Research Article
BibTex RIS Cite

Yeşil sentez ile üretilen çinko oksit nanopartiküllerinin fasulye tohum böceği, Acanthoscelides obtectus Say. (Coleoptera: Chrysomelidae) üzerindeki insektisidal etkinliği

Year 2025, Volume: 30 Issue: 1, 237 - 250
https://doi.org/10.37908/mkutbd.1589636

Abstract

Çinko oksit nanopartiküllerinin (ZnO-NP) biyo-insektisit olarak kullanımı, çevre dostu özellikleri ve zararlı popülasyonlarının mücadelesinde giderek daha fazla ilgi görmektedir. Bu çalışmada, ZnO nanopartiküllerinin fasulye tohum böceği, Acanthoscelides obtectus Say. (Coleoptera: Chrysomelidae) erginleri üzerindeki insektisidal aktivitesi, kontrollü laboratuvar koşulları altında farklı dozlarda ölüm oranlarının analiz edilmesi yoluyla kapsamlı bir şekilde değerlendirilmiştir. ZnO nanopartikülleri, Taramalı Elektron Mikroskobu (SEM) kullanılarak sentezlenmiş ve karakterize edilmiş, küresel şekilleri ve nanoskaladaki boyutları (~100 nm) doğrulanmıştır. Ergin ölüm oranı, 100, 250, 500, 750 ve 1000 mg kg⁻¹ dozlarında 10 günlük bir süre boyunca izlenmiştir. İki yönlü ANOVA sonuçları, hem dozun hem de maruz kalma süresinin böceklerin ölüm oranı üzerinde anlamlı etkileri olduğunu göstermiştir. Ayrıca, Tek Yönlü ANOVA ile yapılan istatistiksel analiz, ölüm oranlarında doza bağlı olarak anlamlı bir artış olduğunu göstermiş ve en yüksek dozda (1000 mg kg⁻¹), ölüm oranları %93.3’e ulaşmıştır. Bu bulgular, ZnO nanopartiküllerinin özellikle depolanmış ürünlerde entegre zararlı yönetimi stratejileri için insektisitlere sürdürülebilir bir alternatif olarak önemli potansiyelini vurgulamaktadır. Gelecekteki çalışmalar, depolardaki mücadele uygulamalarını optimize etmeye ve hedef dışı organizmalar üzerindeki uzun vadeli etkileri değerlendirmeye ve farklı doz ve uygulama yöntemlerinin güvenli ve etkili kullanımına yönelik araştırmaların yapılmasına odaklanmalıdır.

