Research Article
BibTex RIS Cite

Comparison of response of soybean irrigated by surface and subsurface drip irrigation method to deficit irrigation using canopy temperature under the Mediterranean conditions

Year 2021, Volume: 26 Issue: 2, 228 - 237, 09.08.2021
https://doi.org/10.37908/mkutbd.816447

Abstract

Aims: Irrigation water use efficiency is an important issue for both agricultural production and optimization of water resources in arid and semi-arid regions where water resources are limited. Surface drip irrigation (DI) is used in most of these areas. However, subsurface drip irrigation (SDI) has become widespread in recent years. Therefore, the effects of SDI method on the plant and contributions on the water saving should be examined and compared with the DI method in different plant and climate conditions. The aim of this study was to compare the effects of surface drip (DI) and subsurface drip irrigation (SDI) methods on canopy temperature measured with infrared thermometer and to evaluate deficit irrigation effects on soybean grown at the Batı Akdeniz Agricultural Research Institute (BAARI), Antalya, Turkey in 2017.

Methods and Results: The study was designed in a randomized complete block design to include two irrigation methods (surface drip (DI) and subsurface drip irrigation (SDI)) and four different irrigation treatments (0%, 60%, 80%, and 100%) in three replications. The canopy temperatures were measured by an infrared thermometer between 12:00 and 15:00 hours before and after irrigation.

Conclusions: The results showed that the canopy temperatures of the plants irrigated with the SDI method throughout the season were up to 2.5°C lower than the DI method. Also, the yield values obtained from the SDI method (439.1 kg da-1) were statistically higher than DI method (395.2 kg da-1). When compared to the DI method, a water saving of approximately 78.3 mm was obtained in SDI method.

Significance and Impact of the Study: It was determined that the canopy temperatures of soybean irrigated with SDI method were lower compared to the DI method. In addition, there was a high level of exponential relationship and negative correlation between canopy temperatures and yield, applied irrigation water and evapotranspiration in both irrigation methods.

Supporting Institution

Republic of Turkey Ministry of Agriculture and Forestry General Directorate of Agricultural Research and Policies for financial support of this research

Project Number

TAGEM/TSKAD/16/A13/P02/02

Thanks

The authors are grateful to the Republic of Turkey Ministry of Agriculture and Forestry General Directorate of Agricultural Research and Policies for financial support of this research (TAGEM/TSKAD/16/A13/P02/02).

