Review
BibTex RIS Cite

Prostat Karsinomunun Moleküler Yolakları

Year 2020, Volume: 11 Issue: 41, 118 - 123, 01.12.2020
https://doi.org/10.17944/mkutfd.755075

Abstract

Prostat kanseri, dünyada hızla artan insidans oranlarına sahip en yaygın kanser türlerinden biridir. Prostat kanseri insidansı ve mortalite oranları farklı popülasyonlarda büyük ölçüde değişkendir. Prostat kanseri, tümör baskılayıcı genlerin spesifik genom sekanslarında delesyon ve onkogen aktivasyonu ile ilişkili spesifik kromozomal bölgelerdeki değişiklikler gibi çoklu genetik modifikasyonları içerir. Prostat kanseri yol açan kalıtsal değişikliklerin bir veya daha fazla spesifik genetik özellik ile ilişkili olup olmadığını belirlemek zordur. Prostat karsinogenezi çok karmaşık olup hala mekanizmaları olarak açıklanmamıştır. Eğer prostat karsinogenezini daha iyi anlayabilirsek bu hastalar için hedefe yönelik tedavi de bulabiliriz. Bu nedenle biz burada prostat karsinomunda yer alan büyük genetik ve epigenetik değişikliklerden bahsetmek istedik.

References

  • Ferlay J, Colombet M, Soerjomataram I, Mathers C, Parkin DM, Piñeros M, et al. GLOBACAN 2018 Cancer incidence and mortality data: sources and methods by country, GLOBOCAN2018, Available from: http://gco.iarc.fr. Accessed 10 November 2019. https://doi.org/10.1002/ijc.31937
  • Getaneh AM, Heijnsdijk E, de Koning H. The role of modelling in the policy decision making process for cancer screening: example of prostate specific antigen screening. Public health research & practice. 2019; 29(2). https://doi.org/10.17061/phrp2921912
  • Cooperberg MR, Carroll PR, Klotz L. Active surveillance for prostate cancer: progress and promise. J Clin Oncol. 2011; 29 (27): 3669-76. https://doi.org/10.1200/JCO.2011.34.9738
  • Jeldres C, Suardi N, Walz J, Hutterer GC, Ahyai S, Lattouf JB, et al. Validation of the contemporary epstein criteria for insignificant prostate cancer in European men. European urology 2008;54(6), 1306-1313. https://doi.org/10.1016/j.eururo.2007.11.057
  • Lu-Yao GL, Albertsen PC, Moore DF, Lin Y, DiPaola RS, Yao SL. Fifteen-year outcomes following conservative management among men aged 65 years or older with localized prostate cancer. European urology, 2015;68(5), 805-811. https://doi.org/10.1016/j.eururo.2015.03.021
  • Kumar V, Abbas AK, Fausto N, Aster JC. Robbins and Cotran pathologic basis of disease, professional edition e-book. Elsevier health sciences; 2014.p.266-80.
  • Dutt S, Gao AC. The molecular basis of prostate carcinogenesis. In The Molecular Basis of Human Cancer 2017;pp. 423-445. Humana Press, New York, NY. https://doi.org/10.1007/978-1-59745-458-2_27
  • Rodrigues DN, Butler LM, Estelles DL, De Bono JS. Molecular pathology and prostate cancer therapeutics: from biology to bedside. The Journal of pathology, 2014;232(2), 178-184. https://doi.org/10.1002/path.4272
  • Falzarano SM, Zhou M, Carver P, Tsuzuki T, Simmerman K, He H, et al. ERG gene rearrangement status in prostate cancer detected by immunohistochemistry. Virchows Archiv, 2011;459(4), 441. https://doi.org/10.1007/s00428-011-1128-4
  • King JC, Xu J, Wongvipat J, Hieronymus H, Carver BS, Leung DH, et al. Cooperativity of TMPRSS2-ERG with PI3-kinase pathway activation in prostate oncogenesis. Nature genetics, 2009;41(5), 524. https://doi.org/10.1038/ng.371