References

  • Abass, A.B., Ndunguru, G., Mamiro, P., Alenkhe, B., Mlingi, N., & Bekunda, M. (2014). Post-harvest food losses in a maize-based farming system of semi-arid savannah area of Tanzania. Journal of Stored Products Research, 57, 49-57. https://doi.org/10.1016/j.jspr.2013.12.004
  • Abbott, W.S. (1925). A method of computing the effectiveness of an insecticide. Journal of Economic Entomology, 18 (2), 265-267.
  • Abd El-Latef, E.A., Wahba, M.N., Mousa, S., El-Bassyouni, G.T., & El-Shamy, A.M. (2023). Cu-doped ZnO-nanoparticles as a novel eco-friendly insecticide for controlling Spodoptera littoralis. Biocatalysis and Agricultural Biotechnology, 52, 102823. https://doi.org/10.1016/j.bcab.2023.102823
  • Abdel-Baki, A.A.S., Ibrahium, S.M., Aboelhadid, S.M., Hassan, A.O., Al-Quraishy, S., & Abdel-Tawab, H. (2024). Benzyl alcohol, benzyl benzoate and methyl benzoate as bio-insecticides against dried bean beetle Acanthoscelides obtectus (Coleoptera: Tenebrionidae). Journal of Stored Products Research, 105, 102246. https://doi.org/10.1016/j.jspr.2024.102246
  • Abd-Elsalam, K.A., & Prasad, R. (2018). Nanobiotechnology applications in plant protection. Springer.
  • Abomuti, M.A., Danish, E.Y., Firoz, A., Hasan, N., & Malik, M.A. (2021). Green synthesis of zinc oxide nanoparticles using salvia officinalis leaf extract and their photocatalytic and antifungal activities. Biology, 10 (11), 1075. https://doi.org/10.3390/biology10111075
  • Ahmad, S., Mfarrej, M.F.B., El-Esawi, M.A., Waseem, M., Alatawi, A., Nafees, M., Saleem, M.H., Rizwan, M., Yasmeen, T., Anayat, A., & Ali, S. (2022). Chromium-resistant Staphylococcus aureus alleviates chromium toxicity by developing synergistic relationships with zinc oxide nanoparticles in wheat. Ecotoxicology and Environmental Safety, 230, 113142. https://doi.org/10.1016/j.ecoenv.2021.113142
  • Alisha A.A.S., & Thangapandiyan, S. (2019). Comparative bioassay of silver nanoparticles and malathion on infestation of red flour beetle, Tribolium castaneum. The Journal of Basic and Applied Zoology, 80, 1-10. https://doi.org/10.1186/s41936-019-0124-0
  • Anandhi, S., Saminathan, V.R., Yasotha, P., Saravanan, P.T., & Rajanbabu, V. (2020). Nano-pesticides in pest management. Journal of Entomology and Zoology Studies, 8 (4), 685-690.
  • Athanassiou, C.G., Kavallieratos, N.G., Benelli, G., Losic, D., Usha Rani, P., & Desneux, N. (2018). Nanoparticles for pest control: Current status and future perspectives. Journal of Pest Science, 91, 1-15. https://doi.org/10.1007/s10340-017-0898-0
  • Benelli, G. (2018). Mode of action of nanoparticles against insects. Environmental Science and Pollution Research, 25 (13), 12329-12341. https://doi.org/10.1007/s11356-018-1850-4
  • Benelli, G., Pavela, R., Maggi, F., Petrelli, R., & Nicoletti, M. (2017). Commentary: making green pesticides greener? The potential of plant products for nanosynthesis and pest control. Journal of Cluster Science, 28, 3-10. https://doi.org/10.1007/s10876-016-1131-7
  • Bouchenak, M., & Lamri-Senhadji, M. (2013). Nutritional quality of legumes, and their role in cardiometabolic risk prevention: A review. Journal of Medicinal Food, 16 (3), 185-198. https://doi.org/10.1089/jmf.2011.0238
  • Chidege, M.Y., Venkataramana, P.B., & Ndakidemi, P.A. (2024). Enhancing Food grains storage systems through insect pest detection and control measures for maize and beans: ensuring food security post-covid-19 Tanzania. Sustainability, 16 (5), 1767. https://doi.org/10.3390/su16051767
  • Chinnathambi, S., Hanagata, N., Yamazaki, T., & Shirahata, N. (2020). Nano-bio interaction between blood plasma proteins and water-soluble silicon quantum dots with enabled cellular uptake and minimal cytotoxicity. Nanomaterials, 10 (11), 2250. https://doi.org/10.3390/nano10112250
  • Damalas, C.A., & Koutroubas, S.D. (2020). Botanical pesticides for eco‐friendly pest management: Drawbacks and limitations. Pesticides in Crop Production: Physiological and Biochemical Action, 181-193.
  • Debnath, N., Das, S., Seth, D., Chandra, R., Bhattacharya, S.C., & Goswami, A. (2011). Entomotoxic effect of silica nanoparticles against Sitophilus oryzae (L.). Journal of Pest Science, 84, 99-105. https://doi.org/10.1007/s10340-010-0332-3
  • Dubey, A., Goswami, M., Yadav, K., & Chaudhary, D.K. (2015). Oxidative stress and nano-toxicity induced by TiO2 and ZnO on wag cell line. Plos One, 10 (5), e0127493. https://doi.org/10.1371/journal.pone.0127493
  • El-Bakry, A.M., Ibrahim, F.M., Abdelmaksoud, N.M., Sammour, E.A., Abdel-Aziz, N.F., & El Habbasha, E.S. (2024). Eco-friendly insecticidal formulation extracted from orange peel essential oil and ZnO nanoparticles against Tribolium castaneum. Egyptian Journal of Chemistry. https://doi.org/10.21608/ejchem.2024.293365.9778
  • Endshaw, W., & Hiruy, B. (2020). The distribution, frequency of occurrence, and the status of stored faba bean insect pests in relation to food security in Farta District, North West Ethiopia. Cogent Food & Agriculture, 6 (1), 1832400. https://doi.org/10.1080/23311932.2020.1832400
  • Eskin, A., & Nurullahoğlu, Z. U. (2022). Effects of zinc oxide nanoparticles (ZnO NPs) on the biology of Galleria mellonella L. (Lepidoptera: Pyralidae). The Journal of Basic and Applied Zoology, 83 (1), 54. https://doi.org/10.1186/s41936-022-00318-2
  • FAO (2024). Common Bean Production and Area Harvested Statistics. Retrieved from https://www.fao.org/faostat/en/#data/QCL by October 15, 2024.
  • Haroun, S.A., Elnaggar, M.E., Zein, D.M., & Gad, R.I. (2020). Insecticidal efficiency and safety of zinc oxide and hydrophilic silica nanoparticles against some stored seed insects. Journal of Plant Protection Research, 60 (1). https://doi.org/10.24425/jppr.2020.132211
