Research Article
BibTex RIS Cite
Year 2024, , 1 - 14, 03.05.2024
https://doi.org/10.47087/mjm.1362713

Abstract

References

  • T. Ando, Concavity of certain maps on positive definite matrices and applications to Hadamard products, Lin. Alg. & Appl. 26 (1979), 203-241.
  • H. Araki and F. Hansen, Jensen's operator inequality for functions of several variables, Proc. Amer. Math. Soc. 128 (2000), No. 7, 2075-2084.
  • J. S. Aujila and H. L. Vasudeva, Inequalities involving Hadamard product and operator means, Math. Japon. 42 (1995), 265-272.
  • N. S. Barnett, P. Cerone and S. S. Dragomir, Some new inequalities for Hermite-Hadamard divergence in information theory. in Stochastic Analysis and Applications. Vol. 3, 7-19, Nova Sci. Publ., Hauppauge, NY, 2003. Preprint RGMIA Res. Rep. Coll. 5 (2002), No. 4, Art. 8, 11 pp. [Online https://rgmia.org/papers/v5n4/NIHHDIT.pdf]
  • S. S. Dragomir, Bounds for the normalized Jensen functional, Bull. Austral. Math. Soc. 74(3)(2006), 417-478.
  • S. S. Dragomir, Some tensorial Hermite-Hadamard type inequalities for convex functions of selfadjoint operators in Hilbert spaces, Preprint RGMIA Res. Rep. Coll. 25 (2022), Art. 90, 14 pp. [Online https://rgmia.org/papers/v25/v25a90.pdf]
  • A. Koranyi. On some classes of analytic functions of several variables. Trans. Amer. Math. Soc., 101 (1961), 520ñ554.
  • A. Ebadian, I. Nikoufar and M. E. Gordji, Perspectives of matrix convex functions, Proc. Natl. Acad. Sci. USA, 108 (2011), no. 18, 7313-7314.
  • J. I. Fujii, The Marcus-Khan theorem for Hilbert space operators. Math. Jpn. 41 (1995), 531-535.
  • T. Furuta, J. Micic Hot, J. Pecaric and Y. Seo, Mond-Pecaric Method in Operator Inequalities. Inequalities for Bounded Selfadjoint Operators on a Hilbert Space, Element, Zagreb, 2005.
  • K. Kitamura and Y. Seo, Operator inequalities on Hadamard product associated with Kadison's Schwarz inequalities, Scient. Math. 1 (1998), No. 2, 237-241.
  • I. Nikoufar and M. Shamohammadi, The converse of the Loewner-Heinz inequality via perspective, Lin. & Multilin. Alg., 66 (2018), N0. 2, 243-249.
  • A. Ostrowski, Über die Absolutabweichung einer differentienbaren Funktionen von ihren Integralmittelwert, Comment. Math. Hel, 10 (1938), 226-227.
  • S. Wada, On some refinement of the Cauchy-Schwarz Inequality, Lin. Alg. & Appl. 420 (2007), 433-440.

An Ostrowski Type Tensorial Norm Inequality for Continuous Functions of Selfadjoint Operators in Hilbert Spaces

Year 2024, , 1 - 14, 03.05.2024
https://doi.org/10.47087/mjm.1362713

Abstract

Let H be a Hilbert space. Assume that f is continuously differentiable on I with ‖f′‖_{I,∞}:=sup_{t∈I}|f′(t)|<∞ and A, B are selfadjoint operators with Sp(A), Sp(B)⊂I, then

‖f((1-λ)A⊗1+λ1⊗B)-∫₀¹f((1-u)A⊗1+u1⊗B)du‖
≤‖f′‖_{I,∞}[(1/4)+(λ-(1/2))²]‖1⊗B-A⊗1‖

for λ∈[0,1]. In particular, we have the midpoint inequality

‖f(((A⊗1+1⊗B)/2))-∫₀¹f((1-u)A⊗1+u1⊗B)du‖
≤(1/4)‖f′‖_{I,∞}‖1⊗B-A⊗1‖.