  • Tomlins SA, Day JR, Lonigro RJ, Hovelson DH, Siddiqui J, Kunju LP, et al. Urine TMPRSS2: ERG plus PCA3 for individualized prostate cancer risk assessment. European urology, 2016;70(1), 45-53. https://doi.org/10.1016/j.eururo.2015.04.039
  • Korkolopoulou P, Levidou G, Trigka EA, Prekete N, Karlou M, Thymara I, et al. A comprehensive immunohistochemical and molecular approach to the PI3K/AKT/mTOR (phosphoinositide 3‐kinase/v‐akt murine thymoma viral oncogene/mammalian target of rapamycin) pathway in bladder urothelial carcinoma. BJU international, 2012;110(11c), E1237-E1248. https://doi.org/10.1111/j.1464-410X.2012.11569.x
  • Chang L, Graham PH, Ni J, Hao J, Bucci J, Cozzi PJ, et al. Targeting PI3K/Akt/mTOR signaling pathway in the treatment of prostate cancer radioresistance. Critical reviews in oncology/hematology, 2015;96(3), 507-517. https://doi.org/10.1016/j.critrevonc.2015.07.005
  • Claudio F. Targeting the PI3K/AKT/mTOR pathway in prostate cancer development and progression: Insight to therapy. Clinical Cancer Drugs, 2016;3(1), 36-62. https://doi.org/10.2174/2212697X0301160328201324
  • Wise HM, Hermida MA, Leslie NR. Prostate cancer, PI3K, PTEN and prognosis. Clinical science, 2017;131(3), 197-210. https://doi.org/10.1042/CS20160026
  • Schrecengost R, Knudsen KE. Molecular pathogenesis and progression of prostate cancer. Semin Oncol. 2013; 40(3): p. 244-58. https://doi.org/10.1053/j.seminoncol.2013.04.001
  • Jamaspishvili T, Berman DM, Ross AE, Scher HI, De Marzo AM, Squire JA, et al. Clinical implications of PTEN loss in prostate cancer. Nature Reviews Urology, 2018; 15(4), 222. https://doi.org/10.1038/nrurol.2018.9
  • Grishina IB, Kim SY, Ferrara C, Makarenkova HP, Walden PD. BMP7 inhibits branching morphogenesis in the prostate gland and interferes with Notch signaling. Developmental biology. 2005; 288(2), 334-347. https://doi.org/10.1016/j.ydbio.2005.08.018
  • Garcia A, Kandel JJ. Notch: a key regulator of tumor angiogenesis and metastasis. Histology and histopathology. 2012; 27(2), 151.
  • Zhu H, Zhou X, Redfield S, Lewin J, Miele L. Elevated Jagged-1 and Notch-1 expression in high grade and metastatic prostate cancers. American journal of translational research. 2013; 5(3), 368. https://doi.org/10.1158/1538-7445.AM2013-410
  • Mithal P, Gong Y, Sirkis H, Aronowitz JN. A brain lesion as the sole metastasis of prostate cancer. Journal of Clinical Urology, 2016;9(5), 348-350. https://doi.org/10.1177/2051415814549204
  • Caffo O, Gernone A, Ortega C, Sava T, Cartenì G, Facchini G, et al. Central nervous system metastases from castration-resistant prostate cancer in the docetaxel era. Journal of neuro-oncology, 2012;107(1), 191-196. https://doi.org/10.1007/s11060-011-0734-y
  • Bowen C, Bubendorf L, Voeller HJ, Slack R, Willi N, Sauter G, et al. Loss of NKX3. 1 expression in human prostate cancers correlates with tumor progression1, 2. Cancer research, 2000;60(21), 6111-6115.
  • Hughes C, Murphy A, Martin C, Sheils O, O'Leary J. Molecular pathology of prostate cancer. J Clin Pathol. 2005;58(7):673-84. https://doi.org/10.1136/jcp.2002.003954
