Review
BibTex RIS Cite

Self-Assembled Short Peptide Nanostructures: ‘’Dipeptides’’

Year 2023, Volume: 11 Issue: 1, 83 - 91, 01.07.2023
https://doi.org/10.51354/mjen.1282790

Abstract

Dipeptides are short peptide molecules formed by the peptide bond between two amino acids, and they play significant roles in various biological processes (such as protein synthesis, nutrient absorption, cellular signaling, immune response). Short peptides have a prominent place in the design of self-assembling materials. In particular, dipeptides have gained considerable attention in the field of biotechnology as a type of self-organizing nanostructure due to their low cost, simplicity of synthesis, biocompatibility, and tunability of functionality. However, there is limited knowledge about peptide and protein-based nanostructures in the literature. Therefore, more information is needed on dipeptide nanostructures, especially in terms of their potential applications for biomedical purposes. This review focuses on dipeptide nanostructures, particularly their potential uses in biomedical applications, and provides a broader perspective on the advantages, challenges, synthesis, interactions, and applications of these nanostructures.

References

  • Lee Y. S., “Self-Assembly,” In Self-Assembly and Nanotechnology: A Force Balance Approach, John Wiley & Sons: Hoboken, NJ, 2008, pp 1–19. B. and Horn P., Robot Vision. Cambridge, MA: MIT Press, 1986.
  • Whitesides G. M., Grzybowski, B., “Synthesis and comparison of crosslinked peptide nanoparticles based on diphenylalanine derivatives”, Science, 295, (2002), 2418.
  • Ma X., Xing R., Yuan C., Ogino K., Yan X., “Tumor therapy based on self-assembling peptides nanotechnology”, View, 1, (2020), 20200020.
  • Guyon L., Lepeltier E., Passirani C., “Self-assembly of peptide-based nanostructures: Synthesis and biological activity”, Nano Res., 11, (2018), 2315–2335.
  • Acet O., Dzmitry S., Victoriya Z., Pavel K., Inessa H.B., Acet B.O., Gok T., Maria B., Odabasi M., “Dipeptide nanostructures: Synthesis, interactions, advantages and biomedical applications”, Colloids and Surfaces B: Biointerfaces, 222, (2023), 113031.
  • Panda J.J., Chauhan V.S., “Short peptide based self-assembled nanostructures: implications in drug delivery and tissue engineering”, Polymer Chemistry, 5, (2014), 4418.
  • Reches M., Gazit E., “Casting metal nanowires within discrete self-assembled peptide nanotubes”, Science, 300, (2003), 625–627.
  • Adler-Abramovich L., Aronov D., Beker P., Yevnin M., Stempler S., Buzhansky L., Rosenman G., Gazit E., “Self- assembled arrays of peptide nanotubes by vapour deposition”, Nat. Nanotechnol, 4, (2009), 849–854.
  • Wang M., Du L., Wu X., Xiong S., Chu P. K., “Charged Diphenylalanine Nanotubes and Controlled Hierarchical Self-Assembly”, ACS Nano, 5, (2011), 4448–4454.
  • Reches M., Gazit E., “Controlled patterning of aligned self-assembled peptide nanotubes”, Science, 1, (2006), 195-200.
  • Ryu J., Park C. B.,, “High-Temperature Self-Assembly of Peptides into Vertically Well-Aligned Nanowires by Aniline Vapor”, Advanced. Materials, 20, (2008), 3754–3758.
  • Adler-Abramovich L., Reches M., Sedman V. L., Allen S., Tendler S. J., Gazit E., “Thermal and chemical stability of diphenylalanine peptide nanotubes: implications for nanotechnological applications”, Langmuir, 22, (2006), 1313–1320.
  • Zhang S., “Fabrication of novel biomaterials through molecular self-assembly”, Nat.Biotechnol., 21, (2003), 1171– 1178.
  • Gazit E., “Self-assembled peptide nanostructures: the design of molecular building blocks and their technological utilization”, Chem. Soc. Rev., 36, (2007), 1263–1269.
  • Whitesides G.M., Mathias J.P., Seto C.T., “Molecular Self-Assembly and Nanochemistry: a chemical Strategy for the Synthesis of Nanostructures”, Science, 254, (1991), 1312–1319.
