Research Article
BibTex RIS Cite

Ellagic Acid Administration on DNA Damage and Some Kidney Function Parameters in BPA-Induced Kidney Damage in Rats

Year 2024, Volume: 8 Issue: 1, 58 - 66, 28.04.2024
https://doi.org/10.29058/mjwbs.1444988

Abstract

Aim: Bisphenols (BPs) are potential hormone disruptors which the general population is exposed in many commonly used products.
Bisphenol A (BPA) is an industrial chemical that has been used for many years in the production of some plastics and resins, despite its
adverse effects on the body's metabolic systems. One of the most important organs affected by toxic agents such as BPA and also from
environmental pollutants is the kidneys. Ellagic acid (EA) is a phytochemical polyphenol compound, and many studies report that EA exhibits
antioxidant, anti-mutagenic, anti-cancer and anti-apoptotic properties. The aim of this study is to reveal the effect of EA on BPA-induced
kidney damage.
Material and Methods: In this study, 24 male rats were divided into four groups as Control, BPA (25mg/kg for 30 days), EA (10/mg/kg
for 30 days) and BPA+EA (25mg-10mg/kg for 30 days, respectively) (n=6). At the end of the study, the weights of kidneys taken from
decapitated rats and blood urea nitrogen (BUN) and creatinine values were measured from the serum. In addition, Picro Sirius Red staining
was performed to reveal the general histological appearance of the kidneys, and immunohistochemical staining was performed using
8-hydroxydeoxyguanosine antibody to reveal the DNA damage occurring in the tissues.
Results: It was observed that the absolute and relative weights of the left kidney increased in the groups where BPA was induced, and
decreased in the BPA+EA group, similar to the control group. It was determined that blood urea nitrogen (BUN) and creatinine values
increased significantly in the BPA group compared to the control group, while the values decreased in the BPA+EA group. As a result of
staining with 8-hydroxydeoxyguanosine antibody in the glomerulus and tubule structures of the kidney tissues taken from the BPA-induced
group, intense positivity, degeneration and vacuolization in the glomerulus structure, some regional necrosis areas and deterioration of the
tubule structures were observed, while very few stained areas were observed in the EA and control groups, similar to each other. In the
group where BPA and EA were used together, protection of the tissues was observed in both the glomerulus structure and tubule structures
compared to the group where BPA was used alone, and less retention of 8-hydroxydeoxyguanosine was observed.
Conclusion: It has been concluded that the possible damage to kidney tissue caused by BPA, which individuals from all segments of society
may be exposed to, can be reduced by using EA supplements.

