Research Article
BibTex RIS Cite

Determination of the physiological response of lettuce to different irrigation water salinities (NaCl) and leaching fractions

Year 2024, Volume: 29 Issue: 2, 552 - 568, 12.08.2024
https://doi.org/10.37908/mkutbd.1466659

Abstract

The Amik Plain, where the experiment was conducted, is increasingly salinised owing to improper irrigation methods, excessive irrigation, drainage and groundwater use. This situation indicates that soil salinity will increase even more in the future. The study was conducted using a factorial experimental design in potted conditions inside the greenhouse to investigate the impacts of three distinct levels of irrigation water salinity (ECi) (ECi-0= 0.5 dS m-1 (control), ECi-2= 2 dS m-1and ECi-4= 4 dS m-1) and four different leaching fraction (LF) (LF0=0%, LF10=10%, LF20=20%, LF30=30%) on stomatal conductance (gs), leaf surface temperature (LSt), chlorophyll content (SPAD), chlorophyll concentrations (Chl-a, Chl-b, and Chl-tot) and yield parameters in 'Cospirina' lettuce plants. As a result of the study, soil salinity (ECe) increased from 0.82 dS m-1 to 2.09 dS m-1 with increasing ECi. As ECi increased, plant water consumption (PWC) decreased from 8.92 to 5.71 L pot-1, yield decreased from 276 g pot-1 to 198 g pot-1, gs decreased from 266 mmol m-2 s-1 to 215 mmol m-2 s-1. LSt increased by 2.17% in ECi-2 and 6.4% in ECi-4 compared to the control. As ECe increased, yield decreased by 10% in ECi-2 and 28% in ECi-4 compared to the control treatment. Chl-tot and Chl-a were significantly affected by the increase in ECe (r2=0.96*, r2=0.99**, respectively), while Chl-b was not affected. In contrast to soil salinity, leaching fraction had a positive effect on plant physiology.