  • Lee S., Trinh H. T., Yoo M., Shin J., Lee H., Kim J., Hwang E., Lim Y.B., Ryou C., “Self-Assembling Peptides and Their Application in the Treatment of Diseases ”, Int. J. Mol. Sci., 20, (2019), 5850.
  • Han T.H., Oh J.K., Lee G.J., Pyun S.I., Sang O.K., “Hierarchical assembly of diphenylalanine into dendritic nanoarchitectures”, Colloids Surf. B, 79, (2010), 440–445.
  • Pabo C.O., Peisach E., Grant R.A., “Design and selection of novel Cys(2)His(2) zinc finger proteins”, Annu. Rev. Biochem., 70, (2001), 313–340.
  • Battiste J.L., Mao H.Y., Rao N.S., Tan R.Y., Muhandiram D.R., Kay L.E., Frankel, J.R. Williamson A. D., “α-helix-RNA major groove recognition in an HIV-1 Rev peptide RRE RNA complex”, Science, 273, (1996), 1547–1551.
  • Uesugi M., Verdine G.L., “The α-helical FXX π-π motif in p53: TAF interaction and discrimination by MDM2”, P. Natl. Acad. Sci., 26, (1999), 14801–14806.
  • Liu J., Wang D., Zheng Q., Lu M., Arora P.S., “Atomic structure of a short α-helix stabilized by a main chain hydrogen-bond surrogate”, J. Am. Chem. Soc., 130, (2008), 4334–4337.
  • Li T., Lu X. M., Zhang M.R., Hu K., Li Z., “Peptide-based nanomaterials: Self-assembly, properties and applications”, Bioactive Materials, 11, (2022), 268-282.
  • Chen C., Pan F., Zhang S., “Antibacterial activities of short designer peptides: a link between propensity for nanostructuring and capacity for membrane destabilization,” Biomacromolecules, 11, (2010), 402–411.
  • Veiga A. S., Sinthuvanich C., Gaspar D., Franquelim H. G., Castanho M. A. R. B., Schneider J. P., “Arginine-rich self- assembling peptides as potent antibacterial gels,” Biomaterials, 33, (2012), 8907–8916.
  • Gorbitz C. H., “The structure of nanotubes formed by dipheny- lalanine, the core recognition motif of Alzheimer’s 𝛽-amyloid polypeptide,” Chemical Communications, 22, (2006), 2332–2334.
  • Nagai Y., Unsworth L.D., Koutsopoulos S., Zhang S., “Slow release of molecules in self-assembling peptide nanofiber scaffold”, J. Control. Release., 115, (2006), 18-25.
  • Reithofer M.R., Chan K. H., Lakshmanan A., Lam D.H., Mishra A., Gopalan B., Joshi M., Wanga S., Hauser C. A. E., “Ligation of anti-cancer drugs to self-assembling ultrashort peptides by click chemistry for localized therapy”, Chem. Sci., 5, (2014), 625-630.
  • Habibi N., Kamaly N., Memic A., Shafiee H., “Self-assembled peptide-based nanostructures: Smart nanomaterials toward targeted drug delivery”, Nano Today, 11, (2016), 41-60.
  • Gupta B., Levchenko T., Torchilin V., “Intracellular delivery of large molecules and small particles by cell- penetrating proteins and peptides”, Adv. Drug Delivery Rev., 57, (2005), 637-651.
  • Fuchs S.M., Raines R.T., “Internalization of cationic peptides: the road less (or more?) traveled”, Cell. Mol. Life Sci., 63, (2006), 1819-1822.
  • Tirrell M., Kokkoli E., Biesalski M., “The Role of Surface Science in Bioengineered Materials”,Surf. Sci., 500, (2002), 61-68.
  • Pastorino L., Habibi N., Soumetz F., Giulianelli M., Ruggiero C., “Polyelectrolyte multilayers for cell and tissue engineering”, Eur. Cells Mater., 22, (2011), 66.
  • Davis M., Motion J., Narmoneva D., Takahashi T., Hakuno D., Kamm R., Zhang S., Lee R. T., “Injectable Self- Assembling Peptide Nanofibers Create Intramyocardial Microenvironments for Endothelial Cells”, Circulation, 111, (2005), 442-450.
  • Tenidis K., Waldner M., Bernhagen J., Fischle W., Bergmann M., Weber M., Merkle M. L., Voelter W., Brunner H., Kapurniotu A., “Identification of a penta- and hexapeptide of islet amyloid polypeptide (IAPP) with amyloidogenic and cytotoxic properties”, J. Mol. Biol., 295, (2000), 1055-1071.
  • Reches M., Porat Y., Gazit E., “Amyloid fibril formation by pentapeptide and tetrapeptide fragments of human calcitonin”, J. Biol. Chem., 277, (2002), 35475-35480.
  • Singh P., Pandey S. K., Grover A., Sharma R. K., Wangoo N., “Understanding the self-ordering of amino acids into supramolecular architectures: co-assembly-based modulation of phenylalanine nanofibrils”, Materials Chemistry Frontiers, 5, (2021), 1971-1981.