  • Hashem, M.Y., Ahmed, S.S., & Naroz, M.H. (2022). Comparative effects of hypoxia, hypercapnia, and hypoxia/hypercapnia on the mortality and survival of Acanthoscelides obtectus (Say) (Coleoptera: Chrysomelidae). Journal of Stored Products Research, 98, 101988. https://doi.org/10.1016/j.jspr.2022.101988
  • Hilal, S.M., Mohmed, A.S., Barry, N.M., & Ibrahim, M.H. (2021). Entomotoxicity of TiO2 and ZnO nanoparticles against adults Tribolium castaneum (Herbest)(Coleoptera: Tenebrionidae). IOP Conference Series: Earth and Environmental Science, 910 (1), 012088. https://doi.org/10.1088/1755-1315/910/1/012088
  • Ibrahim, S., Elbehery, H., & Samy, A. (2022). Insecticidal activity of ZnO NPs synthesized by green method using pomegranate peels extract on stored product insects. Egyptian Journal of Chemistry, 65 (4), 135-145. https://doi.org/10.21608/ejchem.2021.92692.4496
  • Jevremović, S., Lazarević, J., Kostic, M., Krnjajić, S., Ugrenović, V., Radonjic, A., & Kostić, I. (2019). Contact application of Lamiaceae botanicals reduces bean weevil infestation in stored beans. Archives of Biological Sciences, 71 (4), 665-676. https://doi.org/10.2298/ABS190617049J
  • Kaale, L.D., Siddiq, M., & Hooper, S. (2022). Lentil (Lens culinaris Medik) as nutrient-rich and versatile food legume: A review. Legume Science, 5, e169. https://doi.org/10.1002/leg3.169
  • Kaya, K., Sertkaya, E., Üremiş, İ., & Soylu, S. (2018). Determination of chemical composition and fumigant insecticidal activities of essential oils of some medicinal plants against the adults of cowpea weevil, Callosobruchus maculatus. KSU Tarım ve Doğa Dergisi, 21, 708-714. https://doi.org/10.18016/ksudobil.386176
  • Khooshe-Bast, Z., Sahebzadeh, N., Ghaffari‐Moghaddam, M., & Mirshekar, A. (2016). Insecticidal effects of zinc oxide nanoparticles and Beauveria bassiana TS11 on Trialeurodes vaporariorum (Westwood, 1856) (Hemiptera: Aleyrodidae). Acta Agriculturae Slovenica, 107 (2), 299-309. https://doi.org/10.14720/aas.2016.107.2.04
  • Kitherian, S. (2017). Nano and bio-nanoparticles for insect control. Research Journal of Nanoscience and Nanotechnology, 7 (1), 1-9. https://doi.org/10.3923/rjnn.2017
  • Koca, A.S., & Yılmaz, A. (2025). Effective control of Sitophilus zeamais (Motsch.)(Coleoptera: Curculionidae) using essential oil blends: an alternative to single-oil applications. Journal of Crop Health, 77 (2), 57. https://doi.org/10.1007/s10343-025-01133-9
  • Korunic, Z., Fields, P.G., Kovacs, M.I.P., Noll, J.S., Lukow, O.M., Demianyk, C.J., & Shibley, K.J. (1996). The effect of diatomaceous earth on grain quality. Postharvest Biology and Technology, 9 (3), 373-387. https://doi.org/10.1016/S0925-5214(96)00038-5
  • Manandhar, A., Milindi, P., & Shah, A. (2018). An overview of the post-harvest grain storage practices of smallholder farmers in developing countries. Agriculture, 8 (4), 57. https://doi.org/10.3390/agriculture8040057
  • Mandal, B.K. (2019). Silver nanoparticles: Potential as insecticidal and microbial biopesticides. In: O. Koul (Ed.), Nano-biopesticides today and future perspectives. Academic Press, Cambridge. pp. 281-301.
  • Mao, B.H., Chen, Z.Y., Wang, Y.J., & Yan, S.J. (2018). Silver nanoparticles have lethal and sublethal adverse effects on development and longevity by inducing ROS-mediated stress responses. Scientific Reports, 8 (1), 2445. https://doi.org/10.1038/s41598-018-20728-z
  • Meng, L., Yuan, G., Chen, M., Zheng, L., Dou, W., Peng, Y., Bai, W.J., Li, Z.Y., Vontas, J., & Wang, J.J. (2023). Cuticular competing endogenous rnas regulate insecticide penetration and resistance in a major agricultural pest. BMC Biology, 21 (1). https://doi.org/10.1186/s12915-023-01694-z
  • Mesele, T., Dibaba, K., & Mendesil, E. (2019). Farmers’ perceptions of Mexican bean weevil, Zabrotes subfasciatus (Boheman), and pest management practices in Southern Ethiopia. Advances in Agriculture, 1, 8193818. https://doi.org/10.1155/2019/8193818
  • Mohapatra, D., Kar, A., & Giri, S.K. (2015). Insect pest management in stored pulses: An overview. Food and Bioprocess Technology, 8, 239-265. https://doi.org/10.1007/s11947-014-1399-2
  • Omar, S.T., & Ali, W.K. (2024). Effects of zinc oxide nanoparticles (ZnO NPs) synthesized from different plant leaf extracts on mealworm larvae Tenebrio molitor L., 1758 (Tenebrionidae: Coleopetera). Zanco Journal of Pure and Applied Sciences, 36 (3), 7-18. http://dx.doi.org/10.21271/ZJPAS.36.3.2
  • Owolade, O.F., Ogunleti, D.O., & Adenekan, M.O. (2008). Effect of titanium dioxide on diseases, development and yield of edible cowpea. Journal of Plant Protection Research, 48, 329-335.
  • Pauksch, L., Rohnke, M., Schnettler, R., & Lips, K.S. (2014). Silver nanoparticles do not alter human osteoclastogenesis but induce cellular uptake. Toxicology Reports, 1, 900-908. https://doi.org/10.1016/j.toxrep.2014.10.012
  • Paul, U.V., Lossini, J.S., Edwards, P.J., & Hilbeck, A. (2009). Effectiveness of products from four locally grown plants for the management of Acanthoscelides obtectus (Say) and Zabrotes subfasciatus (Boheman)(both Coleoptera: Bruchidae) in stored beans under laboratory and farm conditions in Northern Tanzania. Journal of Stored Products Research, 45 (2), 97-107. https://doi.org/10.1016/j.jspr.2008.09.006
  • Pittarate, S., Rajula, J., Rahman, A., Vivekanandhan, P., Thungrabeab, M., Mekchay, S., & Krutmuang, P. (2021). Insecticidal effect of zinc oxide nanoparticles against Spodoptera frugiperda under laboratory conditions. Insects, 12 (11), 1017. https://doi.org/10.3390/insects12111017