References

  • 1. Semerjian L, Alawadhi N, Nazer K. Detection of bisphenol A in thermal paper receipts and assessment of human exposure: A case study from Sharjah, United Arab Emirates. PloS One 2023;18(3):1-11.
  • 2. Makowska K, Gonkowski S. Changes Caused by Bisphenols in the Chemical Coding of Neurons of the Enteric Nervous System of Mouse Stomach. Int J of Env Res and Public Health 2023;20(6):1-14.
  • 3. Fu W, Zheng X, Chen X, Wang W, Liu A, Ji J, Wang G, Guan C. The potential roles of carotenoids in enhancing phytoremediation of bisphenol A contaminated soil by promoting plant physiology and modulating rhizobacterial community of tobacco. Chemosphere 2023;316:1-13.
  • 4. Sendra M, Štampar M, Fras K, Novoa B, Figueras A, Žegura B. Adverse (geno)toxic effects of bisphenol A and its analogues in hepatic 3D cell model. Environ Int 2023;171:107721.
  • 5. Sturm DC, Virant-Klun I. Negative effects of endocrine disruptor bisphenol A on ovarian granulosa cells and the protective role of folic acid. Reproduction 2023;165(5):R117-R134.
  • 6. Yadav SK, Bijalwan V, Yadav S, Sarkar K, Das S, Singh DP. Susceptibility of male reproductive system to bisphenol A, an endocrine disruptor: Updates from epidemiological and experimental evidence. Jour of Bioch and Mol Tox 2023;37(4): e23292.
  • 7. Liu J, Kong W, Liu, Y, Ma Q, Shao Q, Zeng L, Chao Y, Song X, Zhang J. Stage-related neurotoxicity of BPA in the development of zebrafish embryos. Toxics 2023;11 (2):177-189.
  • 8. Zhu Z, Wang Z, Wang J, Cao Q, Yang H, Zhang Y. Transcriptomic analysis of lipid metabolism in zebrafish offspring of parental long-term exposure to bisphenol A. Env Sci and Poll Res 2023;30(18): 51654-51664.
  • 9. Varma S, Molangiri A, Kona SR, Ibrahim A, Duttaroy AK, Basak S. Fetal exposure to endocrine disrupting-bisphenol A (BPA) alters testicular fatty acid metabolism in the adult offspring: relevance to sperm maturation and quality. Int Jour of Mol Sci 2023;24(4):3769.
  • 10. Fan X, Wang Y, Zhang J, Lin H, Bai Z, Li S. Bisphenol A Regulates the TNFR1 Pathway and Excessive ROS Mediated by miR-26a-5p/ADAM17 Axis to Aggravate Selenium Deficiency- Induced Necroptosis in Broiler Veins. Biol Trace Eem Res 2024;202(4):1722-1740.
  • 11. Badawy MM, Elsherbiny MM, Elshopakey GE, Elsayyad AE, Hamama MG, Aldariweesh, FH, Fehaid A. Potential Effects of Bisphenol A on the Heart and Coronary Artery of Adult Male Rats and the Possible Role of L-Carnitine. J Toxicol 2022;7760594.
  • 12. Tang Z, Wang H, Zhang Z, Kong Y, Lei X, Yuan J. Mechanism of nephrotoxicity induced by chronic exposure of bisphenol A in mice based on oxidative stress and cell apoptosis. Chinese Journal of Biotechnology 2023;39 (1):372-385.
  • 13. Pradhan LK, Sarangi P, Sahoo PK, Kundu S, Chauhan NR, Das SK. Bisphenol A-induced neurobehavioral transformation is associated with augmented monoamine oxidase activity and neurodegeneration in zebrafish brain. Env Toxic and Pharma 2023;97:104027.
  • 14. Alvi M, Rehman K, Akash MSH, Yaqoob A, Shoaib SM. Determination of Metabolomics Profiling in BPA-Induced Impaired Metabolism. Pharmaceutics 2022;14(11):2496.
