Research Article
BibTex RIS Cite

Farklı solarizasyon uygulamalarının marulun (Lactuca sativa L. Duna) mineral beslenmesi üzerine etkisi

Year 2022, Volume: 27 Issue: 1, 136 - 144, 08.04.2022
https://doi.org/10.37908/mkutbd.1051752

Abstract

Amaç: Bu çalışmada amaç, farklı solarizasyon malç malzemeleri ve biochar uygulamasının marul bitkisinin mineral beslenmesine etkisi belirlenmeye çalışılmıştır.

Yöntem ve Bulgular: Sera koşullarında 2 yıl yürütülen çalışma, 2 farklı solarizasyon örtüsü ve biochar uygulamaları ile gerçekleştirilmiştir. Solarizasyon uygulamasından sonra her bir parselde marul yetiştirilmiştir. Hasat dönemi sonunda, hasat edilen bitkilerde kuru ağırlık değerleriyle kimi besin elementi konsantrasyonları belirlenmiş, ayrıca bitkilerce topraktan kaldırılan besin elementi miktarları hesaplanmıştır. Elde edilen sonuçlara göre; genel bir değerlendirme yapıldığında her iki yıl için de bitki kuru ağırlığı üzerine en etkili uygulamaların solarizasyon ve biochar uygulamalarının birlikte yapıldığı uygulamalar olduğu bunun yanında en etkisiz uygulamaların ise kontrol konularını içeren uygulamalar ile klasik solarizasyon yapılan konuların olduğu belirlenmiştir.

Genel Yorum: Topraktan kaldırılan besin elementleri üzerinde en etkili uygulamaların balonlu solarizasyon+ biochar ve solarizasyon + biochar uygulamaları olduğu, en etkisiz uygulamaların ise kontrol ve solarizasyon uygulamaları olduğu belirlenmiştir.

Çalışmanın Önemi ve Etkisi: Klasik solarizasyon örtü malzemesinden elde edilen sonuçlara kıyasla, balonlu solarizasyon örtü malzemesi ve biochar ekli solarizasyon uygulamaları marul mineral beslenmesi açısından daha etkili olduğu sonucuna ulaşılmıştır. Bu çalışmadan elde edilen sonuca göre, solarizasyon uygulamalarında biochar katkısı yardımıyla daha etkin bir yetiştiricilik yapılabilecektir.