  • Lynch SM, McKenna MM, Walsh CP, McKenna DJ. miR‐24 regulates CDKN1B/p27 expression in prostate cancer. The Prostate, 2016;76(7), 637-648. https://doi.org/10.1002/pros.23156
  • Sonn GA, Behesnilian AS, Jiang ZK, Zettlitz KA, Lepin EJ, Bentolila LA, et al. Fluorescent image-guided surgery with an anti-prostate stem cell antigen (PSCA) diabody enables targeted resection of mouse prostate cancer xenografts in real time. Clinical Cancer Research, 2016;22(6), 1403-1412. https://doi.org/10.1158/1078-0432.CCR-15-0503
  • Lee JK, Phillips JW, Smith BA, Park JW, Stoyanova T, McCaffrey EF, et al. N-Myc drives neuroendocrine prostate cancer initiated from human prostate epithelial cells. Cancer cell, 2016;29(4), 536-547. https://doi.org/10.1016/j.ccell.2016.03.001
  • Koh CM, Bieberich CJ, Dang CV, Nelson WG, Yegnasubramanian S, De Marzo, et al. MYC and prostate cancer. Genes & cancer. 2010; 1(6), 617-628. https://doi.org/10.1177/1947601910379132
  • Hobbs GA, Der CJ, Rossman KL. RAS isoforms and mutations in cancer at a glance. J Cell Sci. 2016; 129(7), 1287-1292. https://doi.org/10.1242/jcs.182873
  • Jin Y, Wang L, Qu S, Sheng X, Kristian A, Mælandsmo GM, et al. STAMP2 increases oxidative stress and is critical for prostate cancer. EMBO molecular medicine. 2015; 7(3), 315-331. https://doi.org/10.15252/emmm.201404181
  • Massie CE, Mills IG, Lynch AG. The importance of DNA methylation in prostate cancer development. The Journal of steroid biochemistry and molecular biology, 2017;166, 1-15. https://doi.org/10.1016/j.jsbmb.2016.04.009
  • Hjelmborg JB, Scheike T, Holst K, Skytthe A, Penney KL, Graff RE, et al. The heritability of prostate cancer in the Nordic Twin Study of Cancer. Cancer Epidemiol Biomarkers Prev. 2014; 23(11):2303-10. https://doi.org/10.1158/1055-9965.EPI-13-0568
  • Mucci LA, Hjelmborg JB, Harris JR, Czene K, Havelick DJ, Scheike T, et al. Familial Risk and Heritability of Cancer Among Twins in Nordic Countries. JAMA. 2016; 315(1):68-76. https://doi.org/10.1001/jama.2015.17703
  • Breyer JP, Avritt TG, McReynolds KM, Dupont WD, Smith JR. Confirmation of the HOXB13 G84E germline mutation in familial prostate cancer. Cancer Epidemiol Biomarkers Prev. 2012; 21(8):1348-53. https://doi.org/10.1158/1055-9965.EPI-12-0495
  • Xu J, Lange EM, Lu L, Zheng SL, Wang Z, Thibodeau SN, et al. HOXB13 is a susceptibility gene for prostate cancer: results from the International Consortium for Prostate Cancer Genetics (ICPCG). Hum Genet. 2013; 132(1):5-14. https://doi.org/10.1007/s00439-012-1229-4
  • Baffoe-Bonnie AB, Kittles RA, Gillanders E, Ou L, George A, Robbins C, et al. Genomewide linkage of 77 families from the African American Hereditary Prostate Cancer study (AAHPC). Prostate. 2007; 67(1):22-31. https://doi.org/10.1002/pros.20456
  • Cheng HH, Pritchard CC, Boyd T, Nelson PS, Montgomery B. Biallelic inactivation of BRCA2 in platinum-sensitive metastatic castration-resistant prostate cancer. European urology. 2016; 69(6), 992-995. https://doi.org/10.1016/j.eururo.2015.11.022
  • Castro E, Goh C, Olmos D. Germline BRCA mutations are associated with higher risk of nodal involvement, distant metastasis, and poor survival outcomes in prostate cancer. Journal of Clinical Oncology. 2013; 31(14), 1748.

