Research Article
BibTex RIS Cite

Investigation of the performance of (4-(3-iodobenzo[b]thiophen-2-yl)-N,N-dimethyllaniline as an anode catalyst for glucose electrooxidation

Year 2023, Volume: 11 Issue: 2, 216 - 222, 25.12.2023
https://doi.org/10.51354/mjen.1344493

Abstract

In this study (4-(3-iodobenzo[b]thiophen-2-yl)-N,N-dimethyllaniline (4), Sonagashira Coupling Reaction was synthesized using Electrophilic Cyclization Reactions. Then, the anode catalyst performance for glucose electrooxidation was investigated. The electrocatalytic activities of the organic catalyst were investigated by CV, CA and EIS measurements in 1 M KOH + 0.5 M C6H12O6 solution. Interestingly, electrochemical depositing on organic catalyst by Pd metal increased the specific activity, and it was calculated as 0.61 mA/cm2 Consequently, Pd@4 catalyst will be used as an electrocatalyst with high specific and stability and low charge transfer activity.

References

  • [1]. Erdem, K.O.Ç. and Kadir, K., 2015. Enerji Kaynakları–Yenilenebilir Enerji Durumu. Mühendis ve Makina, 56(668), pp.36-47.
  • [2]. Oğulata, R. 2007. “Potential of Renewable Energies in Turkey,” Energy Engineering, vol. 133 (1), p. 63-68.
  • [3]. Park, M., Lee, T. and Kim, B.S., 2013. Covalent functionalization based heteroatom doped graphene nanosheet as a metal-free electrocatalyst for oxygen reduction reaction. Nanoscale, 5(24), pp.12255-12260.
  • [4]. Clarke, T.M. and Durrant, J.R., 2010. Charge photogeneration in organic solar cells. Chemical reviews, 110(11), pp.6736-6767.
  • [5]. Kivrak, H., Can, M., Duru, H. and Sahin, O., 2014. Methanol electrooxidation study on mesoporous silica supported Pt–Co direct methanol fuel cell anode. International Journal of Chemical Reactor Engineering, 12(1), pp.369-375.
  • [6]. Er, O.F., Caglar, A. and Kivrak, H., 2020. Enhanced electrochemical glucose oxidation in alkaline solution over indium decorated carbon supported palladium nanoparticles. Materials Chemistry and Physics, 254, p.123318.
  • [7]. Feng, G., Kuang, Y., Li, P., Han, N., Sun, M., Zhang, G. and Sun, X., 2017. Single crystalline ultrathin nickel–cobalt alloy nanosheets array for direct hydrazine fuel cells. Advanced Science, 4(3), p.1600179.
  • [8]. Yao, S., Li, G., Liu, C. and Xing, W., 2015. Enhanced catalytic performance of carbon supported palladium nanoparticles by in-situ synthesis for formic acid electrooxidation. Journal of Power Sources, 284, pp.355-360.
  • [9]. Arico, A.S., Antonucci, P.L., Modica, E., Baglio, V., Kim, H. and Antonucci, V., 2002. Effect of Pt Ru alloy composition on high-temperature methanol electro-oxidation. Electrochimica Acta, 47(22-23), pp.3723-3732.