  • 15. He W, Gao Z, Liu S, Tan L, Wu Y, Liu J, Zheng Z, Fan W, Luo Y, Chen Z. G protein-coupled estrogen receptor activation by bisphenol-A disrupts lipid metabolism and induces ferroptosis in the live. Env Poll 2023;334:122211.
  • 16. Murugan R, Haridevamuthu B, Kumar RS, Almutairi BO, Arokiyaraj S, Arockiaraj J. Deacetyl epoxyazadiradione ameliorates BPA-induced neurotoxicity by mitigating ROS and inflammatory markers in N9 cells and zebrafish larvae. Comp Biochem Physiol C Toxicol Pharmacol 2023;271:109692.
  • 17. Gowder SJ. Nephrotoxicity of bisphenol A (BPA)--an updated review. Curr Mol Pharmacol 2013;6(3):163-172.
  • 18. Chen H, Zhang Y, Zou M, Qi X, Xu S. Bisphenol A aggravates renal apoptosis and necroptosis in selenium-deficient chickens via oxidative stress and PI3K/AKT pathway. J Cell Physiol 2022;237(8):3292-3304.
  • 19. Pirard C, Sagot C, Deville M, Dubois N, Charlier C. Urinary levels of bisphenol A, triclosan and 4-nonylphenol in a general Belgian population. Environ Int 2012;48:78-83.
  • 20. Singh D, Khan MA, Akhtar K, Rehman S, Parveen S, Amin KMY, Siddique HR. Protective effects of a polyherbal medicine, Majoon Suranjan against bisphenol-A induced genetic, oxidative and tissue damages. Drug Chem Toxicol 2023;46(6):1057- 1069.
  • 21. Charaya A, Sahu C, Singla S, Jena G. Zinc Deficiency Exacerbates Bisphenol A-Induced Hepatic and Renal Damage: Delineation of Molecular Mechanisms. Biol Trace Elem Res. 2023;201(6):2879-2894.
  • 22. Zhao ZJ, Wu DJ, Lv DL, Zhang BD, Chen L, Sun YQ. Ellagic acid inhibits the formation of hypertrophic scars by suppressing TGF-β/Smad signaling pathway activity. Chem Biol Drug Des 2023;102(4):773-781.
  • 23. Abd-Elghany AA, Mohamad EA. Chitosan-Coated Niosomes Loaded with Ellagic Acid Present Antiaging Activity in a Skin Cell Line. ACS Omega 2023;8(19):16620-16629.
  • 24. Gour A, Kour D, Pandian R, Bhardwaj M, Sawant SD, Kumar A, Nandi U. Ellagic Acid Exerts Dual Action to Curb the Pathophysiological Manifestations of Sickle Cell Disease and Attenuate the Hydroxyurea-Induced Myelosuppression in Berkeley Mice. ACS Pharmacol Transl Sci 2023;6(6):868-877.
  • 25. Yu C, Naeem A, Liu Y, Guan Y. Ellagic Acid Inclusion Complex- Loaded Hydrogels as an Efficient Controlled Release System: Design, Fabrication and In Vitro Evaluation. J Funct Biomater 2023;14(5):278.
  • 26. Set T, Şahin EM. Birinci basamak hekimi için böbrek fonksiyon testleri. Sürekli Tıp Eğitimi Dergisi, 2003;12:344.
  • 27. Atmaca E, Aksoy A. Oksidatif DNA hasarı ve kromatografik yöntemlerle tespit edilmesi. Yüzüncü Yıl Üniversitesi Veteriner Fakültesi Dergisi 2009;20(2):79-83.
  • 28. Yılmaz HC, Yörük M. The Effects of Bisphenol A on the Distribution and Heterogeneity of Mast Cells in Rat Digestive Tract. Van Veterinary Journal 2022;33(3):122-129.
  • 29. Benincasa L, Mandalà M, Paulesu L ve ark. Prenatal Nutrition Containing Bisphenol A Affects Placenta Glucose Transfer: Evidence in Rats and Human Trophoblast. Nutrients 2020;12(5):1375.