  • Basiri M. A., "Dipeptide-based nanoparticles: advances and challenges," RSC Advances, 11, (2021), 14321-14334.
  • Pala B. B., Vural T., Kuralay F., Cırak T., Bolat G., Abacı S., Denkbas E. B., “Disposable pencil graphite electrode modified with peptide nanotubes for Vitamin B12 analysis,” Appl. Surf. Sci., 303, (2014), 37–45.
  • Guo C., Luo Y., Zhou R., Wei G., “Probing the Self-Assembly Mechanism of Diphenylalanine-Based Peptide Nanovesicles and Nanotubes,” ACS Nano, 6, (2012), 3907-3918.
  • Chen C., Liu K., Li J., Yan X., “Functional architectures based on selfassembly of bio-inspired dipeptides: Structure modulation and its photoelectronic applications,” Adv. Colloid Interface Sci., 225, (2015), 177-193.
  • Wang Q., Zhang X., “Self-assembly of diphenylalanine peptide nanotubes on graphene for electronic devices”, ACS applied materials & interfaces, 8, (2016), 20125-20132.
  • Liu X., Wang J., Li Y., Wang X., Chen Y., “Peptide-based nanoparticles for drug delivery”, Advanced drug delivery reviews, 110, (2016), 112-126.
  • Wang C., Wang S., Yang X., “Diphenylalanine peptide nanotubes as a platform for nanoscale optoelectronics”, Advanced materials, 27, (2015), 402-427.
  • Yan X., He Q., Wang K., Duan L., Cui Y., Li J., “Transition of Cationic Dipeptide Nanotubes into Vesicles and Oligonucleotide Delivery,” Angew. Chemie Int. Ed., 46, (2007), 2431–2434.
  • Yan X., Cui Y., He Q., Wang K., Li J., Mu W., Wang B., Ou-yang Z., “Reversible Transitions between Peptide Nanotubes and Vesicle-Like Structures Including Theoretical Modeling Studies,” Chem. Europe, 14, (2008), 5974–5980.
  • Zhang H., Fei J., Yan X., Wang A., Li J., “Enzyme-Responsive Release of Doxorubicin from Monodisperse Dipeptide-Based Nanocarriers for Highly Efficient Cancer Treatment In Vitro,” Adv. Funct. Mater., 25, (2015) 1193–1204.
  • Ma H., Fei J., Li Q., Li J., “Photo-induced Reversible Structural Transition of Cationic Diphenylalanine Peptide Self-Assembly,” Small, 11, (2015), 1787–1791.
  • Huang C., Chen X., Lu Y., Yang H., Yang W., “Electrogenerated chemiluminescence behavior of peptide nanovesicle and its application in sensing dopamine,” Biosens. Bioelectron, 63, (2015), 478-482.
  • Fields G. B., Noble, R. L., "Solid phase peptide synthesis utilizing 9-fluorenylmethoxycarbonyl amino acids." International Journal of Peptide and Protein Research, 35, (1990), 161-214.
  • Wang, J., "Solid-phase synthesis of Fmoc-protected peptides" Journal of Visualized Experiments, 136, (2018), e57327.
  • Chan W. C., White, P. D., "Fmoc solid phase peptide synthesis: a practical approach." Oxford University Press. Carpino, L. A., 115, (2000), 4397-4398.
  • Draper E. R., Morris K. L., Little M. A., Raeburn J., Colquhoun C., Cross E. R., Mc Donald T. O., Serpell L. C., Adams D. J., “Hydrogels formed from Fmoc amino acids”, Cryst.Eng.Comm., 17, (2015), 8047-8057.
  • Estroff L. A., Hamilton A. D., “Water gelation by small organic molecules”, Chemical reviews, 104, (2004), 1201- 1218.
  • Hashemnejad S. M., Huda M. M., Rai N., Kundu S., “Molecular insights into gelation of di-fmoc-L-lysine in organic solvent–water mixtures”, ACS omega, 2, (2017), 1864-1874.
  • Chibh S., Katoch V., Kour A., Khanam F., Yadav A. S., Singh M., Kundu G. C., Prakash B., Panda J. J., “Continuous flow fabrication of Fmoc-cysteine based nanobowl infused core–shell like microstructures for pH switchable on-demand anti-cancer drug delivery”, Biomaterials Science, 9, (2021), 942-959.
  • Yan R., Wen Z., Hu X., Wang W., Meng H., Song Y., Tang Y., “A sensitive sensing system based on fluorescence dipeptide nanoparticles for sulfadimethoxine determination”, Food Chemistry, 405, (2023), 134963.