  • Raduw, G.G., & Mohammed, A.A. (2020). Insecticidal efficacy of three nanoparticles for the control of Khapra beetle (Trogoderma granarium) on different grains. Journal of Agricultural and Urban Entomology, 36 (1), 90-100. https://doi.org/10.3954/1523-5475-36.1.90
  • Read, T.L., Doolette, C.L., Li, C., Schjoerring, J.K., Kopittke, P.M., Donner, E., & Lombi, E. (2020). Optimising the foliar uptake of zinc oxide nanoparticles: Do leaf surface properties and particle coating affect absorption?. Physiologia Plantarum, 170 (3), 384-397. https://doi.org/10.1111/ppl.13167
  • Rebora, M., Del Buono, D., Piersanti, S., & Salerno, G. (2023). Reduction in insect attachment ability by biogenic and non-biogenic ZnO nanoparticles. Environmental Science: Nano, 10 (11), 3062-3071. https://doi.org/10.1039/d3en00545c
  • Regnault-Roger, C., Vincent, C., & Arnason, J.T. (2012). Essential oils in insect control: Low-risk products in a high-stakes world. Annual Review of Entomology, 57 (1), 405-424. https://doi.org/10.1146/annurev-ento-120710-100554
  • Resham, S., Khalid, M., & Kazi, A.G. (2015). Nanobiotechnology in agricultural development. In: D. Bargh, M. Khan and E. Davies (Eds.), PlantOmics: The omics of plant science. Springer, New Delhi, India. pp. 683-698.
  • Salem, A.A., Hamzah, A.M., & El-Taweelah, N.M. (2015). Aluminum and Zinc oxides nanoparticles as a new methods for controlling the red flour beetles, Tribolium castaneum (Herbest) compared to malathion insecticide. Journal of Plant Protection and Pathology, 6 (1), 129-137. https://doi.org/10.21608/jppp.2015.53186
  • Schoonhoven, A.V., & Cardona, C. (1986). Main insect pests of stored beans and their control. International Center for Tropical Agriculture. Study Guide CIAT.
  • Sertkaya, E., Kaya, K., & Soylu, S. (2010). Chemical compositions and insecticidal activities of the essential oils from several medicinal plants against the cotton whitefly, Bemisia tabaci. Asian Journal of Chemistry, 22, 2982-2990.
  • Sertkaya, E. (2013). Fumigant toxicity of the essential oils from medicinal plants against bean weevil, Acanthoscelides obtectus (Say) (Coleoptera: Bruchidae). Asian Journal of Chemistry, 25, 553-555.
  • Soylu, S., Kara, M., Türkmen, M., & Şahin, B. (2022). Synergistic effect of Foeniculum vulgare essential oil on the antibacterial activities of Ag- and Cu-substituted ZnO nanorods (ZnO-NRs) against food, human and plant pathogenic bacterial disease agents. Inorganic Chemistry Communications, 146, 110103. https://doi.org/10.1016/j.inoche.2022.110103
  • Stadler, T., Buteler, M., Weaver, D.K., & Sofie, S. (2012). Comparative toxicity of nanostructured alumina and a commercial inert dust for Sitophilus oryzae (L.) and Rhyzopertha dominica (F.) at varying ambient humidity levels. Journal of Stored Products Research, 48, 81-90. https://doi.org/10.1016/j.jspr.2011.09.004
  • Şahin, B., Soylu, S., Kara, M., Türkmen, M., Aydin, R., & Çetin, H. (2021). Superior antibacterial activity against seed-borne plant bacterial disease agents and enhanced physical properties of novel green synthesized nanostructured ZnO using Thymbra spicata plant extract. Ceramics International, 47, 341-350. https://doi.org/10.1016/j.ceramint.2020.08.139
  • Şahin, B., Aydin, R., Soylu, S., Türkmen, M., Kara, M., Akkaya, A., Çetin, H., & Ayyıldız, E. (2022). The effect of Thymus syriacus plant extract on the main physical and antibacterial activities of ZnO nanoparticles synthesized by SILAR Method. Inorganic Chemistry Communications, 135, 109088. https://doi.org/10.1016/j.inoche.2021.109088
  • Şen, K., Koca, A.S., & Kaçar, G. (2020). Importance, biology, damage and management of bean weevil Acanthoscelides obtectus Say (Coleoptera: Chrysomelidae). Journal of the Institute of Science and Technology, 10 (3), 1518-1527. https://doi.org/10.21597/jist.705681
  • Şener, A., & Kaya, M. (2022). Agro-morphological characterization of local bean (Phaseolus vulgaris L.). Mustafa Kemal University Journal of Agricultural Sciences, 27 (2), 318-330. https://doi.org/10.37908/mkutbd.1093427
  • Subramanyam, B., & Roesli, R. (2000). Inert dusts. In: B. Subramanyam and D.W. Hagstrum (Eds.), Alternatives to pesticides in stored- product IPM . Kluwer Academic Publishers, Dordrecht, the Netherlands. pp. 321-380.
  • TUİK (2024). Bitkisel üretim istatistikleri. Retrieved from https://biruni.tuik.gov.tr/medas/?kn=92&locale=tr by December 10, 2024.
  • Wong-Corral, F.J., Castañé, C., & Riudavets, J. (2013). Lethal effects of CO2-modified atmospheres for the control of three Bruchidae species. Journal of Stored Products Research, 55, 62-67. https://doi.org/10.1016/j.jspr.2013.08.005
  • Yeken, M.Z. (2023). Investigation of genotype×environment interactions for the seed mineral composition in Phaseolus vulgaris L. Journal of Food Composition and Analysis, 124, 105657. https://doi.org/10.1016/j.jfca.2023.105657
  • Yilmaz, H., & Yilmaz, A. (2025). Hidden hunger in the age of abundance: the nutritional pitfalls of modern staple crops. Food Science & Nutrition. https://doi.org/10.1002/fsn3.4610
  • Yilmaz, H., Özer, G., Baloch, F.S., Çiftçi, V., Chung, Y.S., & Sun, H.J. (2023). Genome-wide identification and expression analysis of MTP (Metal ion transport proteins) genes in the common bean. Plants, 12 (18), 3218. https://doi.org/10.3390/plants12183218
  • Ziaee, M., & Ganji, Z. (2016). Insecticidal efficacy of silica nanoparticles against Rhyzopertha dominica F. and Tribolium confusum Jacquelin du Val. Journal of Plant Protection Research, 56 (3), 250-256.