  • [10]. Rapoport, B.I., Kedzierski, J.T. and Sarpeshkar, R., 2012. A glucose fuel cell for implantable brain–machine interfaces. PloS one, 7(6), p.e38436.
  • [11]. Tao, B., Miao, F. and Chu, P.K., 2012. Preparation and characterization of a novel nickel–palladium electrode supported by silicon nanowires for direct glucose fuel cell. Electrochimica acta, 65, pp.149-152.
  • [12]. Song, B. Y., Li, Y. S., He, Y. L., Cheng, Z. D., 2014. Anode structure design for the highperformance anion-exchange membrane direct glucose fuel cell. Energy Procedia, 61: 2118-2122.
  • [13]. Chai, D., Wang, W., Wang, F., Kang, Y., Yang, Y. and Lei, Z., 2016. A facile precipitation procedure for synthesis of binary Sn-Co oxide promoting Pd catalyst towards glucose electrooxidation. Electrochimica Acta, 189, pp.295-302.
  • [14]. Yan, L., Brouzgou, A., Meng, Y., Xiao, M., Tsiakaras, P. and Song, S., 2014. Efficient and poison-tolerant PdxAuy/C binary electrocatalysts for glucose electrooxidation in alkaline medium. Applied Catalysis B: Environmental, 150, pp.268-274.
  • [15]. Basu D, Basu S. Synthesis and characterization of PteAu/C catalyst for glucose electro-oxidation for the application in direct glucose fuel cell. Int J Hydrogen Energy 2011;36:14923-9.
  • [16]. Cho CH, Neuenswander B, Lushington GH, Larock RC. Solution-phase parallel synthesis of a multi-substituted benzo b thiophene library. J Combin Chem 2009;11:900-6.
  • [17]. Ozok, O., Kavak, E., Er, O.F., Kivrak, H. and Kivrak, A., 2020. Novel benzothiophene based catalyst with enhanced activity for glucose electrooxidation. International Journal of Hydrogen Energy, 45(53), pp.28706-28715.
  • [18].Wang, D. and Gao, S., 2014. Sonogashira coupling in natural product synthesis. Organic Chemistry Frontiers, 1(5), pp.556-566.
  • [19]. Ozok-Arici, O., Kaya, S., Caglar, A., Kivrak, H. and Kivrak, A., 2022. Glucose Electrooxidation Study on 3-iodo-2-(aryl/alkyl) benzo [b] thiophene Organic Catalyst. Journal of Electronic Materials, 51(4), pp.1653-1662.
  • [20]. Qu, W., Wang, Z., Sui, X. and Gu, D., 2014. An efficient antimony doped tin oxide and carbon nanotubes hybrid support of Pd catalyst for formic acid electrooxidation. international journal of hydrogen energy, 39(11), pp.5678-5688
  • [21]. Karuppasamy, L., Chen, C.Y., Anandan, S. and Wu, J.J., 2018. Sonochemical fabrication of reduced graphene oxide supported Au nano dendrites for ethanol electrooxidation in alkaline medium. Catalysis Today, 307, pp.308-317.
Year 2023, Volume: 11 Issue: 2, 216 - 222, 25.12.2023
https://doi.org/10.51354/mjen.1344493