References

  • Acosta-Motos, J., Ortuño, M., Bernal-Vicente, A., Diaz-Vivancos, P., Sanchez-Blanco, M., & Hernandez, J. (2017). Plant responses to salt stress: Adaptive mechanisms. Agronomy, 7 (1), 18. https://doi.org/10.3390/agronomy7010018
  • Adhikari, N. D., Simko, I., & Mou, B. (2019). Phenomic and physiological analysis of salinity effects on lettuce. Sensors, 19 (21), 4814. https://doi.org/10.3390/s19214814
  • Aftab, T., Khan, M.M.A., da Silva, J.A.T., Idrees, M., Naeem, M., & Moinuddin. (2011). Role of salicylic acid in promoting salt stress tolerance and enhanced artemisinin production in Artemisia annua L. Journal of Plant Growth Regulation, 30 (4), 425-435. https://doi.org/10.1007/s00344-011-9205-0
  • Al-Maskri, A., Al-Kharusi, L., Al-Miqbali, H., & Khan, M.M. (2010). Effects of salinity stress on growth of lettuce (Lactuca sativa) under closed-recycle nutrient film technique. International Journal of Agriculture and Biology, 12 (3), 377-380.
  • Andriolo, J.L., Luz, G.L.D, Witter, M.H., Godoi, R.D.S., Barros, G.T., & Bortolotto, O.C. (2005). Growth and yield of lettuce plants under salinity. Horticultura Brasileira, 23 (4), 931-934. https://doi.org/10.1590/S0102-05362005000400014
  • Arnon, D.I. (1949). Cooper enzymes in isolated chloroplasts. Polypenoloxidase in Beta vulgaris. Plant Physiology, 24 (1), 1115. https://doi.org/10.1104/pp.24.1.1
  • Arora, N.K. (2019). Impact of climate change on agriculture production and its sustainable solutions. Environmental Sustainability, 2 (2), 95-96. https://doi.org/10.1007/s42398-019-00078-w
  • Aydinsakir, K., Karaca, C., Ozkan, C.F., Dinc, N., Buyuktas, D., & Isik, M. (2019). Excess nitrogen exceeds the European standards in lettuce grown under greenhouse conditions. Agronomy Journal, 111 (2), 764-769. https://doi.org/10.2134/agronj2018.07.0425
  • Ayers, A.S., & Westcot, D.W. (1985). Water quality for agriculture. FAO Irrigation and Drainage Paper 29. Babaousmail, M., Nili, M.S., Brik, R., Saadouni, M., Yousif, S.K.M., Omer, R.M., Osman, N.A., Alsahli, A.A., Ashour, H., &
  • El-Taher, A.M. (2022). Improving the tolerance to salinity stress in lettuce plants (Lactuca sativa L.) using exogenous application of salicylic acid, yeast, and zeolite. Life, 12 (10), 1538. https://doi.org/10.3390/life12101538
  • Bar-Yosef, B., Markovich, T., & Levkovich, I. (2005). Lettuce response to leachate recycling in an arid zone greenhouse. Acta Horticulturae, 697, 243-250. https://doi.org/10.17660/ActaHortic.2005.697.29
  • Barassi, C.A., Ayrault, G., Creus, C.M., Sueldo, R.J., & Sobrero, M.T. (2006). Seed inoculation with Azospirillum mitigates NaCl effects on lettuce. Scientia Horticulturae, 109 (1), 8-14. https://doi.org/10.1016/j.scienta.2006.02.025
  • Cahn, M., & Ajwa, H. (2004). Management of salinity for lettuce production. University of California Cooperative Extension Monterey County. https://cemonterey.ucanr.edu/files/171001.pdf
  • Çebi, U.K., Selçuk, Ö., Altıntaş, S., Yurtseven, E., & Öztürk, O. (2018). Effect of different irrigation levels and irrigation water salinity on water use efficiency and yield of tomato grown in greenhouse. Harran Tarım ve Gıda Bilimleri Dergisi, 22 (1), 33-46.
  • De Pascale, S., & Barbieri, G. (1995). Effects of soil salinity from long-term irrigation with saline-sodic water on yield and quality of winter vegetable crops. Scientia Horticulturae, 64 (3), 145-157. https://doi.org/10.1016/0304-4238(95)00823-3
  • Erdem, F., & Kale Çelik, S. (2018). Farklı tuzluluk ve yıkama suyu oranlarına sahip sulama sularının ıspanak (Spinacia oleracea L.) gelişimi, verimi ve drenaj suyu kalitesine etkisi. Isparta Uygulamalı Bilimler Üniversitesi Ziraat Fakültesi Dergisi, 1. Uluslararası Tarımsal Yapılar ve Sulama Kongresi Özel Sayısı, 73-82.
  • Francois, L.E., Donovan, T.J., Maas, E.V., & Rubenthaler, G.L. (1988). Effect of salinity on grain yield and quality, vegetative growth, and germination of triticale. Agronomy Journal, 80 (4), 642-647. https://doi.org/10.2134/agronj1988.00021962008000040019x
  • Gianquinto, G., Goffart, J.P., Olivier, M., Guarda, G., Colauzzi, M., Dalla Costa, L., Delle Vedove, G., Vos, J., & Mackerron, D.K.L. (2004). The use of hand-held chlorophyll meters as a tool to assess the nitrogen status and to guide nitrogen fertilization of potato crop. Potato Research, 47 (1-2), 35-80. https://doi.org/10.1007/BF02731970
  • Gün, A. (2019). Marulda (Lactuca sativa L. var. crispa) organik gübrelerin verim ve kaliteye etkisi. Yüksek Lisans Tezi, Ordu Üniversitesi, Fen Bilimleri Enstitüsü, Bahçe Bitkileri Anabilim Dalı, 78 s, Ordu.