  • Jin Y., Yan R., Wang, S., Wang X., Zhang X., Tang Y., “Dipeptide nanoparticle and aptamer-based hybrid fluorescence platform for enrofloxacin determination”, Microchimica Acta, 189, (2022), 96.
  • Zhang H., Fei J., Yan X., Wang A., Li J., “Enzyme‐responsive release of doxorubicin from monodisperse dipeptide‐ based nanocarriers for highly efficient cancer treatment in vitro”, Advanced Functional Materials, 25, (2015), 1193-1204.
  • Panda J. J., Kaul A., Kumar S., Alam S., Mishra A. K., Kundu G. C., Chauhan V. S., “Modified dipeptide-based nanoparticles: vehicles for targeted tumor drug delivery”, Nanomedicine, 8, (2013), 1927-1942.
  • Sivagnanam S., Das K., Basak M., Mahata T., Stewart A., Maity B., Das P., “Self-assembled dipeptide based fluorescent nanoparticles as a platform for developing cellular imaging probes and targeted drug delivery chaperones”, Nanoscale Advances, 4, (2022), 1694-1706.
  • Ma K., Xing R., Jiao T., Shen G., Chen C., Li J., Yan X., “Injectable self-assembled dipeptide-based nanocarriers for tumor delivery and effective in vivo photodynamic therapy”, ACS Applied Materials & Interfaces, 8, (2016), 30759-30767
  • Sun M., Jiang H., Liu T., Tan X., Jiang Q., Sun B., Sun J., “Structurally defined tandem-responsive nanoassemblies composed of dipeptide-based photosensitive derivatives and hypoxia-activated camptothecin prodrugs against primary and metastatic breast tumors”, Acta Pharmaceutica Sinica B, 12, (2022), 952-966.
  • Wang Y., Xing P., An W., Ma M., Yang M., Luan T., Hao A., “pH-Responsive dipeptide-based dynamic covalent chemistry systems whose products and self-assemblies depend on the structure of isomeric aromatic dialdehydes”, Langmuir, 34, (2018), 13725-13734.
  • Xue H., Li X., Wang K., Cui W., Zhao J., Fei J., Li J., “Solvent-tunable dipeptide-based nanostructures with enhanced optical-to-electrical transduction”, Chemical Communications, 55, (2019), 13136-13139.
  • Chibh S., Kour A., Yadav N., Kumar P., Yadav P., Chauhan V. S., Panda J. J., “Redox-responsive dipeptide nanostructures toward targeted cancer therapy”, ACS omega, 5, (2020), 3365-3375.
  • Tiwari P., Verma R., Basu A., Christman R. M., Tiwari A. K., Waikar D., Dutt Konar A., “Proteolysis‐Resistant Self‐ Assembled ω‐Amino Acid Dipeptide‐Based Biocompatible Hydrogels as Drug Delivery Vehicle”, ChemistrySelect, 2, (2017), 6623-6631.
  • Biswas S., Vasudevan A., Yadav N., Yadav S., Rawal P., Kaur I., Chauhan V. S., “Chemically Modified Dipeptide Based Hydrogel Supports Three-Dimensional Growth and Functions of Primary Hepatocytes”, ACS Applied Bio Materials, 5, (2022), 4354-4365.
  • Hao L., Wang A., Fu J., Liang S., Han Q., Jing Y., Yin J., “Biomineralized dipeptide self-assembled hydrogel with ultrahigh mechanical strength and osteoinductivity for bone regeneration”, Colloids and Surfaces A: Physicochemical and Engineering Aspects, 657, (2023), 130622.
  • Kulkarni N., Rao P., Jadhav G. S., Kulkarni B., Kanakavalli N., Kirad S., Sahu B., “Emerging Role of Injectable Dipeptide Hydrogels in Biomedical Applications”, ACS omega, 8, (2023), 3551-3570.
  • Nandi N., Baral A., Basu K., Roy S., Banerjee A., “A dipeptide‐based superhydrogel: Removal of toxic dyes and heavy metal ions from waste water”, Peptide science, 108, (2017), e22915.
  • Panda J. J., Varshney A., Chauhan V. S., “Self-assembled nanoparticles based on modified cationic dipeptides and DNA: novel systems for gene delivery”, Journal of nanobiotechnology, 11, (2013), 1-13.
  • Biswas S., Yadav N., Juneja P., Mourya A. K., Kaur S., Tripathi D. M., Chauhan V. S., “Conformationally Restricted Dipeptide-Based Nanoparticles for Delivery of siRNA in Experimental Liver Cirrhosis”, ACS omega, 7, (2022), 36811-36824.
  • Myer R.L., “Parametric oscillators and nonlinear materials,” in Nonlinear Optics, vol. 4, P. G. Harper and B. S. Wherret, Eds. San Francisco, CA: Academic, 1977, pp. 47-160.
Year 2023, Volume: 11 Issue: 1, 83 - 91, 01.07.2023
https://doi.org/10.51354/mjen.1282790

