Effects of Chronic Oral Monosodium Glutamate Consumption on Naloxane-Induced Morphine Withdrawal in Infant Rats
Year 2022,
Volume: 6 Issue: 3, 378 - 384, 27.12.2022
Mahluga Jafarova Demirkapu
,
Berna Özen
,
Songül Özkula
,
Merve Yildiz
,
Hasan Temel
,
Sena Nur Kutluay
,
Mustafa Büyük
,
Melih Kilinc
,
Hasan Yananlı
Abstract
Aim: The aim of this study was to investigate chronic oral monosodium glutamate (MSG) consumption effects on symptoms of withdrawal, locomotor activity, and anxiety in morphine withdrawal syndrome induced by naloxone in infant rats.
Materials and Methods: Twelve 21-day-old male Wistar rats used in the study. Infant rats were given unlimited access to saline (control group) or MSG (MSG group) added to drinking water for 32 days. Withdrawal was induced by naloxone in morphine-dependent rats. Evaluation of withdrawal symptoms and anxiety were performed simultaneously with locomotor activity measurements.
Results: Withdrawal sings, such as jumping, wet dog shake, and weight loss; stereotypic, ambulatory, and vertical locomotor activity movements; central, peripheral, and total activities used in the assessment of anxiety in infant rats with naloxone-induced withdrawal syndrome that consumed oral MSG for 32 days were not different from the control group.
Conclusion: These findings obtained in our study indicate that chronic consumption of oral MSG in infant rats whose blood-brain barrier has not yet developed does not affect morphine dependence and naloxone-induced withdrawal. Further studies are needed to investigate the mechanism of action of orally administered MSG.
References
- 1. Pacifici GM. Metabolism and pharmacokinetics of morphine in neonates: A review. Clinics (Sao Paulo) 2016; 71: 474-480.
- 2. Demirkapu MJ, Yananli HR. Opium Alkaloids. In: Sharma K, Mishra K, Senapati KK, Danciu C, editors. Bioactive Compounds in Nutraceutical and Functional Food for Good Human Health [Internet]. London: IntechOpen; 2020 [cited 2022 Apr 18]. Available from: https://www.intechopen.com/chapters/71219.
- 3. Koob GF, Volkow ND. Neurobiology of addiction: a neurocircuitry analysis. Lancet Psychiatry 2016; 3: 760-773.
- 4. Jafarova Demirkapu M, Yananlı HR, Kaleli M, Sakalli HE, Gören MZ, Topkara B. The role of adenosine A1 receptors in the nucleus accumbens during morphine withdrawal. Clin Exp Pharmacol Physiol 2020; 47: 553-560.
- 5. Topkara B, Yananli HR, Sakallı E, Demirkapu MJ. Effects of Injection of Gamma-Aminobutyric Acid Agonists into the Nucleus Accumbens on Naloxone Induced Morphine Withdrawal. Pharmacol 2017; 100: 131-138.
- 6. Yananli H, Gören MZ, Berkman K, Aricioğlu F. Effect of agmatine on brain L-citrulline production during morphine withdrawal in rats: a microdialysis study in nucleus accumbens. Brain Res 2007; 1132: 51-58.
- 7. Demirkapu MJ, Yananlı HR, Akşahin E, Karabiber C, Günay P, Kekilli A et al. The effect of oral administration of monosodium glutamate on epileptogenesis in infant rats. Epileptic Disord 2020; 22: 195-201.
- 8. Kondoh T, Torii K. Brain activation by umami substances via gustatory and visceral signalling pathways and physiological significance. Biol Pharm Bull 2008; 31: 1827-1832.
- 9. McCool BA, Chappell AM. Using monosodium glutamate to initiate ethanol self-administration in inbred mouse strains. Addict Biol 2012; 17: 121-131.
- 10. Sudakov SK, Bogdanova NG, Alekseeva EV, Nazarova GA. Endogenous opioid dependence after intermittent use of glucose, sodium chloride, and monosodium glutamate solutions. Food Sci Nutr 2019; 7: 2842-2846.
- 11. Koyuncuoğlu H, Aricioğlu F, Dizdar Y. Effects of neonatal monosodium glutamate and aging on morphine dependence development. Pharmacol Biochem Behav 1992; 43: 341-345.