  • Gupta, B., & Huang, B. (2014). Mechanism of salinity tolerance in plants: Physiological, biochemical, and molecular characterization. International Journal of Genomics, 1-18. https://doi.org/10.1155/2014/701596
  • Hancı, F., & Tuncer, G. (2020). How do foliar application of melatonin and l-tryptophan affect lettuce growth parameters under salt stress? Turkish Journal of Agriculture - Food Science and Technology, 8 (4), 960-964. https://doi.org/10.24925/turjaf.v8i4.960-964.3224
  • Heidarpour, M., Mostafazadeh‐Fard, B., Arzani, A., Aghakhani, A., & Feizi, M. (2009). Effects of irrigation water salinity and leaching fraction on yield and evapotranspiration in spring wheat. Communications in Soil Science and Plant Analysis, 40 (15-16), 2521-2535. https://doi.org/10.1080/00103620903111384
  • Ibrahim, Y.M., Buyuktas, D., & Karaca, C. (2024). Evaporation and transpiration components of crop evapotranspiration and growth parameters of lettuce grown under greenhouse conditions. Journal of Irrigation and Drainage Engineering, 150 (5). https://doi.org/10.1061/JIDEDH.IRENG-10256
  • Isayenkov, S.V. (2012). Physiological and molecular aspects of salt stress in plants. Cytology and Genetics, 46 (5), 302-318. https://doi.org/10.3103/S0095452712050040
  • Islam, R., Solaiman, A.H.M., Kabir, M.H., Arefin, S.M.A., Azad, M.O.K., Siddiqee, M.H., Alsanius, B.W., & Naznin, M.T. (2021). Evaluation of lettuce growth, yield, and economic viability grown vertically on unutilized building wall in Dhaka City. Frontiers in Sustainable Cities, 3, 582431. https://doi.org/10.3389/frsc.2021.582431
  • Jiang, J., Huo, Z., Feng, S., & Zhang, C. (2012). Effect of irrigation amount and water salinity on water consumption and water productivity of spring wheat in Northwest China. Field Crops Research, 137, 78-88. https://doi.org/10.1016/j.fcr.2012.08.019
  • Kanber, R., Çullu, M.A., Kendirli, B., Antepli, S., & Yılmaz, N. (2005). Sulama, drenaj ve tuzluluk. Türkiye Ziraat Mühendisliği VI. Teknik Kongresi, 213-251.
  • Kazgöz Candemir, D., & Ödemiş, B. (2021). Effects of foliar sulfur applications in cotton crop on stomatal conductance under water stress. Mustafa Kemal Üniversitesi Tarım Bilimleri Dergisi, 26 (1), 171-182. https://doi.org/10.37908/mkutbd.806526
  • Kerepesi, I., & Galiba, G. (2000). Osmotic and salt stress‐induced alteration in soluble carbohydrate content in wheat seedlings. Crop Science, 40 (2), 482-487. https://doi.org/10.2135/cropsci2000.402482x
  • Khamidov, M., Ishchanov, J., Hamidov, A., Donmez, C., & Djumaboev, K. (2022). Assessment of soil salinity changes under the climate change in the Khorezm Region. International Journal of Environmental Research and Public Health, 19 (14), 8794. https://doi.org/10.3390/ijerph19148794
  • Kim, H.H., Goins, G.D., Wheeler, R.M., & Sager, J.C. (2004). Stomatal conductance of lettuce grown under or exposed to different light Qualities. Annals of Botany, 94 (5), 691-697. https://doi.org/10.1093/aob/mch192
  • Lichtenthaler, H.K., & Wellburn, A.R. (1983). Determinations of total carotenoids and chlorophylls a and b of leaf extracts in different solvents. Biochemical Society Transactions, 11 (5), 591-592. https://doi.org/10.1042/bst0110591
  • Maas, E.V., & Poss, J.A. (1989). Salt sensitivity of cowpea at various growth stages. Irrigation Science, 10 (4). https://doi.org/10.1007/BF00257496
  • Maas, E.V., Poss, J.A., & Hoffman, G.J. (1986). Salinity sensitivity of sorghum at three growth stages. Irrigation Science, 7 (1). https://doi.org/10.1007/BF00255690
  • Marenco, R.A., Antezana-Vera, S.A., & Nascimento, H.C.S. (2009). Relationship between specific leaf area, leaf thickness, leaf water content and SPAD-502 readings in six Amazonian tree species. Photosynthetica, 47 (2), 184-190. https://doi.org/10.1007/s11099-009-0031-6
  • Mekki, B.B., & Orabi, S.A. (2007). Response of prickly lettuce to uniconazole and irrigation with diluted seawater. American–Eurasian Journal of Agricultural and Environmental Sciences, 2 (6), 611-618. http://www.idosi.org/aejaes/jaes2(6)/1.pdf
  • Miceli, A., Moncada, A., & D’Anna, F. (2003). Effect of salt stress in lettuce cultivation. Acta Horticulturae, 609, 371-375. https://doi.org/10.17660/ActaHortic.2003.609.56
  • Miller, G., Suzuki, N., Ciftci-Yilmaz, S., & Mittler, R. (2010). Reactive oxygen species homeostasis and signalling during drought and salinity stresses. Plant, Cell & Environment, 33 (4), 453-467. https://doi.org/10.1111/j.1365-3040.2009.02041.x