Abstract

References

  • [1]. Erdem, K.O.Ç. and Kadir, K., 2015. Enerji Kaynakları–Yenilenebilir Enerji Durumu. Mühendis ve Makina, 56(668), pp.36-47.
  • [2]. Oğulata, R. 2007. “Potential of Renewable Energies in Turkey,” Energy Engineering, vol. 133 (1), p. 63-68.
  • [3]. Park, M., Lee, T. and Kim, B.S., 2013. Covalent functionalization based heteroatom doped graphene nanosheet as a metal-free electrocatalyst for oxygen reduction reaction. Nanoscale, 5(24), pp.12255-12260.
  • [4]. Clarke, T.M. and Durrant, J.R., 2010. Charge photogeneration in organic solar cells. Chemical reviews, 110(11), pp.6736-6767.
  • [5]. Kivrak, H., Can, M., Duru, H. and Sahin, O., 2014. Methanol electrooxidation study on mesoporous silica supported Pt–Co direct methanol fuel cell anode. International Journal of Chemical Reactor Engineering, 12(1), pp.369-375.
  • [6]. Er, O.F., Caglar, A. and Kivrak, H., 2020. Enhanced electrochemical glucose oxidation in alkaline solution over indium decorated carbon supported palladium nanoparticles. Materials Chemistry and Physics, 254, p.123318.
  • [7]. Feng, G., Kuang, Y., Li, P., Han, N., Sun, M., Zhang, G. and Sun, X., 2017. Single crystalline ultrathin nickel–cobalt alloy nanosheets array for direct hydrazine fuel cells. Advanced Science, 4(3), p.1600179.
  • [8]. Yao, S., Li, G., Liu, C. and Xing, W., 2015. Enhanced catalytic performance of carbon supported palladium nanoparticles by in-situ synthesis for formic acid electrooxidation. Journal of Power Sources, 284, pp.355-360.
  • [9]. Arico, A.S., Antonucci, P.L., Modica, E., Baglio, V., Kim, H. and Antonucci, V., 2002. Effect of Pt Ru alloy composition on high-temperature methanol electro-oxidation. Electrochimica Acta, 47(22-23), pp.3723-3732.
  • [10]. Rapoport, B.I., Kedzierski, J.T. and Sarpeshkar, R., 2012. A glucose fuel cell for implantable brain–machine interfaces. PloS one, 7(6), p.e38436.
  • [11]. Tao, B., Miao, F. and Chu, P.K., 2012. Preparation and characterization of a novel nickel–palladium electrode supported by silicon nanowires for direct glucose fuel cell. Electrochimica acta, 65, pp.149-152.
  • [12]. Song, B. Y., Li, Y. S., He, Y. L., Cheng, Z. D., 2014. Anode structure design for the highperformance anion-exchange membrane direct glucose fuel cell. Energy Procedia, 61: 2118-2122.
  • [13]. Chai, D., Wang, W., Wang, F., Kang, Y., Yang, Y. and Lei, Z., 2016. A facile precipitation procedure for synthesis of binary Sn-Co oxide promoting Pd catalyst towards glucose electrooxidation. Electrochimica Acta, 189, pp.295-302.
  • [14]. Yan, L., Brouzgou, A., Meng, Y., Xiao, M., Tsiakaras, P. and Song, S., 2014. Efficient and poison-tolerant PdxAuy/C binary electrocatalysts for glucose electrooxidation in alkaline medium. Applied Catalysis B: Environmental, 150, pp.268-274.
  • [15]. Basu D, Basu S. Synthesis and characterization of PteAu/C catalyst for glucose electro-oxidation for the application in direct glucose fuel cell. Int J Hydrogen Energy 2011;36:14923-9.
  • [16]. Cho CH, Neuenswander B, Lushington GH, Larock RC. Solution-phase parallel synthesis of a multi-substituted benzo b thiophene library. J Combin Chem 2009;11:900-6.
  • [17]. Ozok, O., Kavak, E., Er, O.F., Kivrak, H. and Kivrak, A., 2020. Novel benzothiophene based catalyst with enhanced activity for glucose electrooxidation. International Journal of Hydrogen Energy, 45(53), pp.28706-28715.
  • [18].Wang, D. and Gao, S., 2014. Sonogashira coupling in natural product synthesis. Organic Chemistry Frontiers, 1(5), pp.556-566.
  • [19]. Ozok-Arici, O., Kaya, S., Caglar, A., Kivrak, H. and Kivrak, A., 2022. Glucose Electrooxidation Study on 3-iodo-2-(aryl/alkyl) benzo [b] thiophene Organic Catalyst. Journal of Electronic Materials, 51(4), pp.1653-1662.
  • [20]. Qu, W., Wang, Z., Sui, X. and Gu, D., 2014. An efficient antimony doped tin oxide and carbon nanotubes hybrid support of Pd catalyst for formic acid electrooxidation. international journal of hydrogen energy, 39(11), pp.5678-5688
  • [21]. Karuppasamy, L., Chen, C.Y., Anandan, S. and Wu, J.J., 2018. Sonochemical fabrication of reduced graphene oxide supported Au nano dendrites for ethanol electrooxidation in alkaline medium. Catalysis Today, 307, pp.308-317.
There are 21 citations in total.