- 12. Özbeyli D, Gülhan R. Experimental Research Models Application Handbook, 1st Edition. Ankara: Ankara Nobel Tıp Kitabevleri, 2021, pp.164-165.
- 13. Marques-Carneiro JE, Faure JB, Cosquer B, Koning E, Ferrandon A, de Vasconcelos AP et al. Anxiety and locomotion in Genetic Absence Epilepsy Rats from Strasbourg (GAERS): inclusion of Wistar rats as a second control. Epilepsia 2014; 55: 1460-1468.
- 14. Onaolapo OJ, Aremu OS, Onaolapo AY. Monosodium glutamate-associated alterations in open field, anxiety-related and conditioned place preference behaviours in mice. Naunyn Schmiedebergs Arch Pharmacol 2017; 390: 677-689.
- 15. Tsurugizawa T, Torii K. Physiological roles of glutamate signaling in gut and brain function. Biol Pharm Bull 2010; 33: 1796-1799.
- 16. Colantuoni C, Rada P, McCarthy J, Patten C, Avena NM, Chadeayne A et al. Evidence that intermittent, excessive sugar intake causes endogenous opioid dependence. Obes Res 2002; 10: 478-488.
- 17. Kondoh T, Mallick HN, Torii K. Activation of the gut-brain axis by dietary glutamate and physiologic significance in energy homeostasis. Am J Clin Nutr 2009; 90: 832S-837S.
- 18. Zanfirescu A, Ungurianu A, Tsatsakis AM, Nițulescu GM, Kouretas D, Veskoukis A et al. A review of the alleged health hazards of monosodium glutamate. Compr Rev Food Sci Food Saf 2019; 18: 1111-1134.
- 19. Fernstrom JD. Monosodium Glutamate in the Diet Does Not Raise Brain Glutamate Concentrations or Disrupt Brain Functions. Ann Nutr Metab 2018; 73: 43-52.
- 20. Meldrum BS. Glutamate as a neurotransmitter in the brain: review of physiology and pathology. J Nutr 2000; 130: 1007S-1015S.
- 21. Bechtholt-Gompf AJ, Walther HV, Adams MA, Carlezon WA Jr, Ongür D, Cohen BM. Blockade of astrocytic glutamate uptake in rats induces signs of anhedonia and impaired spatial memory. Neuropsychopharmacol 2010; 35: 2049-2059.
- 22. Blood FR, Oser BL, White PL, Olney JW. Monosodium glutamate. Science 1969; 165: 1028-1029.
- 23. Zarrindast MR, Habibi M, Borzabadi S, Fazli-Tabaei S, Hossein Yahyavi S, Rostamin P. The effects of dopamine receptor agents on naloxone-induced jumping behaviour in morphine-dependent mice. Eur J Pharmacol 2002; 451: 287-293.
- 24. Bedard P, Pycock CJ. ‘Wet-Dog’ shake behaviour in the rat: A possible quantitative model of central 5-hydroxytryptamine activity. Neuropharmacol 1977; 16: 663-670.
- 25. Sepúlveda J, Astorga JG, Contreras E. Riluzole decreases the abstinence syndrome and physical dependence in morphine dependent mice. Eur J Pharmacol 1999; 379: 59-62.
- 26. McLemore GL, Kest B, Inturrisi CE. The effects of LY293558, an AMPA receptor antagonist, on acute and chronic morphine dependence. Brain Res 1997; 778: 120-126.
- 27. Belozertseva IV, Danysz W, Bespalov AY. Short-acting NMDA receptor antagonist MRZ 2/576 produces prolonged suppression of morphine withdrawal in mice. Naunyn Schmiedebergs Arch Pharmacol 2000; 361: 279-282.
- 28. Isaacson RL, Lanthorn TH. Hippocampal involvement in the pharmacologic induction of withdrawal-like behaviors. Fed Proc 1981; 40: 1508-1512.
- 29. Adams RE, Wooten GF. Dependence and withdrawal following intracerebroventricular and systemic morphine administration: functional anatomy and behavior. Brain Res 1990; 518: 6-10.