  • Miyamoto, S., Moore, J., & Stichler, C. (1984). Overview of saline water irrigation in Far West Texas. In J. R. Replogle & K. G. Renard (Eds.), Water today and tomorrow (pp. 222-230). Proc. Speciality Conf. Irrigation and Drainage Division of ASCE.
  • Ödemiş, B. (2001). Farklı nitelikteki sulama sularının ve yıkama oranlarının pamuk bitkisinin değişik gelişme dönemlerindeki etkilerinin irdelenmesi. Doktora Tezi, Çukurova Üniversitesi, Fen Bilimleri Enstitüsü, Tarımsal Yapılar ve Sulama Ana Bilim Dalı, 227 s, Adana.
  • Ödemiş, B., Buyuktas, D., & Çalışkan, M.E. (2019). Effects of saline irrigation water and proline applications on yield, vegetative and physiological characteristics of potato crop (Solanum tuberosum L.). Derim, 36 (1), 54-63. https://doi.org/10.16882/derim.2018.407736
  • Ödemiş, B., & Çalışkan, M.E. (2014). Photosynthetic response of potato plants to soil salinity. Turkish Journal of Agricultural and Natural Sciences, Special Issue, 1429-1439.
  • Ödemiş, B., & Kazgöz Candemir, D. (2023). The effects of water stress on cotton leaf area and leaf morphology. Kahramanmaraş Sütçü İmam Üniversitesi Tarım ve Doğa Dergisi, 26 (1), 140-149. https://doi.org/10.18016/ksutarimdoga.vi.992764
  • Oosterhuis, D. (2001). Physiology and nutrition of high yielding cotton in the USA. Informações Agronômicas, 95, 18-24.
  • Qin, L., Guo, S., Ai, W., Tang, Y., Cheng, Q., & Chen, G. (2013). Effect of salt stress on growth and physiology in amaranth and lettuce: Implications for bioregenerative life support system. Advances in Space Research, 51 (3), 476-482. https://doi.org/10.1016/j.asr.2012.09.025
  • Sardar, H., Khalid, Z., Ahsan, M., Naz, S., Nawaz, A., Ahmad, R., Razzaq, K., Wabaidur, S.M., Jacquard, C., Širić, I., Kumar, P., & Abou Fayssal, S. (2023). Enhancement of salinity stress tolerance in lettuce (Lactuca sativa L.) via foliar application of nitric oxide. Plants, 12 (5), 1115. https://doi.org/10.3390/plants12051115
  • Shalhevet, J. (1984). Management of irrigation with brackish water. In I. Shainberg & J. Shalhevet (Eds.), Soil Salinity and Irrigation. Ecological Studies 51 (pp. 298-318). Springer.
  • Shi, M., Gu, J., Wu, H., Rauf, A., Emran, T. Bin, Khan, Z., Mitra, S., Aljohani, A.S.M., Alhumaydhi, F.A., Al-Awthan, Y.S., Bahattab, O., Thiruvengadam, M., & Suleria, H.A.R. (2022). Phytochemicals, nutrition, metabolism, bioavailability, and health benefits in lettuce-A comprehensive review. Antioxidants, 11 (6), 1158. https://doi.org/10.3390/antiox11061158
  • Shin, Y.K., Bhandari, S.R., Jo, J.S., Song, J.W., Cho, M.C., Yang, E.Y., & Lee, J.G. (2020). Response to salt stress in lettuce: Changes in chlorophyll fluorescence parameters, phytochemical contents, and antioxidant activities. Agronomy, 10 (11), 1627. https://doi.org/10.3390/agronomy10111627
  • Shrivastava, P., & Kumar, R. (2015). Soil salinity: A serious environmental issue and plant growth promoting bacteria as one of the tools for its alleviation. Saudi Journal of Biological Sciences, 22 (2), 123-131. https://doi.org/10.1016/j.sjbs.2014.12.001
  • Syngenta (2020). Lettuce variety catalogue (In Turkish). Katalog_60301. https://www.syngenta.com.tr/sites/g/files/kgtney1481/files/media/document/2020/08/11/katalog_60301.pdf (Erişim tarihi: 31.05.2021)
  • Szabolcs, I. (1994). Soils and salinisation. In M. Pessarakali (Ed.), Handbook of Plant and Crop Stress (pp. 3-11). Marcel Dekker.
  • TUİK. (2024). Bitkisel üretim istatistikleri-tarım alanları. https://biruni.tuik.gov.tr/medas/?kn=92&locale=tr
  • Ünlükara, A., Cemek, B., Karaman, S., & Erşahin, S. (2008). Response of lettuce (Lactuca sativa var. crispa) to salinity of irrigation water. New Zealand Journal of Crop and Horticultural Science, 36 (4), 265-273. https://doi.org/10.1080/01140670809510243
  • Vos, J., & Groenwold, J. (1989). Characteristics of photosynthesis and conductance of potato canopies and the effects of cultivars and transient drought. Field Crops Research, 20 (4), 237-250. https://doi.org/10.1016/0378-4290(89)90068-3
  • Xu, C., & Mou, B. (2015). Evaluation of lettuce genotypes for salinity tolerance. HortScience, 50 (10), 1441-1446. https://doi.org/10.21273/HORTSCI.50.10.1441
  • Yavuz, D., Rashid, B.A.R., & Seymen, M. (2023). The influence of NaCl salinity on evapotranspiration, yield traits, antioxidant status, and mineral composition of lettuce grown under deficit irrigation. Scientia Horticulturae, 310, 111776. https://doi.org/10.1016/j.scienta.2022.111776
  • Yurtseven, E., & Bozkurt, D.O. (1997). Effects of irrigation water quality and soil moisture content on crop yield and qality of lettuce. Journal of Agricultural Sciences, 3 (2), 44-51. https://doi.org/10.1501/Tarimbil_0000000311