References

  • Anda A, Simon B, Soós G, Teixeira da Silva JA, Kucserka T (2019) Crop-water relation and production of two soybean varieties under different water supplies. Theoretical and Applied Climatology 137, 1515–1528.
  • ASAE (2001) Soil and water terminology. ASAE Standards 49th Ed S526.4, 903–907.
  • Camp CR (1998) Subsurface drip irrigation: A review. Trans. Am. Soc. Agric. Eng. 1353–1367.
  • Candogan BN, Sincik M, Buyukcangaz H, Demirtas C, Goksoy AT, Yazgan S (2013) Yield, quality and crop water stress index relationships for deficit-irrigated soybean [Glycine max (L.) Merr.] in sub-humid climatic conditions. Agricultural Water Management 118, 113–121.
  • Candoğan BN, Yazgan S (2016) Yield and quality response of soybean to full and deficit irrigation at different growth stages under sub-humid climatic conditions,. Journal of Agricultural Sciences 22, 129–144.
  • Evett SR, Howell TA, Schneider AD, Upchurch DR, Wanjura DF (2000) Automatic drip irrigation of corn and soybean. In Proc. 4th Decenn. Natl. Irrig. Symp, pp 401–408
  • Hatfield JL (1990) Measuring plant stress with an infrared thermometer. Journal of Horticultural Science 25, 1535–1538.
  • Idso SB, Jackson RD, Pinter PJ, Reginato RJ, Hatfield JL (1981) Normalizing the stress-degree-day parameter for environmental variability. Agricultural Meteorology 24, 45–55. doi:10.1016/0002-1571(81)90032-7.
  • Irmak S, Specht JE, Odhiambo LO, Rees JM, Cassman KG (2014) Soybean yield, evapotranspiration, water productivity, and soil water extraction response to subsurface drip irrigation and fertigation. Transactions of the ASABE 57, 729–748.
  • Jackson RD, Idso SB, Reginato RJ, Pinter PJ (1981) Canopy temperature as a crop water stress indicator. Water Resources Research 17, 113–1138.
  • Kıllı F, Beycioğlu T (2019) Oil seeds and crude oil production in the world and Turkey, problems of oilseeds production in turkey. IJAAES International Journal of Anatolia Agricultural Engineering 1, 17–33.
  • Lamm FR, Rogers DH, Alam M, Clark GA (2003) Design considerations for subsurface drip irrigation (SDI) Systems. Irrigation Management Series. Kansas State University Agricultural Experiment Station and Cooperative Extension Service: Kansas. pp 189-198.
  • Nielsen DC (1990) Scheduling irrigations for soybeans with the Crop Water Stress Index (CWSI). Field Crops Research 23, 103–116.
  • Ospanbayev ZHO, Kurmanbayeva MS, Abdukadirova ZHA, Doszhanova AS, Nazarbekova ST, Inelova ZA, Ablaikhanova NT, Kenenbayev SB, Musina AS (2017) Water use efficiency of rice and soybean under drip irrigation with mulch in the south-east of Kazakhstan. Biology Applied Ecology and Environmental Research 15, 1581–1603.
  • Ozkara MM (1991) Second-crop soybean menemen region water sonsumption. Menemen Agricultural Research Institute Publications 170, 1–10.
  • Payero JO, Irmak S (2006) Variable upper and lower crop water stress index baselines for corn and soybean. Irrigation Science 1, 31–32.
  • Payero JO, Yonts CD, Irmak S, David TD (2005) Advantages and disadvantages of subsurface drip Irrigation. Historical materials from University of Nebraska–Lincoln Extension. pp 8.
  • Phene CJ, Davis KR, Hutmacher RB, McCormick RL (1987) Advantages of Subsurface Irrigation for Processing Tomatoes. Acta Horticulturae 200, 101–113. doi:10.17660/actahortic.1987.200.9.
  • Reich D, Godin R, Chavez JL, Broner I (2009) Subsurface drip irrigation-Crop Series No. 4.716. Colorado State University Extension. pp 3.
  • Tekelioğlu B, Büyüktaş D, Baştuğ R, Karaca C, Aydinşakir K, Dinç N (2017) Use of Crop Water Stress Index for Irrigation Scheduling of Soybean in Mediterranean Conditions. Journal of Experimental Agriculture International 18, 1–8.
  • TUİK (2020) Crop Production Statistics http://tuik.gov.tr/PreTablo.do?alt_id=1001. Ecce. Date of access: 22.10.2020.
  • Yazar A, Howell TA, Dusek DA, Copeland KS (1999) Evaluation of crop water stress index for LEPA irrigated corn. Irrigation Science 18, 171–180.
  • Yazar A, Oğuzer V, Tülücü K, Arıoğlu H, Gençoğlan C, Dıker K (1991) Developing irrigation scheduling for second crop soybean by taking advantage of open water surface (Class A Pan) evaporation under Harran conditions (In Turkish). GAP Kalkınma idaresi Başkanlığı Kesin Sonuç Raporu. 10p.

Akdeniz koşullarında yüzey ve yüzeyaltı damla sulama yöntemi ile sulanan soya fasulyesinin sulama açığına tepkisinin taç sıcaklığı kullanılarak karşılaştırılması

Year 2021, Volume: 26 Issue: 2, 228 - 237, 09.08.2021
https://doi.org/10.37908/mkutbd.816447

Abstract

Amaç: Su kaynaklarının sınırlı olduğu kurak ve yarı kurak bölgelerde hem tarımsal üretim hem de su kaynaklarının optimizasyonu için sulama suyu kullanım verimliliği önemli bir konudur. Bu alanların çoğunda yüzey damla sulama yöntemi (DI) yaygın olarak kullanılmakla birlikte, yüzey altı damla sulama yöntemi (SDI) son yıllarda yaygınlaşmıştır. Bu çalışmada, yüzey (DI) ve yüzey altı damla sulama (SDI) yöntemleri ile sulanan soya bitkisinin infrared termometre ile ölçülen taç sıcaklığı üzerindeki etkilerini karşılaştırmak ve soya fasulyesi üzerindeki eksik sulamaya etkilerini değerlendirmek amaçlanmıştır.