Abstract

References

  • Lee Y. S., “Self-Assembly,” In Self-Assembly and Nanotechnology: A Force Balance Approach, John Wiley & Sons: Hoboken, NJ, 2008, pp 1–19. B. and Horn P., Robot Vision. Cambridge, MA: MIT Press, 1986.
  • Whitesides G. M., Grzybowski, B., “Synthesis and comparison of crosslinked peptide nanoparticles based on diphenylalanine derivatives”, Science, 295, (2002), 2418.
  • Ma X., Xing R., Yuan C., Ogino K., Yan X., “Tumor therapy based on self-assembling peptides nanotechnology”, View, 1, (2020), 20200020.
  • Guyon L., Lepeltier E., Passirani C., “Self-assembly of peptide-based nanostructures: Synthesis and biological activity”, Nano Res., 11, (2018), 2315–2335.
  • Acet O., Dzmitry S., Victoriya Z., Pavel K., Inessa H.B., Acet B.O., Gok T., Maria B., Odabasi M., “Dipeptide nanostructures: Synthesis, interactions, advantages and biomedical applications”, Colloids and Surfaces B: Biointerfaces, 222, (2023), 113031.
  • Panda J.J., Chauhan V.S., “Short peptide based self-assembled nanostructures: implications in drug delivery and tissue engineering”, Polymer Chemistry, 5, (2014), 4418.
  • Reches M., Gazit E., “Casting metal nanowires within discrete self-assembled peptide nanotubes”, Science, 300, (2003), 625–627.
  • Adler-Abramovich L., Aronov D., Beker P., Yevnin M., Stempler S., Buzhansky L., Rosenman G., Gazit E., “Self- assembled arrays of peptide nanotubes by vapour deposition”, Nat. Nanotechnol, 4, (2009), 849–854.
  • Wang M., Du L., Wu X., Xiong S., Chu P. K., “Charged Diphenylalanine Nanotubes and Controlled Hierarchical Self-Assembly”, ACS Nano, 5, (2011), 4448–4454.
  • Reches M., Gazit E., “Controlled patterning of aligned self-assembled peptide nanotubes”, Science, 1, (2006), 195-200.
  • Ryu J., Park C. B.,, “High-Temperature Self-Assembly of Peptides into Vertically Well-Aligned Nanowires by Aniline Vapor”, Advanced. Materials, 20, (2008), 3754–3758.
  • Adler-Abramovich L., Reches M., Sedman V. L., Allen S., Tendler S. J., Gazit E., “Thermal and chemical stability of diphenylalanine peptide nanotubes: implications for nanotechnological applications”, Langmuir, 22, (2006), 1313–1320.
  • Zhang S., “Fabrication of novel biomaterials through molecular self-assembly”, Nat.Biotechnol., 21, (2003), 1171– 1178.
  • Gazit E., “Self-assembled peptide nanostructures: the design of molecular building blocks and their technological utilization”, Chem. Soc. Rev., 36, (2007), 1263–1269.
  • Whitesides G.M., Mathias J.P., Seto C.T., “Molecular Self-Assembly and Nanochemistry: a chemical Strategy for the Synthesis of Nanostructures”, Science, 254, (1991), 1312–1319.
  • Lee S., Trinh H. T., Yoo M., Shin J., Lee H., Kim J., Hwang E., Lim Y.B., Ryou C., “Self-Assembling Peptides and Their Application in the Treatment of Diseases ”, Int. J. Mol. Sci., 20, (2019), 5850.
  • Han T.H., Oh J.K., Lee G.J., Pyun S.I., Sang O.K., “Hierarchical assembly of diphenylalanine into dendritic nanoarchitectures”, Colloids Surf. B, 79, (2010), 440–445.
  • Pabo C.O., Peisach E., Grant R.A., “Design and selection of novel Cys(2)His(2) zinc finger proteins”, Annu. Rev. Biochem., 70, (2001), 313–340.
  • Battiste J.L., Mao H.Y., Rao N.S., Tan R.Y., Muhandiram D.R., Kay L.E., Frankel, J.R. Williamson A. D., “α-helix-RNA major groove recognition in an HIV-1 Rev peptide RRE RNA complex”, Science, 273, (1996), 1547–1551.
  • Uesugi M., Verdine G.L., “The α-helical FXX π-π motif in p53: TAF interaction and discrimination by MDM2”, P. Natl. Acad. Sci., 26, (1999), 14801–14806.
  • Liu J., Wang D., Zheng Q., Lu M., Arora P.S., “Atomic structure of a short α-helix stabilized by a main chain hydrogen-bond surrogate”, J. Am. Chem. Soc., 130, (2008), 4334–4337.
  • Li T., Lu X. M., Zhang M.R., Hu K., Li Z., “Peptide-based nanomaterials: Self-assembly, properties and applications”, Bioactive Materials, 11, (2022), 268-282.
  • Chen C., Pan F., Zhang S., “Antibacterial activities of short designer peptides: a link between propensity for nanostructuring and capacity for membrane destabilization,” Biomacromolecules, 11, (2010), 402–411.
  • Veiga A. S., Sinthuvanich C., Gaspar D., Franquelim H. G., Castanho M. A. R. B., Schneider J. P., “Arginine-rich self- assembling peptides as potent antibacterial gels,” Biomaterials, 33, (2012), 8907–8916.
  • Gorbitz C. H., “The structure of nanotubes formed by dipheny- lalanine, the core recognition motif of Alzheimer’s 𝛽-amyloid polypeptide,” Chemical Communications, 22, (2006), 2332–2334.
  • Nagai Y., Unsworth L.D., Koutsopoulos S., Zhang S., “Slow release of molecules in self-assembling peptide nanofiber scaffold”, J. Control. Release., 115, (2006), 18-25.