Insecticidal efficiency of green-synthesized zinc oxide nanoparticles on bean weevil, Acanthoscelides obtectus Say. (Coleoptera: Chrysomelidae)

Year 2025, Volume: 30 Issue: 1, 237 - 250
https://doi.org/10.37908/mkutbd.1589636

Abstract

The use of zinc oxide nanoparticles (ZnO-NPs) as a bio-insecticide has gained increasing attention due to their eco-friendly properties and proven efficacy in controlling pest populations. This study comprehensively assessed the insecticidal activity of ZnO-NPs against the bean weevil, Acanthoscelides obtectus Say. (Coleoptera: Chrysomelidae) adults, by analyzing mortality rates in a dose-dependent manner under controlled laboratory conditions. ZnO-NPs were synthesized and characterized using Scanning Electron Microscopy (SEM), which confirmed their spherical shape and nanoscale dimensions (~100 nm). Adult mortality was monitored over a 10-day period at doses of 100, 250, 500, 750 and 1000 mg kg⁻¹. The two-way ANOVA results revealed that both dose and exposure duration had significant effects on insect mortality rates. Furthermore, one-way ANOVA showed a significant dose-dependent increase in mortality, with the highest dose (1000 mg kg⁻¹) achieving a corrected mortality rate of 93.3%. These findings underscore the potential of ZnO-NPs as a sustainable alternative to conventional chemical insecticides, particularly for integrated pest management strategies in stored products. Future studies should focus on optimizing control practices in storage facilities and evaluating the long-term effects on non-target organisms and explore various doses and application methods to ensure safe and effective use.

Thanks

The authors would like to thank Karadeniz Technical University Central Research Laboratory for Scanning Electron Microscopy (SEM) analyses of the nanoparticles.