Supporting Institution

-

Project Number

-

References

  • Ahmad M, Rajapaksha AU, Lim JE, Zhang M, Bolan N, Mohan D, Vithanage M, Lee SS, Ok YS (2014) Biochar as a sorbent for contaminant management in soil and water: A review. Chemosphere, 99: 19-33.
  • Alaboz P, Öz H (2020) Biyokömür ve solarizasyon uygulamalarının bazı toprak fiziksel özellikler üzerine etkileri, Anadolu Tar. Bil. Derg., 35: 208-214.
  • Al-Shammary AAG, Al-Sadoon JNA, Lahmod NR (2016) Influence of the soil solarization management and fertilizer on soil temperature under different soil tillage systems. J. Agric. Sci., 8, 98.
  • Al-Shammary AAG, Kouzani A, Gyasi-Agyei Y, Gates W, Rodrigo-Comino J (2020) Effects of solarisation on soil thermal-physical properties under different soil treatments: A review, Geoderma, 363: 1-17.
  • Campiglia E, Temperini O, Mancinelli R, Saccardo F (2000) Effects of soil solarization on the weed control of vegetable crops and on the cauliflower and fennel production in the open field. Acta Hortic., 533, 249–255.
  • D’Addabbo T, Miccolis V, Basile M, Candido V (2010) Soil solarization and sustainable agriculture. ın: lichtfouse, e. (Ed.), Sociology, Organic Farming, Climate Change and Soil Science. Springer, Netherlands, Dordrecht, pp. 217–274.
  • Durukan H, Saraç H, Demirbaş A (2020) Farklı dozlarda vermikompost uygulamasının mısır bitkisinin verimine ve besin elementleri alımına etkisi. ISUBU Zir. Fak. Derg., 45-51.
  • Granados MR, Bonachela S, Hernandez J, Lopez JC, Magan JJ, Baeza EJ, Gazguez JC, Perez-Parra JJ (2012) Soil temperatures in a mediterrannean greenhouse with different solarization strategies. Acta Hortic., 927, 747–753.
  • Grunzweig JM, Katan J, Ben-Tal Y, Rabinowitch HD (1999) The role of mineral nutrients in the increased growth response of tomato plants in solarized soil. Plant Soil, 206, 21–27.
  • Hartz TK, Johnstone PR, Williams E, Smith RF (2007) Establishing lettuce leaf nutrient optimum ranges through DRIS analysis. HortScience, 42(1): 143-146.
  • Hochmuth G, Maynard D. Vavrina C, Hanlon E (1991) Plant Tissue Analysis and Interpretation for Vegetable Crops in Florida Univ. Florida Special Publication SS-VEC42.
  • Jones JB, Wolf B, Mills HA (1992) Plant Analysis Handbook. A Practical Sampling, Preparation, Analysis, and Interpretation Guide. Micro-Macro Publishing, Inc.
  • Komariah K, Ito K, Onishi T, Senge M (2011) Soil properties affected by combinations of soil solarization and organic amendment. Paddy Water Environ., 9, 357–366.
  • Lindsay WL, Norvell WA (1969) Development of a DTPA micronutrient soil test. Soil Sci. Soc. Am. Proceed. 35: 600-602.
  • Ludwick AE (2002) Western Fertilizer Handbook. 9th ed. Interstate Publishers, Inc., Danville.
  • Mills HA, Benton J (1996) Plant analysis handbook II: A practical sampling, preparation, analysis, and interpretation guide. No. 581.13 M657.
  • Morra L, Carrieri R, Fornasier F, Mormile P, Rippa M, Baiano S, Cermola M, Piccirillo G, Lahoz E (2018) Solarization working like a “solar hot panel” after compost addition sanitizes soil in thirty days and preserves soil fertility. Appl. Soil Ecol. 126, 65–74.
  • Mudalagiriyappa M, Nanjappa HV, Ramachandrappa BK (1999) Effect of soil solarization on weed growth and yield of Kharif groundnut. Indian J. Agron., 44 (2): 396–399.
  • Olsen SR, Cole CV, Watanable FS, Dean LA (1954) Estimation of Available Phosphorus in Soils by Extraction with Sodium Bicarbonate. U. S. Dept. of Agric. Cir. 939, Washington D. C.
  • Öz H, Coşkan A, Atılgan A (2016) Effect of different plastic cover materials and biofumigation to soil organic matter decomposition in greenhouse solarization. Sci. Pap. Ser. A. Agronomy, Vol. LIX, 127-129.
  • Öz H, Coşkan A, Atılgan A (2017a) Air bubbled or water filled bubbled solarization sheet was further effective on number of soil microorganisms, CO2 production as well as microbial biomass carbon, Sci. Pap. Ser. A. Agronomy, Vol. LX, 137-141.
  • Öz H, Coskan A, Atilgan A (2017b) Determination of effects of various plastic covers and biofumigation on soil temperature and soil nitrogen form in greenhouse solarization: new solarization cover material. J. Polym. Environ., 25(2): 370–377.
  • Öz H (2018) A new approach to soil solarization: Addition of biochar to the effect of soil temperature and quality and yield parameters of lettuce (Lactuca Sativa L. Duna). Sci. Hortic. 228:153–161.
  • Öz H, Yaylacı C, Erdal İ (2021) Farklı malç materyallerinin marul (Lactuca sativa L. Duna) bitkisinin gelişimi ve bazı mineral besin elementleri üzerine etkisi. MKU. Tar. Bil. Derg., 26(2): 489-496.
  • Richards LA (1954) Diagnosis and Improvement of Saline and Alkali Soils. Soil Sci., 78: 2.
  • Stapleton JJ (2000) Soil solarization in various agricultural production systems. Crop Prot. 19, 837–841.
  • Üçok Z, Demir H, Sönmez İ, Polat E (2019) Farklı organik gübre uygulamalarının kıvırcık salatada (Lactuca sativa L. var. crispa) verim, kalite ve bitki besin elementi içeriklerine etkileri. Medit. Agric. Sci., 32: 63-68.
  • Walkley A, Black IA (1934) An examination of the degtjareff method for determining soil organic matter, and a proposed modification of the chromic acid titration method. Soil Sci., 37(1): 29-38.
  • Yağmur B, Aydın Ş (2021) Çinko (Zn) uygulamalarının marul (Lactuca Sativa L.) bitkisinin bazı yaprak besin element içeriklerine etkisi. Top. Bil. Bit. Besl. Derg., 9(1): 57-63.