  • 30. Acaroz U, Ince S, Arslan-Acaroz D, Gurler Z, Demirel HH, Kucukkurt I, Eryavuz A, Kara R, Varol N, Zhu K. Bisphenol-A induced oxidative stress, inflammatory gene expression, and metabolic and histopathological changes in male Wistar albino rats: protective role of boron. Toxicol Res (Camb). 2019;8(2):262- 269.
  • 31. Goudarzi M, Mombeini MA, Fatemi I, Aminzadeh A, Kalantari H, Nesari A, Najafzadehvarzi H, Mehrzadi S. Neuroprotective effects of Ellagic acid against acrylamide-induced neurotoxicity in rats. Neurol Res 2019;41(5):419-428.
  • 32. Bidanchi RM, Lalrindika L, Khushboo M, Bhanushree B, Dinata R, Das M, Nisa N, Lalrinzuali S, Manikandan B, Saeed-Ahmed L, Sanjeev S, Murthy MK, Roy VK, Gurusubramanian G. Antioxidative, anti-inflammatory and anti-apoptotic action of ellagic acid against lead acetate induced testicular and hepato-renal oxidative damages and pathophysiological changes in male Long Evans rats. Environ Pollut 2022;302:119048.
  • 33. Naghibi N, Sadeghi A, Movahedinia S, Rahimi Naiini M, Rajizadeh MA, Bahri F, Nazari-Robati M. Ellagic acid ameliorates aging-induced renal oxidative damage through upregulating SIRT1 and NRF2. BMC Complement Med Ther 2023;23(1):77.
  • 34. Struck MB, Andrutis KA, Ramirez HE, Battles AH. Effect of a short-term fast on ketamine-xylazine anesthesia in rats. J Am Assoc Lab Anim Sci 2011;50(3):344-348.
  • 35. Fedirko V, Bostick RM, Long Q, Flanders WD, McCullough ML, Sidelnikov E, Daniel CR, Rutherford RE, Shaukat A. Effects of supplemental vitamin D and calcium on oxidative DNA damage marker in normal colorectal mucosa: a randomized clinical trial. Cancer Epidemiol Biomarkers Prev 2010;19(1):280-291.
  • 36. O'Sullivan ED, Hughes J, Ferenbach DA. Renal Aging: Causes and Consequences. J Am Soc Nephrol 2017;28(2):407-420.
  • 37. Anet A, Olakkaran S, Kizhakke Purayil A, Hunasanahally Puttaswamygowda G. Bisphenol A induced oxidative stress mediated genotoxicity in Drosophila melanogaster. J Hazard Mater 2019;370:42-53.
  • 38. Beltifa A, Belaid A, Lo Turco V, Machreki M, Ben Mansour H, Di Bella G. Preliminary evaluation of plasticizer and BPA in Tunisian cosmetics and investigation of hazards on human skin cells. Int J Environ Health Res 2018;28(5):491-501.
  • 39. Yoo MH, Lee SJ, Kim W, Kim Y, Kim YB, Moon KS, Lee BS. Bisphenol A impairs renal function by reducing Na+/K+-ATPase and F-actin expression, kidney tubule formation in vitro and in vivo. Ecotoxicol Environ Saf 2022;246:114141.
  • 40. Nuñez P, Arguelles J, Perillan C. Effects of short-term exposure to low doses of bisphenol A on cellular senescence in the adult rat kidney. Histochem Cell Biol 2023;159(5):453-460.
  • 41. Saleh SMM, Mahmoud AB, Al-Salahy MB, Mohamed Moustafa FA. Morphological, immunohistochemical, and biochemical study on the ameliorative effect of gallic acid against bisphenol A-induced nephrotoxicity in male albino rats. Sci Rep 2023;13(1):1732.
  • 42. Koriem KMM. Fertaric acid amends bisphenol A-induced toxicity, DNA breakdown, and histopathological changes in the liver, kidney, and testis. World J Hepatol 2022;14(3):535-550.
  • 43. Nasri H. Ellagic acid protects against cisplatin-induced nephrotoxicity in rats: a dose-dependent study. Eur Rev Med Pharmacol Sci 2013;17(6):849-850.