Marulun farklı sulama suyu tuzluluklarına ve yıkama fraksiyonlarına karşı fizyolojik tepkisinin belirlenmesi

Year 2024, Volume: 29 Issue: 2, 552 - 568, 12.08.2024
https://doi.org/10.37908/mkutbd.1466659

Abstract

Denemenin yürütüldüğü Amik Ovası yanlış sulama yöntemleri, aşırı sulama, drenaj ve yeraltı su kullanımı nedeniyle hızla tuzlanmaktadır. Bu durum, toprak tuzluluğunun gelecekte daha da artacağını göstermektedir. Araştırma, ‘Cospirina’ çeşidi marul bitkisinde 3 farklı sulama suyu tuzluluğu (ECi) (ECi-0= 0.5 dS m-1 (kontrol), ECi-2= 2 dS m-1and ECi-4= 4 dS m-1) ve 4 farklı yıkama oranlarının (LF) (LF0=0%, LF10=10%, LF20=20%, LF30=30%) stoma iletkenliği (gs), yaprak yüzey sıcaklığı (LSt), klorofil içeriği (SPAD) ve klorofil konsantrasyonları (Chl-a, Chl-b ve Chl-tot) ve verim parametrelerine etkilerini belirlemek amacıyla seradaki saksı koşullarında faktöriyel deneme deseninde yürütülmüştür. Araştırma sonucunda, ECi arttıkça, toprak tuzluluğu (ECe) 0.82 dS m -1 den, 2.09 dS m-1’ye artmıştır. ECi’nin artmasıyla bitki su tüketimi (PWC) 8.92’den 5.71 L pot-1’ye, verim 276 g pot-1’dan 198 g pot-1’a, gs, 266 mmol m-2 s-1’dan 215 mmol m-2 s-1’a azalmıştır. LSt, ECi-0’a göre ECi-2’de %2.17, ECi-4’de %6.4 artmıştır. ECe arttığında verim tanık konuya göre, ECi-2’de %10 ve ECi-4’de %28 azalmıştır. Chl-tot ve Chl-a, ECe’deki artıştan önemli ölçüde etkilenirken (sırasıyla r2=0.96*, r2=0.99**), Chl-b etkilenmemiştir. Toprak tuzluluğunun aksine yıkama oranları bitki fizyolojisini olumlu etkilemiştir.