  • Reithofer M.R., Chan K. H., Lakshmanan A., Lam D.H., Mishra A., Gopalan B., Joshi M., Wanga S., Hauser C. A. E., “Ligation of anti-cancer drugs to self-assembling ultrashort peptides by click chemistry for localized therapy”, Chem. Sci., 5, (2014), 625-630.
  • Habibi N., Kamaly N., Memic A., Shafiee H., “Self-assembled peptide-based nanostructures: Smart nanomaterials toward targeted drug delivery”, Nano Today, 11, (2016), 41-60.
  • Gupta B., Levchenko T., Torchilin V., “Intracellular delivery of large molecules and small particles by cell- penetrating proteins and peptides”, Adv. Drug Delivery Rev., 57, (2005), 637-651.
  • Fuchs S.M., Raines R.T., “Internalization of cationic peptides: the road less (or more?) traveled”, Cell. Mol. Life Sci., 63, (2006), 1819-1822.
  • Tirrell M., Kokkoli E., Biesalski M., “The Role of Surface Science in Bioengineered Materials”,Surf. Sci., 500, (2002), 61-68.
  • Pastorino L., Habibi N., Soumetz F., Giulianelli M., Ruggiero C., “Polyelectrolyte multilayers for cell and tissue engineering”, Eur. Cells Mater., 22, (2011), 66.
  • Davis M., Motion J., Narmoneva D., Takahashi T., Hakuno D., Kamm R., Zhang S., Lee R. T., “Injectable Self- Assembling Peptide Nanofibers Create Intramyocardial Microenvironments for Endothelial Cells”, Circulation, 111, (2005), 442-450.
  • Tenidis K., Waldner M., Bernhagen J., Fischle W., Bergmann M., Weber M., Merkle M. L., Voelter W., Brunner H., Kapurniotu A., “Identification of a penta- and hexapeptide of islet amyloid polypeptide (IAPP) with amyloidogenic and cytotoxic properties”, J. Mol. Biol., 295, (2000), 1055-1071.
  • Reches M., Porat Y., Gazit E., “Amyloid fibril formation by pentapeptide and tetrapeptide fragments of human calcitonin”, J. Biol. Chem., 277, (2002), 35475-35480.
  • Singh P., Pandey S. K., Grover A., Sharma R. K., Wangoo N., “Understanding the self-ordering of amino acids into supramolecular architectures: co-assembly-based modulation of phenylalanine nanofibrils”, Materials Chemistry Frontiers, 5, (2021), 1971-1981.
  • Basiri M. A., "Dipeptide-based nanoparticles: advances and challenges," RSC Advances, 11, (2021), 14321-14334.
  • Pala B. B., Vural T., Kuralay F., Cırak T., Bolat G., Abacı S., Denkbas E. B., “Disposable pencil graphite electrode modified with peptide nanotubes for Vitamin B12 analysis,” Appl. Surf. Sci., 303, (2014), 37–45.
  • Guo C., Luo Y., Zhou R., Wei G., “Probing the Self-Assembly Mechanism of Diphenylalanine-Based Peptide Nanovesicles and Nanotubes,” ACS Nano, 6, (2012), 3907-3918.
  • Chen C., Liu K., Li J., Yan X., “Functional architectures based on selfassembly of bio-inspired dipeptides: Structure modulation and its photoelectronic applications,” Adv. Colloid Interface Sci., 225, (2015), 177-193.
  • Wang Q., Zhang X., “Self-assembly of diphenylalanine peptide nanotubes on graphene for electronic devices”, ACS applied materials & interfaces, 8, (2016), 20125-20132.
  • Liu X., Wang J., Li Y., Wang X., Chen Y., “Peptide-based nanoparticles for drug delivery”, Advanced drug delivery reviews, 110, (2016), 112-126.
  • Wang C., Wang S., Yang X., “Diphenylalanine peptide nanotubes as a platform for nanoscale optoelectronics”, Advanced materials, 27, (2015), 402-427.
  • Yan X., He Q., Wang K., Duan L., Cui Y., Li J., “Transition of Cationic Dipeptide Nanotubes into Vesicles and Oligonucleotide Delivery,” Angew. Chemie Int. Ed., 46, (2007), 2431–2434.
  • Yan X., Cui Y., He Q., Wang K., Li J., Mu W., Wang B., Ou-yang Z., “Reversible Transitions between Peptide Nanotubes and Vesicle-Like Structures Including Theoretical Modeling Studies,” Chem. Europe, 14, (2008), 5974–5980.
  • Zhang H., Fei J., Yan X., Wang A., Li J., “Enzyme-Responsive Release of Doxorubicin from Monodisperse Dipeptide-Based Nanocarriers for Highly Efficient Cancer Treatment In Vitro,” Adv. Funct. Mater., 25, (2015) 1193–1204.
  • Ma H., Fei J., Li Q., Li J., “Photo-induced Reversible Structural Transition of Cationic Diphenylalanine Peptide Self-Assembly,” Small, 11, (2015), 1787–1791.
  • Huang C., Chen X., Lu Y., Yang H., Yang W., “Electrogenerated chemiluminescence behavior of peptide nanovesicle and its application in sensing dopamine,” Biosens. Bioelectron, 63, (2015), 478-482.
  • Fields G. B., Noble, R. L., "Solid phase peptide synthesis utilizing 9-fluorenylmethoxycarbonyl amino acids." International Journal of Peptide and Protein Research, 35, (1990), 161-214.
  • Wang, J., "Solid-phase synthesis of Fmoc-protected peptides" Journal of Visualized Experiments, 136, (2018), e57327.
  • Chan W. C., White, P. D., "Fmoc solid phase peptide synthesis: a practical approach." Oxford University Press. Carpino, L. A., 115, (2000), 4397-4398.
  • Draper E. R., Morris K. L., Little M. A., Raeburn J., Colquhoun C., Cross E. R., Mc Donald T. O., Serpell L. C., Adams D. J., “Hydrogels formed from Fmoc amino acids”, Cryst.Eng.Comm., 17, (2015), 8047-8057.