References

  • Abass, A.B., Ndunguru, G., Mamiro, P., Alenkhe, B., Mlingi, N., & Bekunda, M. (2014). Post-harvest food losses in a maize-based farming system of semi-arid savannah area of Tanzania. Journal of Stored Products Research, 57, 49-57. https://doi.org/10.1016/j.jspr.2013.12.004
  • Abbott, W.S. (1925). A method of computing the effectiveness of an insecticide. Journal of Economic Entomology, 18 (2), 265-267.
  • Abd El-Latef, E.A., Wahba, M.N., Mousa, S., El-Bassyouni, G.T., & El-Shamy, A.M. (2023). Cu-doped ZnO-nanoparticles as a novel eco-friendly insecticide for controlling Spodoptera littoralis. Biocatalysis and Agricultural Biotechnology, 52, 102823. https://doi.org/10.1016/j.bcab.2023.102823
  • Abdel-Baki, A.A.S., Ibrahium, S.M., Aboelhadid, S.M., Hassan, A.O., Al-Quraishy, S., & Abdel-Tawab, H. (2024). Benzyl alcohol, benzyl benzoate and methyl benzoate as bio-insecticides against dried bean beetle Acanthoscelides obtectus (Coleoptera: Tenebrionidae). Journal of Stored Products Research, 105, 102246. https://doi.org/10.1016/j.jspr.2024.102246
  • Abd-Elsalam, K.A., & Prasad, R. (2018). Nanobiotechnology applications in plant protection. Springer.
  • Abomuti, M.A., Danish, E.Y., Firoz, A., Hasan, N., & Malik, M.A. (2021). Green synthesis of zinc oxide nanoparticles using salvia officinalis leaf extract and their photocatalytic and antifungal activities. Biology, 10 (11), 1075. https://doi.org/10.3390/biology10111075
  • Ahmad, S., Mfarrej, M.F.B., El-Esawi, M.A., Waseem, M., Alatawi, A., Nafees, M., Saleem, M.H., Rizwan, M., Yasmeen, T., Anayat, A., & Ali, S. (2022). Chromium-resistant Staphylococcus aureus alleviates chromium toxicity by developing synergistic relationships with zinc oxide nanoparticles in wheat. Ecotoxicology and Environmental Safety, 230, 113142. https://doi.org/10.1016/j.ecoenv.2021.113142
  • Alisha A.A.S., & Thangapandiyan, S. (2019). Comparative bioassay of silver nanoparticles and malathion on infestation of red flour beetle, Tribolium castaneum. The Journal of Basic and Applied Zoology, 80, 1-10. https://doi.org/10.1186/s41936-019-0124-0
  • Anandhi, S., Saminathan, V.R., Yasotha, P., Saravanan, P.T., & Rajanbabu, V. (2020). Nano-pesticides in pest management. Journal of Entomology and Zoology Studies, 8 (4), 685-690.
  • Athanassiou, C.G., Kavallieratos, N.G., Benelli, G., Losic, D., Usha Rani, P., & Desneux, N. (2018). Nanoparticles for pest control: Current status and future perspectives. Journal of Pest Science, 91, 1-15. https://doi.org/10.1007/s10340-017-0898-0
  • Benelli, G. (2018). Mode of action of nanoparticles against insects. Environmental Science and Pollution Research, 25 (13), 12329-12341. https://doi.org/10.1007/s11356-018-1850-4
  • Benelli, G., Pavela, R., Maggi, F., Petrelli, R., & Nicoletti, M. (2017). Commentary: making green pesticides greener? The potential of plant products for nanosynthesis and pest control. Journal of Cluster Science, 28, 3-10. https://doi.org/10.1007/s10876-016-1131-7
  • Bouchenak, M., & Lamri-Senhadji, M. (2013). Nutritional quality of legumes, and their role in cardiometabolic risk prevention: A review. Journal of Medicinal Food, 16 (3), 185-198. https://doi.org/10.1089/jmf.2011.0238
  • Chidege, M.Y., Venkataramana, P.B., & Ndakidemi, P.A. (2024). Enhancing Food grains storage systems through insect pest detection and control measures for maize and beans: ensuring food security post-covid-19 Tanzania. Sustainability, 16 (5), 1767. https://doi.org/10.3390/su16051767
  • Chinnathambi, S., Hanagata, N., Yamazaki, T., & Shirahata, N. (2020). Nano-bio interaction between blood plasma proteins and water-soluble silicon quantum dots with enabled cellular uptake and minimal cytotoxicity. Nanomaterials, 10 (11), 2250. https://doi.org/10.3390/nano10112250
  • Damalas, C.A., & Koutroubas, S.D. (2020). Botanical pesticides for eco‐friendly pest management: Drawbacks and limitations. Pesticides in Crop Production: Physiological and Biochemical Action, 181-193.
  • Debnath, N., Das, S., Seth, D., Chandra, R., Bhattacharya, S.C., & Goswami, A. (2011). Entomotoxic effect of silica nanoparticles against Sitophilus oryzae (L.). Journal of Pest Science, 84, 99-105. https://doi.org/10.1007/s10340-010-0332-3
  • Dubey, A., Goswami, M., Yadav, K., & Chaudhary, D.K. (2015). Oxidative stress and nano-toxicity induced by TiO2 and ZnO on wag cell line. Plos One, 10 (5), e0127493. https://doi.org/10.1371/journal.pone.0127493
  • El-Bakry, A.M., Ibrahim, F.M., Abdelmaksoud, N.M., Sammour, E.A., Abdel-Aziz, N.F., & El Habbasha, E.S. (2024). Eco-friendly insecticidal formulation extracted from orange peel essential oil and ZnO nanoparticles against Tribolium castaneum. Egyptian Journal of Chemistry. https://doi.org/10.21608/ejchem.2024.293365.9778
  • Endshaw, W., & Hiruy, B. (2020). The distribution, frequency of occurrence, and the status of stored faba bean insect pests in relation to food security in Farta District, North West Ethiopia. Cogent Food & Agriculture, 6 (1), 1832400. https://doi.org/10.1080/23311932.2020.1832400
  • Eskin, A., & Nurullahoğlu, Z. U. (2022). Effects of zinc oxide nanoparticles (ZnO NPs) on the biology of Galleria mellonella L. (Lepidoptera: Pyralidae). The Journal of Basic and Applied Zoology, 83 (1), 54. https://doi.org/10.1186/s41936-022-00318-2
  • FAO (2024). Common Bean Production and Area Harvested Statistics. Retrieved from https://www.fao.org/faostat/en/#data/QCL by October 15, 2024.
  • Haroun, S.A., Elnaggar, M.E., Zein, D.M., & Gad, R.I. (2020). Insecticidal efficiency and safety of zinc oxide and hydrophilic silica nanoparticles against some stored seed insects. Journal of Plant Protection Research, 60 (1). https://doi.org/10.24425/jppr.2020.132211