Ratlarda BPA ile Oluşturulan Böbrek Hasarında Ellajik Asit Uygulamasının DNA Hasarı ve Bazı Böbrek Fonksiyon Parametreleri Üzerine Etkisi

Year 2024, Volume: 8 Issue: 1, 58 - 66, 28.04.2024
https://doi.org/10.29058/mjwbs.1444988

Abstract

Amaç: Bisfenoller (BP'ler), genel popülasyonun yaygın olarak kullandığı birçok üründe bulunan potansiyel
hormon bozuculardır. Bisfenol A (BPA) ise, vücudun metabolik sistemleri üzerindeki olumsuz
etkilerine rağmen, bazı plastik ve reçinelerin üretiminde uzun yıllardır kullanılan endüstriyel bir kimyasaldır.
BPA gibi toksik ajanlardan ve dolayısıyla çevresel kirleticilerden etkilenen en önemli organlardan
biri böbreklerdir. Ellajik asit (EA) fitokimyasal bir polifenol bileşiğidir ve yapılan birçok çalışmada EA’nın
antioksidan, anti-mutajenik, anti-kanser ve anti-apoptotik özellikler sergilediği rapor edilmektedir. Bu
çalışmanın amacı BPA ile indüklenen böbrek hasarı üzerine EA’nın etkisini ortaya koymaktır.
Gereç ve Yöntemler: Bu çalışmada 24 adet erkek rat, Kontrol, BPA (30 gün süreyle 25mg/kg), EA (30
gün süreyle 10 mg/kg) ve BPA+EA (30 gün süreyle sırasıyla 25mg-10mg/kg) olarak dört gruba ayrıldı
(n=6). Çalışma sonunda dekapite edilen ratlardan alınan böbreklerin ağırlıkları ile kan serumundan kan
üre nitrojeni (BUN) ve kreatinin değerleri ölçüldü. Bunun yanında böbreklerin genel histolojik görüntüsünü
ortaya koymak amacıyla Pikro Sirius Red boyaması, dokularda meydana gelen DNA hasarının ortaya
konulabilmesi amacıyla 8-hidroksideoksiguanozin antikoru kullanılarak immunohistokimyasal boyama
yapılmıştır.
Bulgular: Yapılan değerlendirme sonucunda sol böbreğe ait mutlak ve nispi ağırlığın BPA grubunda
artış gösterdiği, BPA+EA grubunda ise kontrole yaklaşarak düştüğü gözlenmiştir. Kan üre azotu (BUN)
ve kreatinin değerlerinde BPA grubunda kontrol grubuna göre ciddi artış olduğu görülmüş, BPA+EA
grubunda ise bu değerlerin azaldığı tespit edilmiştir. BPA kullanılan gruptan alınan böbrek dokularında
8-hidroksideoksiguanozin primer antikorunun glomerulus ve tubul yapılarında yoğun pozitif reaksiyon
verdiği, glomerulus yapısında dejenerasyon ve vakuolizasyon olduğu, bazı bölgesel nekroz alanları
bulunduğu ve tubul yapılarının bozulduğu gözlenmiştir. Buna karşın EA ve kontrol gruplarında birbirine
benzer şekilde oldukça az 8-hidroksideoksiguanozin pozitif alana rastlanmıştır. BPA ve EA’nın birlikte
kullanıldığı grupta ise gerek glomerulus yapısı gerek tubul yapılarında BPA’nın tek başına kullanıldığı
gruba göre düzelmeler görülürken 8- hidroksideoksiguanozin pozitif alanların azaldığı gözlenmiştir.
Sonuç: Toplumun her kesiminden bireylerin maruz kalma ihtimali olan BPA’nın böbrek dokusuna
vereceği muhtemel zararların, EA içeren gıda katkı maddeleri kullanılarak azaltılabileceği sonucuna
varılmıştır.

Ethical Statement

Makalemiz ile ilgili herhangi bir kurum, kuruluş, kişi ile mali çıkar çatışması yoktur ve yazarlar arasında çıkar çatışması bulunmamaktadır.

Supporting Institution

Bu araştırma kamu, ticari veya kar amacı gütmeyen sektörlerdeki finansman kuruluşlarından herhangi bir özel hibe almamıştır.

Thanks

Laboratuvar teknik desteği için Araş. Gör. Tansu KUŞAT’a teşekkürlerimizi sunarız.