Yöntem ve Bulgular: Çalışma, iki farklı sulama yöntemi (yüzey damla sulama (DI) ve yüzey-altı damla sulama (SDI) ve dört farklı sulama düzeyinde (%0, %60, %80 ve %100) üç tekerrürlü olarak tesadüf blokları deneme deseninde yürütülmüştür. Bitki taç sıcaklıkları, sulamadan önce ve sonra 12:00 ile 15:00 saatleri arasında kızılötesi termometre ile ölçülerek elde edilmiştir.


Genel Yorum: Sonuçlar, sezon boyunca SDI yöntemi ile sulanan bitkilerin taç sıcaklıklarının DI yöntemine göre 2.5°C'a kadar daha düşük olduğunu göstermiştir. Ayrıca bu çalışmada SDI yönteminden elde edilen verim değerleri (439.1 kg da-1) DI yöntemine (395.2 kg da-1) göre istatistiksel olarak daha yüksek çıkmıştır. DI yöntemi ile karşılaştırıldığında, SDI yönteminde yaklaşık 78.3 mm su tasarrufu elde edilmiştir.


Çalışmanın Önemi ve Etkisi: SDI yöntemi ile sulanan soya fasulyesinin taç sıcaklıklarının DI yöntemine göre daha düşük olduğu belirlenmiştir. Ek olarak, her iki sulama yönteminde de taç sıcaklıkları ile verim, uygulanan sulama suyu ve evapotranspirasyon arasında yüksek düzeyde üstel bir ilişki ve negatif korelasyon olduğu saptanmıştır.