Molecular Pathways of Prostate Carcinoma

Year 2020, Volume: 11 Issue: 41, 118 - 123, 01.12.2020
https://doi.org/10.17944/mkutfd.755075

Abstract

Prostate cancer is one of the most common types of cancer with rapidly growing incidence rates in the world. The incidence and mortality rates of prostate cancer are widely variable in different populations. The prostate cancer includes multiple genetic modifications such as deletion in specific genome sequences of tumor-suppressor genes and alterations in specific chromosomal sites associated with oncogene activation. It is difficult to determine whether the hereditary changes leading to prostate cancer are associated with one or more specific genetic features. Prostate carcinogenesis is complex and has not been fully explained. If we can better understand prostate carcinogenesis, we can also find targeted therapy. Therefore, we talked about the major genetic and epigenetic changes involved in prostate carcinoma.

References

  • Ferlay J, Colombet M, Soerjomataram I, Mathers C, Parkin DM, Piñeros M, et al. GLOBACAN 2018 Cancer incidence and mortality data: sources and methods by country, GLOBOCAN2018, Available from: http://gco.iarc.fr. Accessed 10 November 2019. https://doi.org/10.1002/ijc.31937
  • Getaneh AM, Heijnsdijk E, de Koning H. The role of modelling in the policy decision making process for cancer screening: example of prostate specific antigen screening. Public health research & practice. 2019; 29(2). https://doi.org/10.17061/phrp2921912
  • Cooperberg MR, Carroll PR, Klotz L. Active surveillance for prostate cancer: progress and promise. J Clin Oncol. 2011; 29 (27): 3669-76. https://doi.org/10.1200/JCO.2011.34.9738
  • Jeldres C, Suardi N, Walz J, Hutterer GC, Ahyai S, Lattouf JB, et al. Validation of the contemporary epstein criteria for insignificant prostate cancer in European men. European urology 2008;54(6), 1306-1313. https://doi.org/10.1016/j.eururo.2007.11.057
  • Lu-Yao GL, Albertsen PC, Moore DF, Lin Y, DiPaola RS, Yao SL. Fifteen-year outcomes following conservative management among men aged 65 years or older with localized prostate cancer. European urology, 2015;68(5), 805-811. https://doi.org/10.1016/j.eururo.2015.03.021
  • Kumar V, Abbas AK, Fausto N, Aster JC. Robbins and Cotran pathologic basis of disease, professional edition e-book. Elsevier health sciences; 2014.p.266-80.
  • Dutt S, Gao AC. The molecular basis of prostate carcinogenesis. In The Molecular Basis of Human Cancer 2017;pp. 423-445. Humana Press, New York, NY. https://doi.org/10.1007/978-1-59745-458-2_27
  • Rodrigues DN, Butler LM, Estelles DL, De Bono JS. Molecular pathology and prostate cancer therapeutics: from biology to bedside. The Journal of pathology, 2014;232(2), 178-184. https://doi.org/10.1002/path.4272
  • Falzarano SM, Zhou M, Carver P, Tsuzuki T, Simmerman K, He H, et al. ERG gene rearrangement status in prostate cancer detected by immunohistochemistry. Virchows Archiv, 2011;459(4), 441. https://doi.org/10.1007/s00428-011-1128-4
  • King JC, Xu J, Wongvipat J, Hieronymus H, Carver BS, Leung DH, et al. Cooperativity of TMPRSS2-ERG with PI3-kinase pathway activation in prostate oncogenesis. Nature genetics, 2009;41(5), 524. https://doi.org/10.1038/ng.371