  • Estroff L. A., Hamilton A. D., “Water gelation by small organic molecules”, Chemical reviews, 104, (2004), 1201- 1218.
  • Hashemnejad S. M., Huda M. M., Rai N., Kundu S., “Molecular insights into gelation of di-fmoc-L-lysine in organic solvent–water mixtures”, ACS omega, 2, (2017), 1864-1874.
  • Chibh S., Katoch V., Kour A., Khanam F., Yadav A. S., Singh M., Kundu G. C., Prakash B., Panda J. J., “Continuous flow fabrication of Fmoc-cysteine based nanobowl infused core–shell like microstructures for pH switchable on-demand anti-cancer drug delivery”, Biomaterials Science, 9, (2021), 942-959.
  • Yan R., Wen Z., Hu X., Wang W., Meng H., Song Y., Tang Y., “A sensitive sensing system based on fluorescence dipeptide nanoparticles for sulfadimethoxine determination”, Food Chemistry, 405, (2023), 134963.
  • Jin Y., Yan R., Wang, S., Wang X., Zhang X., Tang Y., “Dipeptide nanoparticle and aptamer-based hybrid fluorescence platform for enrofloxacin determination”, Microchimica Acta, 189, (2022), 96.
  • Zhang H., Fei J., Yan X., Wang A., Li J., “Enzyme‐responsive release of doxorubicin from monodisperse dipeptide‐ based nanocarriers for highly efficient cancer treatment in vitro”, Advanced Functional Materials, 25, (2015), 1193-1204.
  • Panda J. J., Kaul A., Kumar S., Alam S., Mishra A. K., Kundu G. C., Chauhan V. S., “Modified dipeptide-based nanoparticles: vehicles for targeted tumor drug delivery”, Nanomedicine, 8, (2013), 1927-1942.
  • Sivagnanam S., Das K., Basak M., Mahata T., Stewart A., Maity B., Das P., “Self-assembled dipeptide based fluorescent nanoparticles as a platform for developing cellular imaging probes and targeted drug delivery chaperones”, Nanoscale Advances, 4, (2022), 1694-1706.
  • Ma K., Xing R., Jiao T., Shen G., Chen C., Li J., Yan X., “Injectable self-assembled dipeptide-based nanocarriers for tumor delivery and effective in vivo photodynamic therapy”, ACS Applied Materials & Interfaces, 8, (2016), 30759-30767
  • Sun M., Jiang H., Liu T., Tan X., Jiang Q., Sun B., Sun J., “Structurally defined tandem-responsive nanoassemblies composed of dipeptide-based photosensitive derivatives and hypoxia-activated camptothecin prodrugs against primary and metastatic breast tumors”, Acta Pharmaceutica Sinica B, 12, (2022), 952-966.
  • Wang Y., Xing P., An W., Ma M., Yang M., Luan T., Hao A., “pH-Responsive dipeptide-based dynamic covalent chemistry systems whose products and self-assemblies depend on the structure of isomeric aromatic dialdehydes”, Langmuir, 34, (2018), 13725-13734.
  • Xue H., Li X., Wang K., Cui W., Zhao J., Fei J., Li J., “Solvent-tunable dipeptide-based nanostructures with enhanced optical-to-electrical transduction”, Chemical Communications, 55, (2019), 13136-13139.
  • Chibh S., Kour A., Yadav N., Kumar P., Yadav P., Chauhan V. S., Panda J. J., “Redox-responsive dipeptide nanostructures toward targeted cancer therapy”, ACS omega, 5, (2020), 3365-3375.
  • Tiwari P., Verma R., Basu A., Christman R. M., Tiwari A. K., Waikar D., Dutt Konar A., “Proteolysis‐Resistant Self‐ Assembled ω‐Amino Acid Dipeptide‐Based Biocompatible Hydrogels as Drug Delivery Vehicle”, ChemistrySelect, 2, (2017), 6623-6631.
  • Biswas S., Vasudevan A., Yadav N., Yadav S., Rawal P., Kaur I., Chauhan V. S., “Chemically Modified Dipeptide Based Hydrogel Supports Three-Dimensional Growth and Functions of Primary Hepatocytes”, ACS Applied Bio Materials, 5, (2022), 4354-4365.
  • Hao L., Wang A., Fu J., Liang S., Han Q., Jing Y., Yin J., “Biomineralized dipeptide self-assembled hydrogel with ultrahigh mechanical strength and osteoinductivity for bone regeneration”, Colloids and Surfaces A: Physicochemical and Engineering Aspects, 657, (2023), 130622.
  • Kulkarni N., Rao P., Jadhav G. S., Kulkarni B., Kanakavalli N., Kirad S., Sahu B., “Emerging Role of Injectable Dipeptide Hydrogels in Biomedical Applications”, ACS omega, 8, (2023), 3551-3570.
  • Nandi N., Baral A., Basu K., Roy S., Banerjee A., “A dipeptide‐based superhydrogel: Removal of toxic dyes and heavy metal ions from waste water”, Peptide science, 108, (2017), e22915.
  • Panda J. J., Varshney A., Chauhan V. S., “Self-assembled nanoparticles based on modified cationic dipeptides and DNA: novel systems for gene delivery”, Journal of nanobiotechnology, 11, (2013), 1-13.
  • Biswas S., Yadav N., Juneja P., Mourya A. K., Kaur S., Tripathi D. M., Chauhan V. S., “Conformationally Restricted Dipeptide-Based Nanoparticles for Delivery of siRNA in Experimental Liver Cirrhosis”, ACS omega, 7, (2022), 36811-36824.
  • Myer R.L., “Parametric oscillators and nonlinear materials,” in Nonlinear Optics, vol. 4, P. G. Harper and B. S. Wherret, Eds. San Francisco, CA: Academic, 1977, pp. 47-160.
There are 73 citations in total.