- 30. Meissner W, Schmidt U, Hartmann M, Kath R, Reinhart K. Oral naloxone reverses opioid-associated constipation. Pain 2000; 84: 105-109.
- 31. Druhan JP, Walters CL, Aston-Jones G. Behavioral activation induced by D(2)-like receptor stimulation during opiate withdrawal. J Pharmacol Exp Ther 2000; 294: 531-538.
- 32. Lee JM, DeLeon-Jones F, Fields JZ, Ritzmann RF. Cyclo (Leu-Gly) attenuates the striatal dopaminergic supersensitivity induced by chronic morphine. Alcohol Drug Res 1987; 7: 1-10.
- 33. Hamlin AS, McNally GP, Westbrook RF, Osborne PB. Induction of Fos proteins in regions of the nucleus accumbens and ventrolateral striatum correlates with catalepsy and stereotypic behaviours induced by morphine. Neuropharmacology 2009; 56: 798-807.
- 34. Kiss P, Hauser D, Tamás A, Lubics A, Rácz B, Horvath ZS et al. Changes in open-field activity and novelty-seeking behavior in periadolescent rats neonatally treated with monosodium glutamate. Neurotox Res 2007; 12: 85-93.
- 35. Onaolapo OJ, Onaolapo AY. Acute low dose monosodium glutamate retards novelty induced behaviours in male Swiss albino mice. J Neurosci Behav Health 2011; 3: 51-56.
- 36. Shivasharan BD, Nagakannan P, Thippeswamy BS, Veerapur VP. Protective Effect of Calendula officinalis L. Flowers Against Monosodium Glutamate Induced Oxidative Stress and Excitotoxic Brain Damage in Rats. Indian J Clin Biochem 2013; 28: 292-298.
- 37. Onaolapo AY, Olawore OI, Yusuf FO, Adeyemo AM, Adewole IO, Onaolapo OJ. Oral monosodium glutamate administration differentially affects novelty induced behaviours, behavioural despair and place preference in male and female mice. Curr Psychopharmacol 2019; 8: 130-145.
- 38. Onaolapo OJ, Onaolapo AY, Akanmu MA, Olayiwola G. Foraging enrichment modulates open field response to monosodium glutamate in mice. Ann Neurosci 2015; 22: 162-170.
- 39. Onaolapo AY, Odetunde I, Akintola AS, Ogundeji MO, Ajao A, Obelawo AY et al. Dietary composition modulates impact of food-added monosodium glutamate on behaviour, metabolic status and cerebral cortical morphology in mice. Biomed Pharmacother 2019; 109: 417-428.
- 40. Seibenhener ML, Wooten MC. Use of the Open Field Maze to measure locomotor and anxiety-like behavior in mice. J Vis Exp 2015; e52434.
- 41. Narayanan SN, Kumar RS, Paval J, Nayak S. Effect of ascorbic acid on the monosodium glutamate-induced neurobehavioral changes in periadolescent rats. Bratisl Lek Listy 2010; 111: 247-252.
- 42. Onaolapo OJ, Onaolapo AY, Mosaku TJ, Onigbinde OA, Oyedele RA. Elevated plus maze and Y-maze behavioural effects of subchronic, oral low dose monosodium glutamate in Swiss albino mice. IOSR J. Pharm Biol Sci 2012; 3: 21-27.
- 43. Vitor-de-Lima SM, Medeiros LB, Benevides RDL, Dos Santos CN, Lima da Silva NO, Guedes RCA. Monosodium glutamate and treadmill exercise: Anxiety-like behavior and spreading depression features in young adult rats. Nutr Neurosci 2019; 22: 435-443.
- 44. Mesripour A, Kadiva M, Hajhashemi V. Monosodium glutamate influences depressive behaviours of two age groups of mice in forced swim test: vitamin B could remedy the situation. Per Med 2019; 15-16: 28-32.