  • Tomlins SA, Day JR, Lonigro RJ, Hovelson DH, Siddiqui J, Kunju LP, et al. Urine TMPRSS2: ERG plus PCA3 for individualized prostate cancer risk assessment. European urology, 2016;70(1), 45-53. https://doi.org/10.1016/j.eururo.2015.04.039
  • Korkolopoulou P, Levidou G, Trigka EA, Prekete N, Karlou M, Thymara I, et al. A comprehensive immunohistochemical and molecular approach to the PI3K/AKT/mTOR (phosphoinositide 3‐kinase/v‐akt murine thymoma viral oncogene/mammalian target of rapamycin) pathway in bladder urothelial carcinoma. BJU international, 2012;110(11c), E1237-E1248. https://doi.org/10.1111/j.1464-410X.2012.11569.x
  • Chang L, Graham PH, Ni J, Hao J, Bucci J, Cozzi PJ, et al. Targeting PI3K/Akt/mTOR signaling pathway in the treatment of prostate cancer radioresistance. Critical reviews in oncology/hematology, 2015;96(3), 507-517. https://doi.org/10.1016/j.critrevonc.2015.07.005
  • Claudio F. Targeting the PI3K/AKT/mTOR pathway in prostate cancer development and progression: Insight to therapy. Clinical Cancer Drugs, 2016;3(1), 36-62. https://doi.org/10.2174/2212697X0301160328201324
  • Wise HM, Hermida MA, Leslie NR. Prostate cancer, PI3K, PTEN and prognosis. Clinical science, 2017;131(3), 197-210. https://doi.org/10.1042/CS20160026
  • Schrecengost R, Knudsen KE. Molecular pathogenesis and progression of prostate cancer. Semin Oncol. 2013; 40(3): p. 244-58. https://doi.org/10.1053/j.seminoncol.2013.04.001
  • Jamaspishvili T, Berman DM, Ross AE, Scher HI, De Marzo AM, Squire JA, et al. Clinical implications of PTEN loss in prostate cancer. Nature Reviews Urology, 2018; 15(4), 222. https://doi.org/10.1038/nrurol.2018.9
  • Grishina IB, Kim SY, Ferrara C, Makarenkova HP, Walden PD. BMP7 inhibits branching morphogenesis in the prostate gland and interferes with Notch signaling. Developmental biology. 2005; 288(2), 334-347. https://doi.org/10.1016/j.ydbio.2005.08.018
  • Garcia A, Kandel JJ. Notch: a key regulator of tumor angiogenesis and metastasis. Histology and histopathology. 2012; 27(2), 151.
  • Zhu H, Zhou X, Redfield S, Lewin J, Miele L. Elevated Jagged-1 and Notch-1 expression in high grade and metastatic prostate cancers. American journal of translational research. 2013; 5(3), 368. https://doi.org/10.1158/1538-7445.AM2013-410
  • Mithal P, Gong Y, Sirkis H, Aronowitz JN. A brain lesion as the sole metastasis of prostate cancer. Journal of Clinical Urology, 2016;9(5), 348-350. https://doi.org/10.1177/2051415814549204
  • Caffo O, Gernone A, Ortega C, Sava T, Cartenì G, Facchini G, et al. Central nervous system metastases from castration-resistant prostate cancer in the docetaxel era. Journal of neuro-oncology, 2012;107(1), 191-196. https://doi.org/10.1007/s11060-011-0734-y
  • Bowen C, Bubendorf L, Voeller HJ, Slack R, Willi N, Sauter G, et al. Loss of NKX3. 1 expression in human prostate cancers correlates with tumor progression1, 2. Cancer research, 2000;60(21), 6111-6115.
  • Hughes C, Murphy A, Martin C, Sheils O, O'Leary J. Molecular pathology of prostate cancer. J Clin Pathol. 2005;58(7):673-84. https://doi.org/10.1136/jcp.2002.003954
  • Lynch SM, McKenna MM, Walsh CP, McKenna DJ. miR‐24 regulates CDKN1B/p27 expression in prostate cancer. The Prostate, 2016;76(7), 637-648. https://doi.org/10.1002/pros.23156
  • Sonn GA, Behesnilian AS, Jiang ZK, Zettlitz KA, Lepin EJ, Bentolila LA, et al. Fluorescent image-guided surgery with an anti-prostate stem cell antigen (PSCA) diabody enables targeted resection of mouse prostate cancer xenografts in real time. Clinical Cancer Research, 2016;22(6), 1403-1412. https://doi.org/10.1158/1078-0432.CCR-15-0503