References

  • T. Ando, Concavity of certain maps on positive definite matrices and applications to Hadamard products, Lin. Alg. & Appl. 26 (1979), 203-241.
  • H. Araki and F. Hansen, Jensen's operator inequality for functions of several variables, Proc. Amer. Math. Soc. 128 (2000), No. 7, 2075-2084.
  • J. S. Aujila and H. L. Vasudeva, Inequalities involving Hadamard product and operator means, Math. Japon. 42 (1995), 265-272.
  • N. S. Barnett, P. Cerone and S. S. Dragomir, Some new inequalities for Hermite-Hadamard divergence in information theory. in Stochastic Analysis and Applications. Vol. 3, 7-19, Nova Sci. Publ., Hauppauge, NY, 2003. Preprint RGMIA Res. Rep. Coll. 5 (2002), No. 4, Art. 8, 11 pp. [Online https://rgmia.org/papers/v5n4/NIHHDIT.pdf]
  • S. S. Dragomir, Bounds for the normalized Jensen functional, Bull. Austral. Math. Soc. 74(3)(2006), 417-478.
  • S. S. Dragomir, Some tensorial Hermite-Hadamard type inequalities for convex functions of selfadjoint operators in Hilbert spaces, Preprint RGMIA Res. Rep. Coll. 25 (2022), Art. 90, 14 pp. [Online https://rgmia.org/papers/v25/v25a90.pdf]
  • A. Koranyi. On some classes of analytic functions of several variables. Trans. Amer. Math. Soc., 101 (1961), 520ñ554.
  • A. Ebadian, I. Nikoufar and M. E. Gordji, Perspectives of matrix convex functions, Proc. Natl. Acad. Sci. USA, 108 (2011), no. 18, 7313-7314.
  • J. I. Fujii, The Marcus-Khan theorem for Hilbert space operators. Math. Jpn. 41 (1995), 531-535.
  • T. Furuta, J. Micic Hot, J. Pecaric and Y. Seo, Mond-Pecaric Method in Operator Inequalities. Inequalities for Bounded Selfadjoint Operators on a Hilbert Space, Element, Zagreb, 2005.
  • K. Kitamura and Y. Seo, Operator inequalities on Hadamard product associated with Kadison's Schwarz inequalities, Scient. Math. 1 (1998), No. 2, 237-241.
  • I. Nikoufar and M. Shamohammadi, The converse of the Loewner-Heinz inequality via perspective, Lin. & Multilin. Alg., 66 (2018), N0. 2, 243-249.
  • A. Ostrowski, Über die Absolutabweichung einer differentienbaren Funktionen von ihren Integralmittelwert, Comment. Math. Hel, 10 (1938), 226-227.
  • S. Wada, On some refinement of the Cauchy-Schwarz Inequality, Lin. Alg. & Appl. 420 (2007), 433-440.
There are 14 citations in total.

Details

Primary Language English
Subjects Approximation Theory and Asymptotic Methods
Journal Section Articles
Authors

Sever Dragomır 0000-0003-2902-6805

Early Pub Date February 15, 2024
Publication Date May 3, 2024
Acceptance Date November 23, 2023
Published in Issue Year 2024

Cite

APA Dragomır, S. (2024). An Ostrowski Type Tensorial Norm Inequality for Continuous Functions of Selfadjoint Operators in Hilbert Spaces. Maltepe Journal of Mathematics, 6(1), 1-14. https://doi.org/10.47087/mjm.1362713
AMA Dragomır S. An Ostrowski Type Tensorial Norm Inequality for Continuous Functions of Selfadjoint Operators in Hilbert Spaces. Maltepe Journal of Mathematics. May 2024;6(1):1-14. doi:10.47087/mjm.1362713
Chicago Dragomır, Sever. “An Ostrowski Type Tensorial Norm Inequality for Continuous Functions of Selfadjoint Operators in Hilbert Spaces”. Maltepe Journal of Mathematics 6, no. 1 (May 2024): 1-14. https://doi.org/10.47087/mjm.1362713.
EndNote Dragomır S (May 1, 2024) An Ostrowski Type Tensorial Norm Inequality for Continuous Functions of Selfadjoint Operators in Hilbert Spaces. Maltepe Journal of Mathematics 6 1 1–14.
IEEE S. Dragomır, “An Ostrowski Type Tensorial Norm Inequality for Continuous Functions of Selfadjoint Operators in Hilbert Spaces”, Maltepe Journal of Mathematics, vol. 6, no. 1, pp. 1–14, 2024, doi: 10.47087/mjm.1362713.
ISNAD Dragomır, Sever. “An Ostrowski Type Tensorial Norm Inequality for Continuous Functions of Selfadjoint Operators in Hilbert Spaces”. Maltepe Journal of Mathematics 6/1 (May 2024), 1-14. https://doi.org/10.47087/mjm.1362713.
JAMA Dragomır S. An Ostrowski Type Tensorial Norm Inequality for Continuous Functions of Selfadjoint Operators in Hilbert Spaces. Maltepe Journal of Mathematics. 2024;6:1–14.
MLA Dragomır, Sever. “An Ostrowski Type Tensorial Norm Inequality for Continuous Functions of Selfadjoint Operators in Hilbert Spaces”. Maltepe Journal of Mathematics, vol. 6, no. 1, 2024, pp. 1-14, doi:10.47087/mjm.1362713.
Vancouver Dragomır S. An Ostrowski Type Tensorial Norm Inequality for Continuous Functions of Selfadjoint Operators in Hilbert Spaces. Maltepe Journal of Mathematics. 2024;6(1):1-14.

Creative Commons License
The published articles in MJM are licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.

ISSN 2667-7660