Kronik Monosodyum Glutamat Tüketiminin Yavru Sıçanlarda Naloksonla Tetiklenen Morfin Yoksunluğu Üzerine Etkileri
Year 2022,
Volume: 6 Issue: 3, 378 - 384, 27.12.2022
Mahluga Jafarova Demirkapu
,
Berna Özen
,
Songül Özkula
,
Merve Yildiz
,
Hasan Temel
,
Sena Nur Kutluay
,
Mustafa Büyük
,
Melih Kilinc
,
Hasan Yananlı
Abstract
Amaç: Bu çalışmanın amacı yavru sıçanlarda ağızdan kronik monosodium glutamate (MSG) tüketiminin naloksonla tetiklenmiş morfin yoksunluk sendromunda yoksunluk bulguları, lokomotor aktivite ve kaygı üzerine etkilerinin araştırılmaktır.
Gereç ve Yöntemler: Çalışmada on iki adet 21 günlük erkek Wistar sıçan kullanılmıştır. Yavru sıçanların içme suyuna ilave edilen salin (kontrol grubu) veya MSG’e (MSG grubu) 32 gün boyunca sınırsız erişimleri sağlandı. Morfin bağımlılığı geliştirilen hayvanlarda yoksunluk nalokson ile tetiklendi. Yoksunluk bulgularının ve kaygının değerlendirmesi lokomotor aktivite ölçümleri ile eşzamanlı yapıldı.
Bulgular: 32 gün boyunca ağızdan MSG tüketen sıçanlarda naloksonla tetiklenen yoksunluk sendromunda zıplama, ıslak köpek silkinmesi ve kilo kaybı gibi yoksunluk bulguları; stereotipik, ambulatuvar ve vertikal lokomotor aktivite hareketleri ve kaygının değerlendirilmesinde kullanılan santral, periferik ve total aktiviteler kontrol grubundan farklı değildi.
Sonuç: Çalışmamızda elde edilen bu bulgular MSG’ın kan-beyin bariyeri henüz gelişmeyen yavru sıçanlarda kronik oral tüketiminin morfin bağımlılığını ve naloksonla tetiklenen yoksunluğunu etkilemediğine işaret etmektedir. Ağızdan alınan MSG’ın etki mekanizmasının araştırması için daha ileri çalışmalara ihtiyaç vardır.
References
- 1. Pacifici GM. Metabolism and pharmacokinetics of morphine in neonates: A review. Clinics (Sao Paulo) 2016; 71: 474-480.
- 2. Demirkapu MJ, Yananli HR. Opium Alkaloids. In: Sharma K, Mishra K, Senapati KK, Danciu C, editors. Bioactive Compounds in Nutraceutical and Functional Food for Good Human Health [Internet]. London: IntechOpen; 2020 [cited 2022 Apr 18]. Available from: https://www.intechopen.com/chapters/71219.
- 3. Koob GF, Volkow ND. Neurobiology of addiction: a neurocircuitry analysis. Lancet Psychiatry 2016; 3: 760-773.
- 4. Jafarova Demirkapu M, Yananlı HR, Kaleli M, Sakalli HE, Gören MZ, Topkara B. The role of adenosine A1 receptors in the nucleus accumbens during morphine withdrawal. Clin Exp Pharmacol Physiol 2020; 47: 553-560.
- 5. Topkara B, Yananli HR, Sakallı E, Demirkapu MJ. Effects of Injection of Gamma-Aminobutyric Acid Agonists into the Nucleus Accumbens on Naloxone Induced Morphine Withdrawal. Pharmacol 2017; 100: 131-138.
- 6. Yananli H, Gören MZ, Berkman K, Aricioğlu F. Effect of agmatine on brain L-citrulline production during morphine withdrawal in rats: a microdialysis study in nucleus accumbens. Brain Res 2007; 1132: 51-58.
- 7. Demirkapu MJ, Yananlı HR, Akşahin E, Karabiber C, Günay P, Kekilli A et al. The effect of oral administration of monosodium glutamate on epileptogenesis in infant rats. Epileptic Disord 2020; 22: 195-201.
- 8. Kondoh T, Torii K. Brain activation by umami substances via gustatory and visceral signalling pathways and physiological significance. Biol Pharm Bull 2008; 31: 1827-1832.
- 9. McCool BA, Chappell AM. Using monosodium glutamate to initiate ethanol self-administration in inbred mouse strains. Addict Biol 2012; 17: 121-131.