References

  • 1. Semerjian L, Alawadhi N, Nazer K. Detection of bisphenol A in thermal paper receipts and assessment of human exposure: A case study from Sharjah, United Arab Emirates. PloS One 2023;18(3):1-11.
  • 2. Makowska K, Gonkowski S. Changes Caused by Bisphenols in the Chemical Coding of Neurons of the Enteric Nervous System of Mouse Stomach. Int J of Env Res and Public Health 2023;20(6):1-14.
  • 3. Fu W, Zheng X, Chen X, Wang W, Liu A, Ji J, Wang G, Guan C. The potential roles of carotenoids in enhancing phytoremediation of bisphenol A contaminated soil by promoting plant physiology and modulating rhizobacterial community of tobacco. Chemosphere 2023;316:1-13.
  • 4. Sendra M, Štampar M, Fras K, Novoa B, Figueras A, Žegura B. Adverse (geno)toxic effects of bisphenol A and its analogues in hepatic 3D cell model. Environ Int 2023;171:107721.
  • 5. Sturm DC, Virant-Klun I. Negative effects of endocrine disruptor bisphenol A on ovarian granulosa cells and the protective role of folic acid. Reproduction 2023;165(5):R117-R134.
  • 6. Yadav SK, Bijalwan V, Yadav S, Sarkar K, Das S, Singh DP. Susceptibility of male reproductive system to bisphenol A, an endocrine disruptor: Updates from epidemiological and experimental evidence. Jour of Bioch and Mol Tox 2023;37(4): e23292.
  • 7. Liu J, Kong W, Liu, Y, Ma Q, Shao Q, Zeng L, Chao Y, Song X, Zhang J. Stage-related neurotoxicity of BPA in the development of zebrafish embryos. Toxics 2023;11 (2):177-189.
  • 8. Zhu Z, Wang Z, Wang J, Cao Q, Yang H, Zhang Y. Transcriptomic analysis of lipid metabolism in zebrafish offspring of parental long-term exposure to bisphenol A. Env Sci and Poll Res 2023;30(18): 51654-51664.
  • 9. Varma S, Molangiri A, Kona SR, Ibrahim A, Duttaroy AK, Basak S. Fetal exposure to endocrine disrupting-bisphenol A (BPA) alters testicular fatty acid metabolism in the adult offspring: relevance to sperm maturation and quality. Int Jour of Mol Sci 2023;24(4):3769.
  • 10. Fan X, Wang Y, Zhang J, Lin H, Bai Z, Li S. Bisphenol A Regulates the TNFR1 Pathway and Excessive ROS Mediated by miR-26a-5p/ADAM17 Axis to Aggravate Selenium Deficiency- Induced Necroptosis in Broiler Veins. Biol Trace Eem Res 2024;202(4):1722-1740.
  • 11. Badawy MM, Elsherbiny MM, Elshopakey GE, Elsayyad AE, Hamama MG, Aldariweesh, FH, Fehaid A. Potential Effects of Bisphenol A on the Heart and Coronary Artery of Adult Male Rats and the Possible Role of L-Carnitine. J Toxicol 2022;7760594.
  • 12. Tang Z, Wang H, Zhang Z, Kong Y, Lei X, Yuan J. Mechanism of nephrotoxicity induced by chronic exposure of bisphenol A in mice based on oxidative stress and cell apoptosis. Chinese Journal of Biotechnology 2023;39 (1):372-385.
  • 13. Pradhan LK, Sarangi P, Sahoo PK, Kundu S, Chauhan NR, Das SK. Bisphenol A-induced neurobehavioral transformation is associated with augmented monoamine oxidase activity and neurodegeneration in zebrafish brain. Env Toxic and Pharma 2023;97:104027.
  • 14. Alvi M, Rehman K, Akash MSH, Yaqoob A, Shoaib SM. Determination of Metabolomics Profiling in BPA-Induced Impaired Metabolism. Pharmaceutics 2022;14(11):2496.
  • 15. He W, Gao Z, Liu S, Tan L, Wu Y, Liu J, Zheng Z, Fan W, Luo Y, Chen Z. G protein-coupled estrogen receptor activation by bisphenol-A disrupts lipid metabolism and induces ferroptosis in the live. Env Poll 2023;334:122211.