Effect of different solarization treatments on mineral nutrition of lettuce (Lactuca sativa L. Duna)

Year 2022, Volume: 27 Issue: 1, 136 - 144, 08.04.2022
https://doi.org/10.37908/mkutbd.1051752

Abstract

Aims: The aim of this study was to determine the effects of different solarization mulch materials and biochar application on the mineral nutrition of lettuce plant.

Methods and Results: The study was carried out with 2 different solarization mulches and biochar applications for 2 years in greenhouse conditions. Lettuce was grown in each plot after solarization. At the end of the harvest period, the dry weight values of the harvested plants and some nutrient concentrations were determined, in addition, the amounts of elements exploited by plants from the soil were calculated. According to the results; it was determined that the most effective applications on plant’s dry weight for both years were found when solarization and biochar were used together. In addition, it was determined that the least effective applications were found as control treatments and classical solarization treatment.

Conclusions: It was determined that the most effective applications on the nutrients removed from the soil were; bubble solarization + biochar and solarization + biochar applications, while the least ineffective applications were control and classical solarization applications.

Significance and Impact of the Study: According to the values obtained from the classical solarization mulch material, it was concluded that bubble solarization mulch material and solarization applications with biochar added were more effective in terms of lettuce mineral nutrition. According to the results of this study, a more effective cultivation would be possible with the help of biochar additive in solarization applications.