  • Hashem, M.Y., Ahmed, S.S., & Naroz, M.H. (2022). Comparative effects of hypoxia, hypercapnia, and hypoxia/hypercapnia on the mortality and survival of Acanthoscelides obtectus (Say) (Coleoptera: Chrysomelidae). Journal of Stored Products Research, 98, 101988. https://doi.org/10.1016/j.jspr.2022.101988
  • Hilal, S.M., Mohmed, A.S., Barry, N.M., & Ibrahim, M.H. (2021). Entomotoxicity of TiO2 and ZnO nanoparticles against adults Tribolium castaneum (Herbest)(Coleoptera: Tenebrionidae). IOP Conference Series: Earth and Environmental Science, 910 (1), 012088. https://doi.org/10.1088/1755-1315/910/1/012088
  • Ibrahim, S., Elbehery, H., & Samy, A. (2022). Insecticidal activity of ZnO NPs synthesized by green method using pomegranate peels extract on stored product insects. Egyptian Journal of Chemistry, 65 (4), 135-145. https://doi.org/10.21608/ejchem.2021.92692.4496
  • Jevremović, S., Lazarević, J., Kostic, M., Krnjajić, S., Ugrenović, V., Radonjic, A., & Kostić, I. (2019). Contact application of Lamiaceae botanicals reduces bean weevil infestation in stored beans. Archives of Biological Sciences, 71 (4), 665-676. https://doi.org/10.2298/ABS190617049J
  • Kaale, L.D., Siddiq, M., & Hooper, S. (2022). Lentil (Lens culinaris Medik) as nutrient-rich and versatile food legume: A review. Legume Science, 5, e169. https://doi.org/10.1002/leg3.169
  • Kaya, K., Sertkaya, E., Üremiş, İ., & Soylu, S. (2018). Determination of chemical composition and fumigant insecticidal activities of essential oils of some medicinal plants against the adults of cowpea weevil, Callosobruchus maculatus. KSU Tarım ve Doğa Dergisi, 21, 708-714. https://doi.org/10.18016/ksudobil.386176
  • Khooshe-Bast, Z., Sahebzadeh, N., Ghaffari‐Moghaddam, M., & Mirshekar, A. (2016). Insecticidal effects of zinc oxide nanoparticles and Beauveria bassiana TS11 on Trialeurodes vaporariorum (Westwood, 1856) (Hemiptera: Aleyrodidae). Acta Agriculturae Slovenica, 107 (2), 299-309. https://doi.org/10.14720/aas.2016.107.2.04
  • Kitherian, S. (2017). Nano and bio-nanoparticles for insect control. Research Journal of Nanoscience and Nanotechnology, 7 (1), 1-9. https://doi.org/10.3923/rjnn.2017
  • Koca, A.S., & Yılmaz, A. (2025). Effective control of Sitophilus zeamais (Motsch.)(Coleoptera: Curculionidae) using essential oil blends: an alternative to single-oil applications. Journal of Crop Health, 77 (2), 57. https://doi.org/10.1007/s10343-025-01133-9
  • Korunic, Z., Fields, P.G., Kovacs, M.I.P., Noll, J.S., Lukow, O.M., Demianyk, C.J., & Shibley, K.J. (1996). The effect of diatomaceous earth on grain quality. Postharvest Biology and Technology, 9 (3), 373-387. https://doi.org/10.1016/S0925-5214(96)00038-5
  • Manandhar, A., Milindi, P., & Shah, A. (2018). An overview of the post-harvest grain storage practices of smallholder farmers in developing countries. Agriculture, 8 (4), 57. https://doi.org/10.3390/agriculture8040057
  • Mandal, B.K. (2019). Silver nanoparticles: Potential as insecticidal and microbial biopesticides. In: O. Koul (Ed.), Nano-biopesticides today and future perspectives. Academic Press, Cambridge. pp. 281-301.
  • Mao, B.H., Chen, Z.Y., Wang, Y.J., & Yan, S.J. (2018). Silver nanoparticles have lethal and sublethal adverse effects on development and longevity by inducing ROS-mediated stress responses. Scientific Reports, 8 (1), 2445. https://doi.org/10.1038/s41598-018-20728-z
  • Meng, L., Yuan, G., Chen, M., Zheng, L., Dou, W., Peng, Y., Bai, W.J., Li, Z.Y., Vontas, J., & Wang, J.J. (2023). Cuticular competing endogenous rnas regulate insecticide penetration and resistance in a major agricultural pest. BMC Biology, 21 (1). https://doi.org/10.1186/s12915-023-01694-z
  • Mesele, T., Dibaba, K., & Mendesil, E. (2019). Farmers’ perceptions of Mexican bean weevil, Zabrotes subfasciatus (Boheman), and pest management practices in Southern Ethiopia. Advances in Agriculture, 1, 8193818. https://doi.org/10.1155/2019/8193818
  • Mohapatra, D., Kar, A., & Giri, S.K. (2015). Insect pest management in stored pulses: An overview. Food and Bioprocess Technology, 8, 239-265. https://doi.org/10.1007/s11947-014-1399-2
  • Omar, S.T., & Ali, W.K. (2024). Effects of zinc oxide nanoparticles (ZnO NPs) synthesized from different plant leaf extracts on mealworm larvae Tenebrio molitor L., 1758 (Tenebrionidae: Coleopetera). Zanco Journal of Pure and Applied Sciences, 36 (3), 7-18. http://dx.doi.org/10.21271/ZJPAS.36.3.2
  • Owolade, O.F., Ogunleti, D.O., & Adenekan, M.O. (2008). Effect of titanium dioxide on diseases, development and yield of edible cowpea. Journal of Plant Protection Research, 48, 329-335.
  • Pauksch, L., Rohnke, M., Schnettler, R., & Lips, K.S. (2014). Silver nanoparticles do not alter human osteoclastogenesis but induce cellular uptake. Toxicology Reports, 1, 900-908. https://doi.org/10.1016/j.toxrep.2014.10.012
  • Paul, U.V., Lossini, J.S., Edwards, P.J., & Hilbeck, A. (2009). Effectiveness of products from four locally grown plants for the management of Acanthoscelides obtectus (Say) and Zabrotes subfasciatus (Boheman)(both Coleoptera: Bruchidae) in stored beans under laboratory and farm conditions in Northern Tanzania. Journal of Stored Products Research, 45 (2), 97-107. https://doi.org/10.1016/j.jspr.2008.09.006
  • Pittarate, S., Rajula, J., Rahman, A., Vivekanandhan, P., Thungrabeab, M., Mekchay, S., & Krutmuang, P. (2021). Insecticidal effect of zinc oxide nanoparticles against Spodoptera frugiperda under laboratory conditions. Insects, 12 (11), 1017. https://doi.org/10.3390/insects12111017
  • Raduw, G.G., & Mohammed, A.A. (2020). Insecticidal efficacy of three nanoparticles for the control of Khapra beetle (Trogoderma granarium) on different grains. Journal of Agricultural and Urban Entomology, 36 (1), 90-100. https://doi.org/10.3954/1523-5475-36.1.90
  • Read, T.L., Doolette, C.L., Li, C., Schjoerring, J.K., Kopittke, P.M., Donner, E., & Lombi, E. (2020). Optimising the foliar uptake of zinc oxide nanoparticles: Do leaf surface properties and particle coating affect absorption?. Physiologia Plantarum, 170 (3), 384-397. https://doi.org/10.1111/ppl.13167