  • 16. Murugan R, Haridevamuthu B, Kumar RS, Almutairi BO, Arokiyaraj S, Arockiaraj J. Deacetyl epoxyazadiradione ameliorates BPA-induced neurotoxicity by mitigating ROS and inflammatory markers in N9 cells and zebrafish larvae. Comp Biochem Physiol C Toxicol Pharmacol 2023;271:109692.
  • 17. Gowder SJ. Nephrotoxicity of bisphenol A (BPA)--an updated review. Curr Mol Pharmacol 2013;6(3):163-172.
  • 18. Chen H, Zhang Y, Zou M, Qi X, Xu S. Bisphenol A aggravates renal apoptosis and necroptosis in selenium-deficient chickens via oxidative stress and PI3K/AKT pathway. J Cell Physiol 2022;237(8):3292-3304.
  • 19. Pirard C, Sagot C, Deville M, Dubois N, Charlier C. Urinary levels of bisphenol A, triclosan and 4-nonylphenol in a general Belgian population. Environ Int 2012;48:78-83.
  • 20. Singh D, Khan MA, Akhtar K, Rehman S, Parveen S, Amin KMY, Siddique HR. Protective effects of a polyherbal medicine, Majoon Suranjan against bisphenol-A induced genetic, oxidative and tissue damages. Drug Chem Toxicol 2023;46(6):1057- 1069.
  • 21. Charaya A, Sahu C, Singla S, Jena G. Zinc Deficiency Exacerbates Bisphenol A-Induced Hepatic and Renal Damage: Delineation of Molecular Mechanisms. Biol Trace Elem Res. 2023;201(6):2879-2894.
  • 22. Zhao ZJ, Wu DJ, Lv DL, Zhang BD, Chen L, Sun YQ. Ellagic acid inhibits the formation of hypertrophic scars by suppressing TGF-β/Smad signaling pathway activity. Chem Biol Drug Des 2023;102(4):773-781.
  • 23. Abd-Elghany AA, Mohamad EA. Chitosan-Coated Niosomes Loaded with Ellagic Acid Present Antiaging Activity in a Skin Cell Line. ACS Omega 2023;8(19):16620-16629.
  • 24. Gour A, Kour D, Pandian R, Bhardwaj M, Sawant SD, Kumar A, Nandi U. Ellagic Acid Exerts Dual Action to Curb the Pathophysiological Manifestations of Sickle Cell Disease and Attenuate the Hydroxyurea-Induced Myelosuppression in Berkeley Mice. ACS Pharmacol Transl Sci 2023;6(6):868-877.
  • 25. Yu C, Naeem A, Liu Y, Guan Y. Ellagic Acid Inclusion Complex- Loaded Hydrogels as an Efficient Controlled Release System: Design, Fabrication and In Vitro Evaluation. J Funct Biomater 2023;14(5):278.
  • 26. Set T, Şahin EM. Birinci basamak hekimi için böbrek fonksiyon testleri. Sürekli Tıp Eğitimi Dergisi, 2003;12:344.
  • 27. Atmaca E, Aksoy A. Oksidatif DNA hasarı ve kromatografik yöntemlerle tespit edilmesi. Yüzüncü Yıl Üniversitesi Veteriner Fakültesi Dergisi 2009;20(2):79-83.
  • 28. Yılmaz HC, Yörük M. The Effects of Bisphenol A on the Distribution and Heterogeneity of Mast Cells in Rat Digestive Tract. Van Veterinary Journal 2022;33(3):122-129.
  • 29. Benincasa L, Mandalà M, Paulesu L ve ark. Prenatal Nutrition Containing Bisphenol A Affects Placenta Glucose Transfer: Evidence in Rats and Human Trophoblast. Nutrients 2020;12(5):1375.
  • 30. Acaroz U, Ince S, Arslan-Acaroz D, Gurler Z, Demirel HH, Kucukkurt I, Eryavuz A, Kara R, Varol N, Zhu K. Bisphenol-A induced oxidative stress, inflammatory gene expression, and metabolic and histopathological changes in male Wistar albino rats: protective role of boron. Toxicol Res (Camb). 2019;8(2):262- 269.
  • 31. Goudarzi M, Mombeini MA, Fatemi I, Aminzadeh A, Kalantari H, Nesari A, Najafzadehvarzi H, Mehrzadi S. Neuroprotective effects of Ellagic acid against acrylamide-induced neurotoxicity in rats. Neurol Res 2019;41(5):419-428.
  • 32. Bidanchi RM, Lalrindika L, Khushboo M, Bhanushree B, Dinata R, Das M, Nisa N, Lalrinzuali S, Manikandan B, Saeed-Ahmed L, Sanjeev S, Murthy MK, Roy VK, Gurusubramanian G. Antioxidative, anti-inflammatory and anti-apoptotic action of ellagic acid against lead acetate induced testicular and hepato-renal oxidative damages and pathophysiological changes in male Long Evans rats. Environ Pollut 2022;302:119048.