Project Number

-

References

  • Ahmad M, Rajapaksha AU, Lim JE, Zhang M, Bolan N, Mohan D, Vithanage M, Lee SS, Ok YS (2014) Biochar as a sorbent for contaminant management in soil and water: A review. Chemosphere, 99: 19-33.
  • Alaboz P, Öz H (2020) Biyokömür ve solarizasyon uygulamalarının bazı toprak fiziksel özellikler üzerine etkileri, Anadolu Tar. Bil. Derg., 35: 208-214.
  • Al-Shammary AAG, Al-Sadoon JNA, Lahmod NR (2016) Influence of the soil solarization management and fertilizer on soil temperature under different soil tillage systems. J. Agric. Sci., 8, 98.
  • Al-Shammary AAG, Kouzani A, Gyasi-Agyei Y, Gates W, Rodrigo-Comino J (2020) Effects of solarisation on soil thermal-physical properties under different soil treatments: A review, Geoderma, 363: 1-17.
  • Campiglia E, Temperini O, Mancinelli R, Saccardo F (2000) Effects of soil solarization on the weed control of vegetable crops and on the cauliflower and fennel production in the open field. Acta Hortic., 533, 249–255.
  • D’Addabbo T, Miccolis V, Basile M, Candido V (2010) Soil solarization and sustainable agriculture. ın: lichtfouse, e. (Ed.), Sociology, Organic Farming, Climate Change and Soil Science. Springer, Netherlands, Dordrecht, pp. 217–274.
  • Durukan H, Saraç H, Demirbaş A (2020) Farklı dozlarda vermikompost uygulamasının mısır bitkisinin verimine ve besin elementleri alımına etkisi. ISUBU Zir. Fak. Derg., 45-51.
  • Granados MR, Bonachela S, Hernandez J, Lopez JC, Magan JJ, Baeza EJ, Gazguez JC, Perez-Parra JJ (2012) Soil temperatures in a mediterrannean greenhouse with different solarization strategies. Acta Hortic., 927, 747–753.
  • Grunzweig JM, Katan J, Ben-Tal Y, Rabinowitch HD (1999) The role of mineral nutrients in the increased growth response of tomato plants in solarized soil. Plant Soil, 206, 21–27.
  • Hartz TK, Johnstone PR, Williams E, Smith RF (2007) Establishing lettuce leaf nutrient optimum ranges through DRIS analysis. HortScience, 42(1): 143-146.
  • Hochmuth G, Maynard D. Vavrina C, Hanlon E (1991) Plant Tissue Analysis and Interpretation for Vegetable Crops in Florida Univ. Florida Special Publication SS-VEC42.
  • Jones JB, Wolf B, Mills HA (1992) Plant Analysis Handbook. A Practical Sampling, Preparation, Analysis, and Interpretation Guide. Micro-Macro Publishing, Inc.
  • Komariah K, Ito K, Onishi T, Senge M (2011) Soil properties affected by combinations of soil solarization and organic amendment. Paddy Water Environ., 9, 357–366.
  • Lindsay WL, Norvell WA (1969) Development of a DTPA micronutrient soil test. Soil Sci. Soc. Am. Proceed. 35: 600-602.
  • Ludwick AE (2002) Western Fertilizer Handbook. 9th ed. Interstate Publishers, Inc., Danville.
  • Mills HA, Benton J (1996) Plant analysis handbook II: A practical sampling, preparation, analysis, and interpretation guide. No. 581.13 M657.
  • Morra L, Carrieri R, Fornasier F, Mormile P, Rippa M, Baiano S, Cermola M, Piccirillo G, Lahoz E (2018) Solarization working like a “solar hot panel” after compost addition sanitizes soil in thirty days and preserves soil fertility. Appl. Soil Ecol. 126, 65–74.
  • Mudalagiriyappa M, Nanjappa HV, Ramachandrappa BK (1999) Effect of soil solarization on weed growth and yield of Kharif groundnut. Indian J. Agron., 44 (2): 396–399.
  • Olsen SR, Cole CV, Watanable FS, Dean LA (1954) Estimation of Available Phosphorus in Soils by Extraction with Sodium Bicarbonate. U. S. Dept. of Agric. Cir. 939, Washington D. C.
  • Öz H, Coşkan A, Atılgan A (2016) Effect of different plastic cover materials and biofumigation to soil organic matter decomposition in greenhouse solarization. Sci. Pap. Ser. A. Agronomy, Vol. LIX, 127-129.
  • Öz H, Coşkan A, Atılgan A (2017a) Air bubbled or water filled bubbled solarization sheet was further effective on number of soil microorganisms, CO2 production as well as microbial biomass carbon, Sci. Pap. Ser. A. Agronomy, Vol. LX, 137-141.
  • Öz H, Coskan A, Atilgan A (2017b) Determination of effects of various plastic covers and biofumigation on soil temperature and soil nitrogen form in greenhouse solarization: new solarization cover material. J. Polym. Environ., 25(2): 370–377.
  • Öz H (2018) A new approach to soil solarization: Addition of biochar to the effect of soil temperature and quality and yield parameters of lettuce (Lactuca Sativa L. Duna). Sci. Hortic. 228:153–161.
  • Öz H, Yaylacı C, Erdal İ (2021) Farklı malç materyallerinin marul (Lactuca sativa L. Duna) bitkisinin gelişimi ve bazı mineral besin elementleri üzerine etkisi. MKU. Tar. Bil. Derg., 26(2): 489-496.
  • Richards LA (1954) Diagnosis and Improvement of Saline and Alkali Soils. Soil Sci., 78: 2.
  • Stapleton JJ (2000) Soil solarization in various agricultural production systems. Crop Prot. 19, 837–841.
  • Üçok Z, Demir H, Sönmez İ, Polat E (2019) Farklı organik gübre uygulamalarının kıvırcık salatada (Lactuca sativa L. var. crispa) verim, kalite ve bitki besin elementi içeriklerine etkileri. Medit. Agric. Sci., 32: 63-68.
  • Walkley A, Black IA (1934) An examination of the degtjareff method for determining soil organic matter, and a proposed modification of the chromic acid titration method. Soil Sci., 37(1): 29-38.
  • Yağmur B, Aydın Ş (2021) Çinko (Zn) uygulamalarının marul (Lactuca Sativa L.) bitkisinin bazı yaprak besin element içeriklerine etkisi. Top. Bil. Bit. Besl. Derg., 9(1): 57-63.
There are 29 citations in total.

Details

Primary Language Turkish
Subjects Agricultural Engineering
Journal Section Araştırma Makalesi
Authors

Hasan Öz 0000-0002-7135-1372

Şevkiye Armağan Türkan This is me 0000-0003-0262-8873

İbrahim Erdal 0000-0001-8177-948X

Project Number -
Publication Date April 8, 2022
Submission Date December 31, 2021
Acceptance Date March 7, 2022
Published in Issue Year 2022 Volume: 27 Issue: 1

Cite

APA Öz, H., Türkan, Ş. A., & Erdal, İ. (2022). Farklı solarizasyon uygulamalarının marulun (Lactuca sativa L. Duna) mineral beslenmesi üzerine etkisi. Mustafa Kemal Üniversitesi Tarım Bilimleri Dergisi, 27(1), 136-144. https://doi.org/10.37908/mkutbd.1051752

22740137731737513771 13774 15432 1813713775 14624 15016 i2or 1857924881download