algoritmalar Kullanılarak Belirlenmesi. Konya Mühendislik Bilimleri Dergisi (Konya Journal of Engineering Sciences) 9(3): 735-752 DOI: 10.36306/konjes.896087
  • [35] Nezamabadi-pour H, Saryazdi S, Rashedi E (2006) Edge detection using ant algorithms. Soft Computing 10(7): 623-628
  • [36] Yigitbasi ED, Baykan NA (2013) Edge detection using Artificial Bee Colony Algorithm (ABC). International Journal of Information and Electronics Engineering 3(6): 634-638 DOI: 10.7763/IJIEE.2013.V3.394
  • [37] Yigitbasi ED (2014) Yapay arı kolonisi optimizasyonu ile kenar bulma [Edge detection with artificial bee colony optimization] Master thesis, The Graduate School of Natural and Applied Science, Selcuk University, Konya, Turkey (in Turkish)
There are 37 citations in total.

Details

Primary Language English
Subjects Engineering
Journal Section Research Article
Authors

Elif Deniz Yelmenoglu 0000-0002-3645-3445

Nurdan Akhan Baykan 0000-0002-4289-8889

Early Pub Date July 3, 2022
Publication Date June 30, 2022
Published in Issue Year 2022 Volume: 10 Issue: 1

Cite

APA Yelmenoglu, E. D., & Akhan Baykan, N. (2022). Edge detection of aerial images using artificial bee colony algorithm. MANAS Journal of Engineering, 10(1), 73-80. https://doi.org/10.51354/mjen.1053446
AMA Yelmenoglu ED, Akhan Baykan N. Edge detection of aerial images using artificial bee colony algorithm. MJEN. June 2022;10(1):73-80. doi:10.51354/mjen.1053446
Chicago Yelmenoglu, Elif Deniz, and Nurdan Akhan Baykan. “Edge Detection of Aerial Images Using Artificial Bee Colony Algorithm”. MANAS Journal of Engineering 10, no. 1 (June 2022): 73-80. https://doi.org/10.51354/mjen.1053446.
EndNote Yelmenoglu ED, Akhan Baykan N (June 1, 2022) Edge detection of aerial images using artificial bee colony algorithm. MANAS Journal of Engineering 10 1 73–80.
IEEE E. D. Yelmenoglu and N. Akhan Baykan, “Edge detection of aerial images using artificial bee colony algorithm”, MJEN, vol. 10, no. 1, pp. 73–80, 2022, doi: 10.51354/mjen.1053446.
ISNAD Yelmenoglu, Elif Deniz - Akhan Baykan, Nurdan. “Edge Detection of Aerial Images Using Artificial Bee Colony Algorithm”. MANAS Journal of Engineering 10/1 (June 2022), 73-80. https://doi.org/10.51354/mjen.1053446.
JAMA Yelmenoglu ED, Akhan Baykan N. Edge detection of aerial images using artificial bee colony algorithm. MJEN. 2022;10:73–80.
MLA Yelmenoglu, Elif Deniz and Nurdan Akhan Baykan. “Edge Detection of Aerial Images Using Artificial Bee Colony Algorithm”. MANAS Journal of Engineering, vol. 10, no. 1, 2022, pp. 73-80, doi:10.51354/mjen.1053446.
Vancouver Yelmenoglu ED, Akhan Baykan N. Edge detection of aerial images using artificial bee colony algorithm. MJEN. 2022;10(1):73-80.

Manas Journal of Engineering 

16155