Details

Primary Language English
Subjects Engineering
Journal Section Review Article
Authors

Emrah Dikici 0000-0002-3086-8156

Burcu Önal Acet 0000-0003-2408-8660

Tuba Gök 0000-0001-7660-7587

Ömür Acet 0000-0003-1864-5694

Mehmet Odabaşı 0000-0002-3288-132X

Early Pub Date June 23, 2023
Publication Date July 1, 2023
Published in Issue Year 2023 Volume: 11 Issue: 1

Cite

APA Dikici, E., Önal Acet, B., Gök, T., Acet, Ö., et al. (2023). Self-Assembled Short Peptide Nanostructures: ‘’Dipeptides’’. MANAS Journal of Engineering, 11(1), 83-91. https://doi.org/10.51354/mjen.1282790
AMA Dikici E, Önal Acet B, Gök T, Acet Ö, Odabaşı M. Self-Assembled Short Peptide Nanostructures: ‘’Dipeptides’’. MJEN. July 2023;11(1):83-91. doi:10.51354/mjen.1282790
Chicago Dikici, Emrah, Burcu Önal Acet, Tuba Gök, Ömür Acet, and Mehmet Odabaşı. “Self-Assembled Short Peptide Nanostructures: ‘’Dipeptides’’”. MANAS Journal of Engineering 11, no. 1 (July 2023): 83-91. https://doi.org/10.51354/mjen.1282790.
EndNote Dikici E, Önal Acet B, Gök T, Acet Ö, Odabaşı M (July 1, 2023) Self-Assembled Short Peptide Nanostructures: ‘’Dipeptides’’. MANAS Journal of Engineering 11 1 83–91.
IEEE E. Dikici, B. Önal Acet, T. Gök, Ö. Acet, and M. Odabaşı, “Self-Assembled Short Peptide Nanostructures: ‘’Dipeptides’’”, MJEN, vol. 11, no. 1, pp. 83–91, 2023, doi: 10.51354/mjen.1282790.
ISNAD Dikici, Emrah et al. “Self-Assembled Short Peptide Nanostructures: ‘’Dipeptides’’”. MANAS Journal of Engineering 11/1 (July 2023), 83-91. https://doi.org/10.51354/mjen.1282790.
JAMA Dikici E, Önal Acet B, Gök T, Acet Ö, Odabaşı M. Self-Assembled Short Peptide Nanostructures: ‘’Dipeptides’’. MJEN. 2023;11:83–91.
MLA Dikici, Emrah et al. “Self-Assembled Short Peptide Nanostructures: ‘’Dipeptides’’”. MANAS Journal of Engineering, vol. 11, no. 1, 2023, pp. 83-91, doi:10.51354/mjen.1282790.
Vancouver Dikici E, Önal Acet B, Gök T, Acet Ö, Odabaşı M. Self-Assembled Short Peptide Nanostructures: ‘’Dipeptides’’. MJEN. 2023;11(1):83-91.

Manas Journal of Engineering 

16155