Research Article
BibTex RIS Cite
Year 2021, Issue: 2, 52 - 59, 30.10.2021
https://doi.org/10.47087/mjm.883671

Abstract

References

  • [1] E. Bohn, Semi-topological groups, The American Mathematical Monthly, 72 (9) (1965) 996- 998.
  • [2] M. S. Bosan and M. D. Khan, On quasi irresolute and semi Irr-topological groups, Afinidad, 80 (574) (2014) 1241-1252.
  • [3] M. S. Bosan, M. D. Khan and L. DR. Koˇcinac, On s-topological groups, Mathematica Moravica, 80 (2) (2014), 35-44.
  • [4] S. G. Crossley, SK. Hildebrand, Semi-topological properties, Fundamenta Mathematicae, 74 (3) (1972) 233-254.
  • [5] M. D. Khan and M. S. Bosan, A note on s-topological groups, Life Sci. J., 11 (2014) 370-374.
  • [6] JP. Lee, On semi-homeomorphisms, International Journal of Mathematics and Mathematical Sciences, 13 (1990) 129-134.
  • [7] N. Levine, Semi-open sets and semi-continuity in topological spaces, The American Mathematical Monthly, 70 (1) (1963) 36-41.
  • [8] James R Munkres, Topology, Prentice Hall Upper Saddle River, NJ, (2000).
  • [9] O. Njastad, On some classes of nearly open sets, Pacific Journal of Mathematics, 15 (3) (1965) 961-970.
  • [10] R. Noreen, M. S. Bosan and M. D. Khan, Semi-quotient mappings and spaces, Open Mathematics, 14 (1)(2016) 1014-1022.
  • [11] C. W. Patty, Foundations of topology, Jones and Bartlett Learning, (2009).
  • [12] D. JS. Robinson, A course in the theory of groups, vol. 80, Springer Science and Business Media, (2012).
  • [13] R. Shen, Remarks on products of generalized topologies, Acta Mathematica Hungarica, 124 (4) (2009) 363-369.
  • [14] A. Siab, L. DR. Koˇcinac and M. D. Khan, Irresolute-topological groups, Mathematica Moravica, 19 (1) (2015) 73-80.

More on semi quotient mappings and spaces

Year 2021, Issue: 2, 52 - 59, 30.10.2021
https://doi.org/10.47087/mjm.883671

Abstract

A mathematical discipline assembling the topology and group is called the topological group. This discipline has very significant applications in almost all branches of natural sciences. In our arrangement operations of multiplicity and inverse on the continuity and its general forms will be discussed. The study of this weaker form of continuity with topological groups started in 1990s. Twenty-thirty years ago more interesting results relating to the discipline discussed in literature. In our paper, semi quotient mappings and spaces properties are developed by the change of topology where the notion of semi quotient topology built the interest. Results describes the more interest in our work with the contribution of extremally disconnected concept where the quotient space J/N with this topology sτQ has surprisingly moved to an s−topological group.

References

  • [1] E. Bohn, Semi-topological groups, The American Mathematical Monthly, 72 (9) (1965) 996- 998.
  • [2] M. S. Bosan and M. D. Khan, On quasi irresolute and semi Irr-topological groups, Afinidad, 80 (574) (2014) 1241-1252.
  • [3] M. S. Bosan, M. D. Khan and L. DR. Koˇcinac, On s-topological groups, Mathematica Moravica, 80 (2) (2014), 35-44.
  • [4] S. G. Crossley, SK. Hildebrand, Semi-topological properties, Fundamenta Mathematicae, 74 (3) (1972) 233-254.
  • [5] M. D. Khan and M. S. Bosan, A note on s-topological groups, Life Sci. J., 11 (2014) 370-374.
  • [6] JP. Lee, On semi-homeomorphisms, International Journal of Mathematics and Mathematical Sciences, 13 (1990) 129-134.
  • [7] N. Levine, Semi-open sets and semi-continuity in topological spaces, The American Mathematical Monthly, 70 (1) (1963) 36-41.
  • [8] James R Munkres, Topology, Prentice Hall Upper Saddle River, NJ, (2000).
  • [9] O. Njastad, On some classes of nearly open sets, Pacific Journal of Mathematics, 15 (3) (1965) 961-970.
  • [10] R. Noreen, M. S. Bosan and M. D. Khan, Semi-quotient mappings and spaces, Open Mathematics, 14 (1)(2016) 1014-1022.
  • [11] C. W. Patty, Foundations of topology, Jones and Bartlett Learning, (2009).
  • [12] D. JS. Robinson, A course in the theory of groups, vol. 80, Springer Science and Business Media, (2012).
  • [13] R. Shen, Remarks on products of generalized topologies, Acta Mathematica Hungarica, 124 (4) (2009) 363-369.
  • [14] A. Siab, L. DR. Koˇcinac and M. D. Khan, Irresolute-topological groups, Mathematica Moravica, 19 (1) (2015) 73-80.
There are 14 citations in total.

Details

Primary Language English
Subjects Mathematical Sciences
Journal Section Articles
Authors

Muhammad Siddique Bosan

Publication Date October 30, 2021
Acceptance Date August 24, 2021
Published in Issue Year 2021 Issue: 2

Cite

APA Bosan, M. S. (2021). More on semi quotient mappings and spaces. Maltepe Journal of Mathematics, 3(2), 52-59. https://doi.org/10.47087/mjm.883671
AMA Bosan MS. More on semi quotient mappings and spaces. Maltepe Journal of Mathematics. October 2021;3(2):52-59. doi:10.47087/mjm.883671
Chicago Bosan, Muhammad Siddique. “More on Semi Quotient Mappings and Spaces”. Maltepe Journal of Mathematics 3, no. 2 (October 2021): 52-59. https://doi.org/10.47087/mjm.883671.
EndNote Bosan MS (October 1, 2021) More on semi quotient mappings and spaces. Maltepe Journal of Mathematics 3 2 52–59.
IEEE M. S. Bosan, “More on semi quotient mappings and spaces”, Maltepe Journal of Mathematics, vol. 3, no. 2, pp. 52–59, 2021, doi: 10.47087/mjm.883671.
ISNAD Bosan, Muhammad Siddique. “More on Semi Quotient Mappings and Spaces”. Maltepe Journal of Mathematics 3/2 (October 2021), 52-59. https://doi.org/10.47087/mjm.883671.
JAMA Bosan MS. More on semi quotient mappings and spaces. Maltepe Journal of Mathematics. 2021;3:52–59.
MLA Bosan, Muhammad Siddique. “More on Semi Quotient Mappings and Spaces”. Maltepe Journal of Mathematics, vol. 3, no. 2, 2021, pp. 52-59, doi:10.47087/mjm.883671.
Vancouver Bosan MS. More on semi quotient mappings and spaces. Maltepe Journal of Mathematics. 2021;3(2):52-9.

Creative Commons License
The published articles in MJM are licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.

ISSN 2667-7660