  • Rebora, M., Del Buono, D., Piersanti, S., & Salerno, G. (2023). Reduction in insect attachment ability by biogenic and non-biogenic ZnO nanoparticles. Environmental Science: Nano, 10 (11), 3062-3071. https://doi.org/10.1039/d3en00545c
  • Regnault-Roger, C., Vincent, C., & Arnason, J.T. (2012). Essential oils in insect control: Low-risk products in a high-stakes world. Annual Review of Entomology, 57 (1), 405-424. https://doi.org/10.1146/annurev-ento-120710-100554
  • Resham, S., Khalid, M., & Kazi, A.G. (2015). Nanobiotechnology in agricultural development. In: D. Bargh, M. Khan and E. Davies (Eds.), PlantOmics: The omics of plant science. Springer, New Delhi, India. pp. 683-698.
  • Salem, A.A., Hamzah, A.M., & El-Taweelah, N.M. (2015). Aluminum and Zinc oxides nanoparticles as a new methods for controlling the red flour beetles, Tribolium castaneum (Herbest) compared to malathion insecticide. Journal of Plant Protection and Pathology, 6 (1), 129-137. https://doi.org/10.21608/jppp.2015.53186
  • Schoonhoven, A.V., & Cardona, C. (1986). Main insect pests of stored beans and their control. International Center for Tropical Agriculture. Study Guide CIAT.
  • Sertkaya, E., Kaya, K., & Soylu, S. (2010). Chemical compositions and insecticidal activities of the essential oils from several medicinal plants against the cotton whitefly, Bemisia tabaci. Asian Journal of Chemistry, 22, 2982-2990.
  • Sertkaya, E. (2013). Fumigant toxicity of the essential oils from medicinal plants against bean weevil, Acanthoscelides obtectus (Say) (Coleoptera: Bruchidae). Asian Journal of Chemistry, 25, 553-555.
  • Soylu, S., Kara, M., Türkmen, M., & Şahin, B. (2022). Synergistic effect of Foeniculum vulgare essential oil on the antibacterial activities of Ag- and Cu-substituted ZnO nanorods (ZnO-NRs) against food, human and plant pathogenic bacterial disease agents. Inorganic Chemistry Communications, 146, 110103. https://doi.org/10.1016/j.inoche.2022.110103
  • Stadler, T., Buteler, M., Weaver, D.K., & Sofie, S. (2012). Comparative toxicity of nanostructured alumina and a commercial inert dust for Sitophilus oryzae (L.) and Rhyzopertha dominica (F.) at varying ambient humidity levels. Journal of Stored Products Research, 48, 81-90. https://doi.org/10.1016/j.jspr.2011.09.004
  • Şahin, B., Soylu, S., Kara, M., Türkmen, M., Aydin, R., & Çetin, H. (2021). Superior antibacterial activity against seed-borne plant bacterial disease agents and enhanced physical properties of novel green synthesized nanostructured ZnO using Thymbra spicata plant extract. Ceramics International, 47, 341-350. https://doi.org/10.1016/j.ceramint.2020.08.139
  • Şahin, B., Aydin, R., Soylu, S., Türkmen, M., Kara, M., Akkaya, A., Çetin, H., & Ayyıldız, E. (2022). The effect of Thymus syriacus plant extract on the main physical and antibacterial activities of ZnO nanoparticles synthesized by SILAR Method. Inorganic Chemistry Communications, 135, 109088. https://doi.org/10.1016/j.inoche.2021.109088
  • Şen, K., Koca, A.S., & Kaçar, G. (2020). Importance, biology, damage and management of bean weevil Acanthoscelides obtectus Say (Coleoptera: Chrysomelidae). Journal of the Institute of Science and Technology, 10 (3), 1518-1527. https://doi.org/10.21597/jist.705681
  • Şener, A., & Kaya, M. (2022). Agro-morphological characterization of local bean (Phaseolus vulgaris L.). Mustafa Kemal University Journal of Agricultural Sciences, 27 (2), 318-330. https://doi.org/10.37908/mkutbd.1093427
  • Subramanyam, B., & Roesli, R. (2000). Inert dusts. In: B. Subramanyam and D.W. Hagstrum (Eds.), Alternatives to pesticides in stored- product IPM . Kluwer Academic Publishers, Dordrecht, the Netherlands. pp. 321-380.
  • TUİK (2024). Bitkisel üretim istatistikleri. Retrieved from https://biruni.tuik.gov.tr/medas/?kn=92&locale=tr by December 10, 2024.
  • Wong-Corral, F.J., Castañé, C., & Riudavets, J. (2013). Lethal effects of CO2-modified atmospheres for the control of three Bruchidae species. Journal of Stored Products Research, 55, 62-67. https://doi.org/10.1016/j.jspr.2013.08.005
  • Yeken, M.Z. (2023). Investigation of genotype×environment interactions for the seed mineral composition in Phaseolus vulgaris L. Journal of Food Composition and Analysis, 124, 105657. https://doi.org/10.1016/j.jfca.2023.105657
  • Yilmaz, H., & Yilmaz, A. (2025). Hidden hunger in the age of abundance: the nutritional pitfalls of modern staple crops. Food Science & Nutrition. https://doi.org/10.1002/fsn3.4610
  • Yilmaz, H., Özer, G., Baloch, F.S., Çiftçi, V., Chung, Y.S., & Sun, H.J. (2023). Genome-wide identification and expression analysis of MTP (Metal ion transport proteins) genes in the common bean. Plants, 12 (18), 3218. https://doi.org/10.3390/plants12183218
  • Ziaee, M., & Ganji, Z. (2016). Insecticidal efficacy of silica nanoparticles against Rhyzopertha dominica F. and Tribolium confusum Jacquelin du Val. Journal of Plant Protection Research, 56 (3), 250-256.
There are 66 citations in total.

Details

Primary Language English
Subjects Entomology
Journal Section Araştırma Makalesi
Authors

Abdurrahman Sami Koca 0000-0002-7657-5615

Abdurrahim Yılmaz 0000-0001-9991-1792

Early Pub Date April 15, 2025
Publication Date
Submission Date November 22, 2024
Acceptance Date February 18, 2025
Published in Issue Year 2025 Volume: 30 Issue: 1

Cite

APA Koca, A. S., & Yılmaz, A. (2025). Insecticidal efficiency of green-synthesized zinc oxide nanoparticles on bean weevil, Acanthoscelides obtectus Say. (Coleoptera: Chrysomelidae). Mustafa Kemal Üniversitesi Tarım Bilimleri Dergisi, 30(1), 237-250. https://doi.org/10.37908/mkutbd.1589636

22740137731737513771 13774 15432 1813713775 14624 15016 i2or 1857924881download