- 10. Sudakov SK, Bogdanova NG, Alekseeva EV, Nazarova GA. Endogenous opioid dependence after intermittent use of glucose, sodium chloride, and monosodium glutamate solutions. Food Sci Nutr 2019; 7: 2842-2846.
- 11. Koyuncuoğlu H, Aricioğlu F, Dizdar Y. Effects of neonatal monosodium glutamate and aging on morphine dependence development. Pharmacol Biochem Behav 1992; 43: 341-345.
- 12. Özbeyli D, Gülhan R. Experimental Research Models Application Handbook, 1st Edition. Ankara: Ankara Nobel Tıp Kitabevleri, 2021, pp.164-165.
- 13. Marques-Carneiro JE, Faure JB, Cosquer B, Koning E, Ferrandon A, de Vasconcelos AP et al. Anxiety and locomotion in Genetic Absence Epilepsy Rats from Strasbourg (GAERS): inclusion of Wistar rats as a second control. Epilepsia 2014; 55: 1460-1468.
- 14. Onaolapo OJ, Aremu OS, Onaolapo AY. Monosodium glutamate-associated alterations in open field, anxiety-related and conditioned place preference behaviours in mice. Naunyn Schmiedebergs Arch Pharmacol 2017; 390: 677-689.
- 15. Tsurugizawa T, Torii K. Physiological roles of glutamate signaling in gut and brain function. Biol Pharm Bull 2010; 33: 1796-1799.
- 16. Colantuoni C, Rada P, McCarthy J, Patten C, Avena NM, Chadeayne A et al. Evidence that intermittent, excessive sugar intake causes endogenous opioid dependence. Obes Res 2002; 10: 478-488.
- 17. Kondoh T, Mallick HN, Torii K. Activation of the gut-brain axis by dietary glutamate and physiologic significance in energy homeostasis. Am J Clin Nutr 2009; 90: 832S-837S.
- 18. Zanfirescu A, Ungurianu A, Tsatsakis AM, Nițulescu GM, Kouretas D, Veskoukis A et al. A review of the alleged health hazards of monosodium glutamate. Compr Rev Food Sci Food Saf 2019; 18: 1111-1134.
- 19. Fernstrom JD. Monosodium Glutamate in the Diet Does Not Raise Brain Glutamate Concentrations or Disrupt Brain Functions. Ann Nutr Metab 2018; 73: 43-52.
- 20. Meldrum BS. Glutamate as a neurotransmitter in the brain: review of physiology and pathology. J Nutr 2000; 130: 1007S-1015S.
- 21. Bechtholt-Gompf AJ, Walther HV, Adams MA, Carlezon WA Jr, Ongür D, Cohen BM. Blockade of astrocytic glutamate uptake in rats induces signs of anhedonia and impaired spatial memory. Neuropsychopharmacol 2010; 35: 2049-2059.
- 22. Blood FR, Oser BL, White PL, Olney JW. Monosodium glutamate. Science 1969; 165: 1028-1029.
- 23. Zarrindast MR, Habibi M, Borzabadi S, Fazli-Tabaei S, Hossein Yahyavi S, Rostamin P. The effects of dopamine receptor agents on naloxone-induced jumping behaviour in morphine-dependent mice. Eur J Pharmacol 2002; 451: 287-293.
- 24. Bedard P, Pycock CJ. ‘Wet-Dog’ shake behaviour in the rat: A possible quantitative model of central 5-hydroxytryptamine activity. Neuropharmacol 1977; 16: 663-670.
- 25. Sepúlveda J, Astorga JG, Contreras E. Riluzole decreases the abstinence syndrome and physical dependence in morphine dependent mice. Eur J Pharmacol 1999; 379: 59-62.
- 26. McLemore GL, Kest B, Inturrisi CE. The effects of LY293558, an AMPA receptor antagonist, on acute and chronic morphine dependence. Brain Res 1997; 778: 120-126.
- 27. Belozertseva IV, Danysz W, Bespalov AY. Short-acting NMDA receptor antagonist MRZ 2/576 produces prolonged suppression of morphine withdrawal in mice. Naunyn Schmiedebergs Arch Pharmacol 2000; 361: 279-282.