  • Lee JK, Phillips JW, Smith BA, Park JW, Stoyanova T, McCaffrey EF, et al. N-Myc drives neuroendocrine prostate cancer initiated from human prostate epithelial cells. Cancer cell, 2016;29(4), 536-547. https://doi.org/10.1016/j.ccell.2016.03.001
  • Koh CM, Bieberich CJ, Dang CV, Nelson WG, Yegnasubramanian S, De Marzo, et al. MYC and prostate cancer. Genes & cancer. 2010; 1(6), 617-628. https://doi.org/10.1177/1947601910379132
  • Hobbs GA, Der CJ, Rossman KL. RAS isoforms and mutations in cancer at a glance. J Cell Sci. 2016; 129(7), 1287-1292. https://doi.org/10.1242/jcs.182873
  • Jin Y, Wang L, Qu S, Sheng X, Kristian A, Mælandsmo GM, et al. STAMP2 increases oxidative stress and is critical for prostate cancer. EMBO molecular medicine. 2015; 7(3), 315-331. https://doi.org/10.15252/emmm.201404181
  • Massie CE, Mills IG, Lynch AG. The importance of DNA methylation in prostate cancer development. The Journal of steroid biochemistry and molecular biology, 2017;166, 1-15. https://doi.org/10.1016/j.jsbmb.2016.04.009
  • Hjelmborg JB, Scheike T, Holst K, Skytthe A, Penney KL, Graff RE, et al. The heritability of prostate cancer in the Nordic Twin Study of Cancer. Cancer Epidemiol Biomarkers Prev. 2014; 23(11):2303-10. https://doi.org/10.1158/1055-9965.EPI-13-0568
  • Mucci LA, Hjelmborg JB, Harris JR, Czene K, Havelick DJ, Scheike T, et al. Familial Risk and Heritability of Cancer Among Twins in Nordic Countries. JAMA. 2016; 315(1):68-76. https://doi.org/10.1001/jama.2015.17703
  • Breyer JP, Avritt TG, McReynolds KM, Dupont WD, Smith JR. Confirmation of the HOXB13 G84E germline mutation in familial prostate cancer. Cancer Epidemiol Biomarkers Prev. 2012; 21(8):1348-53. https://doi.org/10.1158/1055-9965.EPI-12-0495
  • Xu J, Lange EM, Lu L, Zheng SL, Wang Z, Thibodeau SN, et al. HOXB13 is a susceptibility gene for prostate cancer: results from the International Consortium for Prostate Cancer Genetics (ICPCG). Hum Genet. 2013; 132(1):5-14. https://doi.org/10.1007/s00439-012-1229-4
  • Baffoe-Bonnie AB, Kittles RA, Gillanders E, Ou L, George A, Robbins C, et al. Genomewide linkage of 77 families from the African American Hereditary Prostate Cancer study (AAHPC). Prostate. 2007; 67(1):22-31. https://doi.org/10.1002/pros.20456
  • Cheng HH, Pritchard CC, Boyd T, Nelson PS, Montgomery B. Biallelic inactivation of BRCA2 in platinum-sensitive metastatic castration-resistant prostate cancer. European urology. 2016; 69(6), 992-995. https://doi.org/10.1016/j.eururo.2015.11.022
  • Castro E, Goh C, Olmos D. Germline BRCA mutations are associated with higher risk of nodal involvement, distant metastasis, and poor survival outcomes in prostate cancer. Journal of Clinical Oncology. 2013; 31(14), 1748.
There are 38 citations in total.

Details

Primary Language English
Subjects Health Care Administration
Journal Section Review
Authors

Zeynep Bayramoğlu 0000-0001-7075-8819

Betül Ünal 0000-0002-9572-3601

Publication Date December 1, 2020
Submission Date June 19, 2020
Acceptance Date October 21, 2020
Published in Issue Year 2020 Volume: 11 Issue: 41

Cite

Vancouver Bayramoğlu Z, Ünal B. Molecular Pathways of Prostate Carcinoma. mkutfd. 2020;11(41):118-23.