Project Number

TAGEM/TSKAD/16/A13/P02/02

References

  • Anda A, Simon B, Soós G, Teixeira da Silva JA, Kucserka T (2019) Crop-water relation and production of two soybean varieties under different water supplies. Theoretical and Applied Climatology 137, 1515–1528.
  • ASAE (2001) Soil and water terminology. ASAE Standards 49th Ed S526.4, 903–907.
  • Camp CR (1998) Subsurface drip irrigation: A review. Trans. Am. Soc. Agric. Eng. 1353–1367.
  • Candogan BN, Sincik M, Buyukcangaz H, Demirtas C, Goksoy AT, Yazgan S (2013) Yield, quality and crop water stress index relationships for deficit-irrigated soybean [Glycine max (L.) Merr.] in sub-humid climatic conditions. Agricultural Water Management 118, 113–121.
  • Candoğan BN, Yazgan S (2016) Yield and quality response of soybean to full and deficit irrigation at different growth stages under sub-humid climatic conditions,. Journal of Agricultural Sciences 22, 129–144.
  • Evett SR, Howell TA, Schneider AD, Upchurch DR, Wanjura DF (2000) Automatic drip irrigation of corn and soybean. In Proc. 4th Decenn. Natl. Irrig. Symp, pp 401–408
  • Hatfield JL (1990) Measuring plant stress with an infrared thermometer. Journal of Horticultural Science 25, 1535–1538.
  • Idso SB, Jackson RD, Pinter PJ, Reginato RJ, Hatfield JL (1981) Normalizing the stress-degree-day parameter for environmental variability. Agricultural Meteorology 24, 45–55. doi:10.1016/0002-1571(81)90032-7.
  • Irmak S, Specht JE, Odhiambo LO, Rees JM, Cassman KG (2014) Soybean yield, evapotranspiration, water productivity, and soil water extraction response to subsurface drip irrigation and fertigation. Transactions of the ASABE 57, 729–748.
  • Jackson RD, Idso SB, Reginato RJ, Pinter PJ (1981) Canopy temperature as a crop water stress indicator. Water Resources Research 17, 113–1138.
  • Kıllı F, Beycioğlu T (2019) Oil seeds and crude oil production in the world and Turkey, problems of oilseeds production in turkey. IJAAES International Journal of Anatolia Agricultural Engineering 1, 17–33.
  • Lamm FR, Rogers DH, Alam M, Clark GA (2003) Design considerations for subsurface drip irrigation (SDI) Systems. Irrigation Management Series. Kansas State University Agricultural Experiment Station and Cooperative Extension Service: Kansas. pp 189-198.
  • Nielsen DC (1990) Scheduling irrigations for soybeans with the Crop Water Stress Index (CWSI). Field Crops Research 23, 103–116.
  • Ospanbayev ZHO, Kurmanbayeva MS, Abdukadirova ZHA, Doszhanova AS, Nazarbekova ST, Inelova ZA, Ablaikhanova NT, Kenenbayev SB, Musina AS (2017) Water use efficiency of rice and soybean under drip irrigation with mulch in the south-east of Kazakhstan. Biology Applied Ecology and Environmental Research 15, 1581–1603.
  • Ozkara MM (1991) Second-crop soybean menemen region water sonsumption. Menemen Agricultural Research Institute Publications 170, 1–10.
  • Payero JO, Irmak S (2006) Variable upper and lower crop water stress index baselines for corn and soybean. Irrigation Science 1, 31–32.
  • Payero JO, Yonts CD, Irmak S, David TD (2005) Advantages and disadvantages of subsurface drip Irrigation. Historical materials from University of Nebraska–Lincoln Extension. pp 8.
  • Phene CJ, Davis KR, Hutmacher RB, McCormick RL (1987) Advantages of Subsurface Irrigation for Processing Tomatoes. Acta Horticulturae 200, 101–113. doi:10.17660/actahortic.1987.200.9.
  • Reich D, Godin R, Chavez JL, Broner I (2009) Subsurface drip irrigation-Crop Series No. 4.716. Colorado State University Extension. pp 3.
  • Tekelioğlu B, Büyüktaş D, Baştuğ R, Karaca C, Aydinşakir K, Dinç N (2017) Use of Crop Water Stress Index for Irrigation Scheduling of Soybean in Mediterranean Conditions. Journal of Experimental Agriculture International 18, 1–8.
  • TUİK (2020) Crop Production Statistics http://tuik.gov.tr/PreTablo.do?alt_id=1001. Ecce. Date of access: 22.10.2020.
  • Yazar A, Howell TA, Dusek DA, Copeland KS (1999) Evaluation of crop water stress index for LEPA irrigated corn. Irrigation Science 18, 171–180.
  • Yazar A, Oğuzer V, Tülücü K, Arıoğlu H, Gençoğlan C, Dıker K (1991) Developing irrigation scheduling for second crop soybean by taking advantage of open water surface (Class A Pan) evaporation under Harran conditions (In Turkish). GAP Kalkınma idaresi Başkanlığı Kesin Sonuç Raporu. 10p.
There are 23 citations in total.

Details

Primary Language English
Subjects Agricultural Engineering
Journal Section Araştırma Makalesi
Authors

Begüm Polat 0000-0001-8178-6161

Cihan Karaca 0000-0003-3010-9149

Köksal Aydinşakir 0000-0003-0225-7646

Dursun Büyüktaş 0000-0002-9130-9112

Ruhi Baştuğ 0000-0001-9082-0157

Project Number TAGEM/TSKAD/16/A13/P02/02
Publication Date August 9, 2021
Submission Date October 26, 2020
Acceptance Date February 8, 2021
Published in Issue Year 2021 Volume: 26 Issue: 2

Cite

APA Polat, B., Karaca, C., Aydinşakir, K., Büyüktaş, D., et al. (2021). Comparison of response of soybean irrigated by surface and subsurface drip irrigation method to deficit irrigation using canopy temperature under the Mediterranean conditions. Mustafa Kemal Üniversitesi Tarım Bilimleri Dergisi, 26(2), 228-237. https://doi.org/10.37908/mkutbd.816447

22740137731737513771 13774 15432 1813713775 14624 15016 i2or 1857924881download