- 28. Isaacson RL, Lanthorn TH. Hippocampal involvement in the pharmacologic induction of withdrawal-like behaviors. Fed Proc 1981; 40: 1508-1512.
- 29. Adams RE, Wooten GF. Dependence and withdrawal following intracerebroventricular and systemic morphine administration: functional anatomy and behavior. Brain Res 1990; 518: 6-10.
- 30. Meissner W, Schmidt U, Hartmann M, Kath R, Reinhart K. Oral naloxone reverses opioid-associated constipation. Pain 2000; 84: 105-109.
- 31. Druhan JP, Walters CL, Aston-Jones G. Behavioral activation induced by D(2)-like receptor stimulation during opiate withdrawal. J Pharmacol Exp Ther 2000; 294: 531-538.
- 32. Lee JM, DeLeon-Jones F, Fields JZ, Ritzmann RF. Cyclo (Leu-Gly) attenuates the striatal dopaminergic supersensitivity induced by chronic morphine. Alcohol Drug Res 1987; 7: 1-10.
- 33. Hamlin AS, McNally GP, Westbrook RF, Osborne PB. Induction of Fos proteins in regions of the nucleus accumbens and ventrolateral striatum correlates with catalepsy and stereotypic behaviours induced by morphine. Neuropharmacology 2009; 56: 798-807.
- 34. Kiss P, Hauser D, Tamás A, Lubics A, Rácz B, Horvath ZS et al. Changes in open-field activity and novelty-seeking behavior in periadolescent rats neonatally treated with monosodium glutamate. Neurotox Res 2007; 12: 85-93.
- 35. Onaolapo OJ, Onaolapo AY. Acute low dose monosodium glutamate retards novelty induced behaviours in male Swiss albino mice. J Neurosci Behav Health 2011; 3: 51-56.
- 36. Shivasharan BD, Nagakannan P, Thippeswamy BS, Veerapur VP. Protective Effect of Calendula officinalis L. Flowers Against Monosodium Glutamate Induced Oxidative Stress and Excitotoxic Brain Damage in Rats. Indian J Clin Biochem 2013; 28: 292-298.
- 37. Onaolapo AY, Olawore OI, Yusuf FO, Adeyemo AM, Adewole IO, Onaolapo OJ. Oral monosodium glutamate administration differentially affects novelty induced behaviours, behavioural despair and place preference in male and female mice. Curr Psychopharmacol 2019; 8: 130-145.
- 38. Onaolapo OJ, Onaolapo AY, Akanmu MA, Olayiwola G. Foraging enrichment modulates open field response to monosodium glutamate in mice. Ann Neurosci 2015; 22: 162-170.
- 39. Onaolapo AY, Odetunde I, Akintola AS, Ogundeji MO, Ajao A, Obelawo AY et al. Dietary composition modulates impact of food-added monosodium glutamate on behaviour, metabolic status and cerebral cortical morphology in mice. Biomed Pharmacother 2019; 109: 417-428.
- 40. Seibenhener ML, Wooten MC. Use of the Open Field Maze to measure locomotor and anxiety-like behavior in mice. J Vis Exp 2015; e52434.
- 41. Narayanan SN, Kumar RS, Paval J, Nayak S. Effect of ascorbic acid on the monosodium glutamate-induced neurobehavioral changes in periadolescent rats. Bratisl Lek Listy 2010; 111: 247-252.
- 42. Onaolapo OJ, Onaolapo AY, Mosaku TJ, Onigbinde OA, Oyedele RA. Elevated plus maze and Y-maze behavioural effects of subchronic, oral low dose monosodium glutamate in Swiss albino mice. IOSR J. Pharm Biol Sci 2012; 3: 21-27.
- 43. Vitor-de-Lima SM, Medeiros LB, Benevides RDL, Dos Santos CN, Lima da Silva NO, Guedes RCA. Monosodium glutamate and treadmill exercise: Anxiety-like behavior and spreading depression features in young adult rats. Nutr Neurosci 2019; 22: 435-443.
- 44. Mesripour A, Kadiva M, Hajhashemi V. Monosodium glutamate influences depressive behaviours of two age groups of mice in forced swim test: vitamin B could remedy the situation. Per Med 2019; 15-16: 28-32.