References

  • Acosta-Motos, J., Ortuño, M., Bernal-Vicente, A., Diaz-Vivancos, P., Sanchez-Blanco, M., & Hernandez, J. (2017). Plant responses to salt stress: Adaptive mechanisms. Agronomy, 7 (1), 18. https://doi.org/10.3390/agronomy7010018
  • Adhikari, N. D., Simko, I., & Mou, B. (2019). Phenomic and physiological analysis of salinity effects on lettuce. Sensors, 19 (21), 4814. https://doi.org/10.3390/s19214814
  • Aftab, T., Khan, M.M.A., da Silva, J.A.T., Idrees, M., Naeem, M., & Moinuddin. (2011). Role of salicylic acid in promoting salt stress tolerance and enhanced artemisinin production in Artemisia annua L. Journal of Plant Growth Regulation, 30 (4), 425-435. https://doi.org/10.1007/s00344-011-9205-0
  • Al-Maskri, A., Al-Kharusi, L., Al-Miqbali, H., & Khan, M.M. (2010). Effects of salinity stress on growth of lettuce (Lactuca sativa) under closed-recycle nutrient film technique. International Journal of Agriculture and Biology, 12 (3), 377-380.
  • Andriolo, J.L., Luz, G.L.D, Witter, M.H., Godoi, R.D.S., Barros, G.T., & Bortolotto, O.C. (2005). Growth and yield of lettuce plants under salinity. Horticultura Brasileira, 23 (4), 931-934. https://doi.org/10.1590/S0102-05362005000400014
  • Arnon, D.I. (1949). Cooper enzymes in isolated chloroplasts. Polypenoloxidase in Beta vulgaris. Plant Physiology, 24 (1), 1115. https://doi.org/10.1104/pp.24.1.1
  • Arora, N.K. (2019). Impact of climate change on agriculture production and its sustainable solutions. Environmental Sustainability, 2 (2), 95-96. https://doi.org/10.1007/s42398-019-00078-w
  • Aydinsakir, K., Karaca, C., Ozkan, C.F., Dinc, N., Buyuktas, D., & Isik, M. (2019). Excess nitrogen exceeds the European standards in lettuce grown under greenhouse conditions. Agronomy Journal, 111 (2), 764-769. https://doi.org/10.2134/agronj2018.07.0425
  • Ayers, A.S., & Westcot, D.W. (1985). Water quality for agriculture. FAO Irrigation and Drainage Paper 29. Babaousmail, M., Nili, M.S., Brik, R., Saadouni, M., Yousif, S.K.M., Omer, R.M., Osman, N.A., Alsahli, A.A., Ashour, H., &
  • El-Taher, A.M. (2022). Improving the tolerance to salinity stress in lettuce plants (Lactuca sativa L.) using exogenous application of salicylic acid, yeast, and zeolite. Life, 12 (10), 1538. https://doi.org/10.3390/life12101538
  • Bar-Yosef, B., Markovich, T., & Levkovich, I. (2005). Lettuce response to leachate recycling in an arid zone greenhouse. Acta Horticulturae, 697, 243-250. https://doi.org/10.17660/ActaHortic.2005.697.29
  • Barassi, C.A., Ayrault, G., Creus, C.M., Sueldo, R.J., & Sobrero, M.T. (2006). Seed inoculation with Azospirillum mitigates NaCl effects on lettuce. Scientia Horticulturae, 109 (1), 8-14. https://doi.org/10.1016/j.scienta.2006.02.025
  • Cahn, M., & Ajwa, H. (2004). Management of salinity for lettuce production. University of California Cooperative Extension Monterey County. https://cemonterey.ucanr.edu/files/171001.pdf
  • Çebi, U.K., Selçuk, Ö., Altıntaş, S., Yurtseven, E., & Öztürk, O. (2018). Effect of different irrigation levels and irrigation water salinity on water use efficiency and yield of tomato grown in greenhouse. Harran Tarım ve Gıda Bilimleri Dergisi, 22 (1), 33-46.
  • De Pascale, S., & Barbieri, G. (1995). Effects of soil salinity from long-term irrigation with saline-sodic water on yield and quality of winter vegetable crops. Scientia Horticulturae, 64 (3), 145-157. https://doi.org/10.1016/0304-4238(95)00823-3
  • Erdem, F., & Kale Çelik, S. (2018). Farklı tuzluluk ve yıkama suyu oranlarına sahip sulama sularının ıspanak (Spinacia oleracea L.) gelişimi, verimi ve drenaj suyu kalitesine etkisi. Isparta Uygulamalı Bilimler Üniversitesi Ziraat Fakültesi Dergisi, 1. Uluslararası Tarımsal Yapılar ve Sulama Kongresi Özel Sayısı, 73-82.
  • Francois, L.E., Donovan, T.J., Maas, E.V., & Rubenthaler, G.L. (1988). Effect of salinity on grain yield and quality, vegetative growth, and germination of triticale. Agronomy Journal, 80 (4), 642-647. https://doi.org/10.2134/agronj1988.00021962008000040019x
  • Gianquinto, G., Goffart, J.P., Olivier, M., Guarda, G., Colauzzi, M., Dalla Costa, L., Delle Vedove, G., Vos, J., & Mackerron, D.K.L. (2004). The use of hand-held chlorophyll meters as a tool to assess the nitrogen status and to guide nitrogen fertilization of potato crop. Potato Research, 47 (1-2), 35-80. https://doi.org/10.1007/BF02731970
  • Gün, A. (2019). Marulda (Lactuca sativa L. var. crispa) organik gübrelerin verim ve kaliteye etkisi. Yüksek Lisans Tezi, Ordu Üniversitesi, Fen Bilimleri Enstitüsü, Bahçe Bitkileri Anabilim Dalı, 78 s, Ordu.
  • Gupta, B., & Huang, B. (2014). Mechanism of salinity tolerance in plants: Physiological, biochemical, and molecular characterization. International Journal of Genomics, 1-18. https://doi.org/10.1155/2014/701596