  • 33. Naghibi N, Sadeghi A, Movahedinia S, Rahimi Naiini M, Rajizadeh MA, Bahri F, Nazari-Robati M. Ellagic acid ameliorates aging-induced renal oxidative damage through upregulating SIRT1 and NRF2. BMC Complement Med Ther 2023;23(1):77.
  • 34. Struck MB, Andrutis KA, Ramirez HE, Battles AH. Effect of a short-term fast on ketamine-xylazine anesthesia in rats. J Am Assoc Lab Anim Sci 2011;50(3):344-348.
  • 35. Fedirko V, Bostick RM, Long Q, Flanders WD, McCullough ML, Sidelnikov E, Daniel CR, Rutherford RE, Shaukat A. Effects of supplemental vitamin D and calcium on oxidative DNA damage marker in normal colorectal mucosa: a randomized clinical trial. Cancer Epidemiol Biomarkers Prev 2010;19(1):280-291.
  • 36. O'Sullivan ED, Hughes J, Ferenbach DA. Renal Aging: Causes and Consequences. J Am Soc Nephrol 2017;28(2):407-420.
  • 37. Anet A, Olakkaran S, Kizhakke Purayil A, Hunasanahally Puttaswamygowda G. Bisphenol A induced oxidative stress mediated genotoxicity in Drosophila melanogaster. J Hazard Mater 2019;370:42-53.
  • 38. Beltifa A, Belaid A, Lo Turco V, Machreki M, Ben Mansour H, Di Bella G. Preliminary evaluation of plasticizer and BPA in Tunisian cosmetics and investigation of hazards on human skin cells. Int J Environ Health Res 2018;28(5):491-501.
  • 39. Yoo MH, Lee SJ, Kim W, Kim Y, Kim YB, Moon KS, Lee BS. Bisphenol A impairs renal function by reducing Na+/K+-ATPase and F-actin expression, kidney tubule formation in vitro and in vivo. Ecotoxicol Environ Saf 2022;246:114141.
  • 40. Nuñez P, Arguelles J, Perillan C. Effects of short-term exposure to low doses of bisphenol A on cellular senescence in the adult rat kidney. Histochem Cell Biol 2023;159(5):453-460.
  • 41. Saleh SMM, Mahmoud AB, Al-Salahy MB, Mohamed Moustafa FA. Morphological, immunohistochemical, and biochemical study on the ameliorative effect of gallic acid against bisphenol A-induced nephrotoxicity in male albino rats. Sci Rep 2023;13(1):1732.
  • 42. Koriem KMM. Fertaric acid amends bisphenol A-induced toxicity, DNA breakdown, and histopathological changes in the liver, kidney, and testis. World J Hepatol 2022;14(3):535-550.
  • 43. Nasri H. Ellagic acid protects against cisplatin-induced nephrotoxicity in rats: a dose-dependent study. Eur Rev Med Pharmacol Sci 2013;17(6):849-850.
There are 43 citations in total.

Details

Primary Language Turkish
Subjects Physiopathology
Journal Section Research Article
Authors

Feyza Başak 0000-0002-9335-1103

Mehmet Demir 0000-0001-6990-3337

Publication Date April 28, 2024
Submission Date February 29, 2024
Acceptance Date April 17, 2024
Published in Issue Year 2024 Volume: 8 Issue: 1

Cite

Vancouver Başak F, Demir M. Ratlarda BPA ile Oluşturulan Böbrek Hasarında Ellajik Asit Uygulamasının DNA Hasarı ve Bazı Böbrek Fonksiyon Parametreleri Üzerine Etkisi. Med J West Black Sea. 2024;8(1):58-66.

Medical Journal of Western Black Sea is a scientific publication of Zonguldak Bulent Ecevit University Faculty of Medicine.

This is a refereed journal, which aims at achieving free knowledge to the national and international organizations and individuals related to medical sciences in publishedand electronic forms.

This journal is published three annually in April, August and December.
The publication language of the journal is Turkish and English.