Details

Primary Language English
Subjects Electrochemical Technologies
Journal Section Research Article
Authors

Ömrüye Özok 0000-0002-4164-8650

Şefika Kaya 0000-0003-3556-6461

Aykut Çağlar 0000-0002-0681-1096

Hilal Demir Kıvrak 0000-0001-8001-7854

Arif Kıvrak 0000-0003-4770-2686

Publication Date December 25, 2023
Published in Issue Year 2023 Volume: 11 Issue: 2

Cite

APA Özok, Ö., Kaya, Ş., Çağlar, A., Demir Kıvrak, H., et al. (2023). Investigation of the performance of (4-(3-iodobenzo[b]thiophen-2-yl)-N,N-dimethyllaniline as an anode catalyst for glucose electrooxidation. MANAS Journal of Engineering, 11(2), 216-222. https://doi.org/10.51354/mjen.1344493
AMA Özok Ö, Kaya Ş, Çağlar A, Demir Kıvrak H, Kıvrak A. Investigation of the performance of (4-(3-iodobenzo[b]thiophen-2-yl)-N,N-dimethyllaniline as an anode catalyst for glucose electrooxidation. MJEN. December 2023;11(2):216-222. doi:10.51354/mjen.1344493
Chicago Özok, Ömrüye, Şefika Kaya, Aykut Çağlar, Hilal Demir Kıvrak, and Arif Kıvrak. “Investigation of the Performance of (4-(3-iodobenzo[b]thiophen-2-Yl)-N,N-Dimethyllaniline As an Anode Catalyst for Glucose Electrooxidation”. MANAS Journal of Engineering 11, no. 2 (December 2023): 216-22. https://doi.org/10.51354/mjen.1344493.
EndNote Özok Ö, Kaya Ş, Çağlar A, Demir Kıvrak H, Kıvrak A (December 1, 2023) Investigation of the performance of (4-(3-iodobenzo[b]thiophen-2-yl)-N,N-dimethyllaniline as an anode catalyst for glucose electrooxidation. MANAS Journal of Engineering 11 2 216–222.
IEEE Ö. Özok, Ş. Kaya, A. Çağlar, H. Demir Kıvrak, and A. Kıvrak, “Investigation of the performance of (4-(3-iodobenzo[b]thiophen-2-yl)-N,N-dimethyllaniline as an anode catalyst for glucose electrooxidation”, MJEN, vol. 11, no. 2, pp. 216–222, 2023, doi: 10.51354/mjen.1344493.
ISNAD Özok, Ömrüye et al. “Investigation of the Performance of (4-(3-iodobenzo[b]thiophen-2-Yl)-N,N-Dimethyllaniline As an Anode Catalyst for Glucose Electrooxidation”. MANAS Journal of Engineering 11/2 (December 2023), 216-222. https://doi.org/10.51354/mjen.1344493.
JAMA Özok Ö, Kaya Ş, Çağlar A, Demir Kıvrak H, Kıvrak A. Investigation of the performance of (4-(3-iodobenzo[b]thiophen-2-yl)-N,N-dimethyllaniline as an anode catalyst for glucose electrooxidation. MJEN. 2023;11:216–222.
MLA Özok, Ömrüye et al. “Investigation of the Performance of (4-(3-iodobenzo[b]thiophen-2-Yl)-N,N-Dimethyllaniline As an Anode Catalyst for Glucose Electrooxidation”. MANAS Journal of Engineering, vol. 11, no. 2, 2023, pp. 216-22, doi:10.51354/mjen.1344493.
Vancouver Özok Ö, Kaya Ş, Çağlar A, Demir Kıvrak H, Kıvrak A. Investigation of the performance of (4-(3-iodobenzo[b]thiophen-2-yl)-N,N-dimethyllaniline as an anode catalyst for glucose electrooxidation. MJEN. 2023;11(2):216-22.

Manas Journal of Engineering 

16155