  • Hancı, F., & Tuncer, G. (2020). How do foliar application of melatonin and l-tryptophan affect lettuce growth parameters under salt stress? Turkish Journal of Agriculture - Food Science and Technology, 8 (4), 960-964. https://doi.org/10.24925/turjaf.v8i4.960-964.3224
  • Heidarpour, M., Mostafazadeh‐Fard, B., Arzani, A., Aghakhani, A., & Feizi, M. (2009). Effects of irrigation water salinity and leaching fraction on yield and evapotranspiration in spring wheat. Communications in Soil Science and Plant Analysis, 40 (15-16), 2521-2535. https://doi.org/10.1080/00103620903111384
  • Ibrahim, Y.M., Buyuktas, D., & Karaca, C. (2024). Evaporation and transpiration components of crop evapotranspiration and growth parameters of lettuce grown under greenhouse conditions. Journal of Irrigation and Drainage Engineering, 150 (5). https://doi.org/10.1061/JIDEDH.IRENG-10256
  • Isayenkov, S.V. (2012). Physiological and molecular aspects of salt stress in plants. Cytology and Genetics, 46 (5), 302-318. https://doi.org/10.3103/S0095452712050040
  • Islam, R., Solaiman, A.H.M., Kabir, M.H., Arefin, S.M.A., Azad, M.O.K., Siddiqee, M.H., Alsanius, B.W., & Naznin, M.T. (2021). Evaluation of lettuce growth, yield, and economic viability grown vertically on unutilized building wall in Dhaka City. Frontiers in Sustainable Cities, 3, 582431. https://doi.org/10.3389/frsc.2021.582431
  • Jiang, J., Huo, Z., Feng, S., & Zhang, C. (2012). Effect of irrigation amount and water salinity on water consumption and water productivity of spring wheat in Northwest China. Field Crops Research, 137, 78-88. https://doi.org/10.1016/j.fcr.2012.08.019
  • Kanber, R., Çullu, M.A., Kendirli, B., Antepli, S., & Yılmaz, N. (2005). Sulama, drenaj ve tuzluluk. Türkiye Ziraat Mühendisliği VI. Teknik Kongresi, 213-251.
  • Kazgöz Candemir, D., & Ödemiş, B. (2021). Effects of foliar sulfur applications in cotton crop on stomatal conductance under water stress. Mustafa Kemal Üniversitesi Tarım Bilimleri Dergisi, 26 (1), 171-182. https://doi.org/10.37908/mkutbd.806526
  • Kerepesi, I., & Galiba, G. (2000). Osmotic and salt stress‐induced alteration in soluble carbohydrate content in wheat seedlings. Crop Science, 40 (2), 482-487. https://doi.org/10.2135/cropsci2000.402482x
  • Khamidov, M., Ishchanov, J., Hamidov, A., Donmez, C., & Djumaboev, K. (2022). Assessment of soil salinity changes under the climate change in the Khorezm Region. International Journal of Environmental Research and Public Health, 19 (14), 8794. https://doi.org/10.3390/ijerph19148794
  • Kim, H.H., Goins, G.D., Wheeler, R.M., & Sager, J.C. (2004). Stomatal conductance of lettuce grown under or exposed to different light Qualities. Annals of Botany, 94 (5), 691-697. https://doi.org/10.1093/aob/mch192
  • Lichtenthaler, H.K., & Wellburn, A.R. (1983). Determinations of total carotenoids and chlorophylls a and b of leaf extracts in different solvents. Biochemical Society Transactions, 11 (5), 591-592. https://doi.org/10.1042/bst0110591
  • Maas, E.V., & Poss, J.A. (1989). Salt sensitivity of cowpea at various growth stages. Irrigation Science, 10 (4). https://doi.org/10.1007/BF00257496
  • Maas, E.V., Poss, J.A., & Hoffman, G.J. (1986). Salinity sensitivity of sorghum at three growth stages. Irrigation Science, 7 (1). https://doi.org/10.1007/BF00255690
  • Marenco, R.A., Antezana-Vera, S.A., & Nascimento, H.C.S. (2009). Relationship between specific leaf area, leaf thickness, leaf water content and SPAD-502 readings in six Amazonian tree species. Photosynthetica, 47 (2), 184-190. https://doi.org/10.1007/s11099-009-0031-6
  • Mekki, B.B., & Orabi, S.A. (2007). Response of prickly lettuce to uniconazole and irrigation with diluted seawater. American–Eurasian Journal of Agricultural and Environmental Sciences, 2 (6), 611-618. http://www.idosi.org/aejaes/jaes2(6)/1.pdf
  • Miceli, A., Moncada, A., & D’Anna, F. (2003). Effect of salt stress in lettuce cultivation. Acta Horticulturae, 609, 371-375. https://doi.org/10.17660/ActaHortic.2003.609.56
  • Miller, G., Suzuki, N., Ciftci-Yilmaz, S., & Mittler, R. (2010). Reactive oxygen species homeostasis and signalling during drought and salinity stresses. Plant, Cell & Environment, 33 (4), 453-467. https://doi.org/10.1111/j.1365-3040.2009.02041.x
  • Miyamoto, S., Moore, J., & Stichler, C. (1984). Overview of saline water irrigation in Far West Texas. In J. R. Replogle & K. G. Renard (Eds.), Water today and tomorrow (pp. 222-230). Proc. Speciality Conf. Irrigation and Drainage Division of ASCE.
  • Ödemiş, B. (2001). Farklı nitelikteki sulama sularının ve yıkama oranlarının pamuk bitkisinin değişik gelişme dönemlerindeki etkilerinin irdelenmesi. Doktora Tezi, Çukurova Üniversitesi, Fen Bilimleri Enstitüsü, Tarımsal Yapılar ve Sulama Ana Bilim Dalı, 227 s, Adana.
  • Ödemiş, B., Buyuktas, D., & Çalışkan, M.E. (2019). Effects of saline irrigation water and proline applications on yield, vegetative and physiological characteristics of potato crop (Solanum tuberosum L.). Derim, 36 (1), 54-63. https://doi.org/10.16882/derim.2018.407736
  • Ödemiş, B., & Çalışkan, M.E. (2014). Photosynthetic response of potato plants to soil salinity. Turkish Journal of Agricultural and Natural Sciences, Special Issue, 1429-1439.
  • Ödemiş, B., & Kazgöz Candemir, D. (2023). The effects of water stress on cotton leaf area and leaf morphology. Kahramanmaraş Sütçü İmam Üniversitesi Tarım ve Doğa Dergisi, 26 (1), 140-149. https://doi.org/10.18016/ksutarimdoga.vi.992764
  • Oosterhuis, D. (2001). Physiology and nutrition of high yielding cotton in the USA. Informações Agronômicas, 95, 18-24.
  • Qin, L., Guo, S., Ai, W., Tang, Y., Cheng, Q., & Chen, G. (2013). Effect of salt stress on growth and physiology in amaranth and lettuce: Implications for bioregenerative life support system. Advances in Space Research, 51 (3), 476-482. https://doi.org/10.1016/j.asr.2012.09.025
  • Sardar, H., Khalid, Z., Ahsan, M., Naz, S., Nawaz, A., Ahmad, R., Razzaq, K., Wabaidur, S.M., Jacquard, C., Širić, I., Kumar, P., & Abou Fayssal, S. (2023). Enhancement of salinity stress tolerance in lettuce (Lactuca sativa L.) via foliar application of nitric oxide. Plants, 12 (5), 1115. https://doi.org/10.3390/plants12051115
  • Shalhevet, J. (1984). Management of irrigation with brackish water. In I. Shainberg & J. Shalhevet (Eds.), Soil Salinity and Irrigation. Ecological Studies 51 (pp. 298-318). Springer.
  • Shi, M., Gu, J., Wu, H., Rauf, A., Emran, T. Bin, Khan, Z., Mitra, S., Aljohani, A.S.M., Alhumaydhi, F.A., Al-Awthan, Y.S., Bahattab, O., Thiruvengadam, M., & Suleria, H.A.R. (2022). Phytochemicals, nutrition, metabolism, bioavailability, and health benefits in lettuce-A comprehensive review. Antioxidants, 11 (6), 1158. https://doi.org/10.3390/antiox11061158
  • Shin, Y.K., Bhandari, S.R., Jo, J.S., Song, J.W., Cho, M.C., Yang, E.Y., & Lee, J.G. (2020). Response to salt stress in lettuce: Changes in chlorophyll fluorescence parameters, phytochemical contents, and antioxidant activities. Agronomy, 10 (11), 1627. https://doi.org/10.3390/agronomy10111627
  • Shrivastava, P., & Kumar, R. (2015). Soil salinity: A serious environmental issue and plant growth promoting bacteria as one of the tools for its alleviation. Saudi Journal of Biological Sciences, 22 (2), 123-131. https://doi.org/10.1016/j.sjbs.2014.12.001
  • Syngenta (2020). Lettuce variety catalogue (In Turkish). Katalog_60301. https://www.syngenta.com.tr/sites/g/files/kgtney1481/files/media/document/2020/08/11/katalog_60301.pdf (Erişim tarihi: 31.05.2021)
  • Szabolcs, I. (1994). Soils and salinisation. In M. Pessarakali (Ed.), Handbook of Plant and Crop Stress (pp. 3-11). Marcel Dekker.
  • TUİK. (2024). Bitkisel üretim istatistikleri-tarım alanları. https://biruni.tuik.gov.tr/medas/?kn=92&locale=tr
  • Ünlükara, A., Cemek, B., Karaman, S., & Erşahin, S. (2008). Response of lettuce (Lactuca sativa var. crispa) to salinity of irrigation water. New Zealand Journal of Crop and Horticultural Science, 36 (4), 265-273. https://doi.org/10.1080/01140670809510243
  • Vos, J., & Groenwold, J. (1989). Characteristics of photosynthesis and conductance of potato canopies and the effects of cultivars and transient drought. Field Crops Research, 20 (4), 237-250. https://doi.org/10.1016/0378-4290(89)90068-3
  • Xu, C., & Mou, B. (2015). Evaluation of lettuce genotypes for salinity tolerance. HortScience, 50 (10), 1441-1446. https://doi.org/10.21273/HORTSCI.50.10.1441
  • Yavuz, D., Rashid, B.A.R., & Seymen, M. (2023). The influence of NaCl salinity on evapotranspiration, yield traits, antioxidant status, and mineral composition of lettuce grown under deficit irrigation. Scientia Horticulturae, 310, 111776. https://doi.org/10.1016/j.scienta.2022.111776
  • Yurtseven, E., & Bozkurt, D.O. (1997). Effects of irrigation water quality and soil moisture content on crop yield and qality of lettuce. Journal of Agricultural Sciences, 3 (2), 44-51. https://doi.org/10.1501/Tarimbil_0000000311
There are 58 citations in total.

Details

Primary Language English
Subjects Biosystem, Irrigation Water Quality
Journal Section Araştırma Makalesi
Authors

Berkant Ödemiş 0000-0001-7636-2858

Derya Kazgöz Candemir 0000-0002-5741-5464

Cihan Karaca 0000-0003-3010-9149

Early Pub Date August 3, 2024
Publication Date August 12, 2024
Submission Date April 7, 2024
Acceptance Date May 24, 2024
Published in Issue Year 2024 Volume: 29 Issue: 2

Cite

APA Ödemiş, B., Kazgöz Candemir, D., & Karaca, C. (2024). Determination of the physiological response of lettuce to different irrigation water salinities (NaCl) and leaching fractions. Mustafa Kemal Üniversitesi Tarım Bilimleri Dergisi, 29(2), 552-568. https://doi.org/10.37908/mkutbd.1466659

22740137731737513771 13774 15432 1813713775 14624 15016 i2or 1857924881download