Research Article
BibTex RIS Cite

COVID-19 Pandemisi Sırasında Çocuklarda Sarkopenik Obezite Riskinin Değerlendirilmesi: El kavrama kuvveti -BMI Oranı

Year 2024, Volume: 7 Issue: 1, 18 - 33, 25.03.2024
https://doi.org/10.55517/mrr.1374119

Abstract

Amaç: Bu çalışma, COVID-19 pandemisi sırasında 6-10 yaş arasındaki Türk çocuklarında sarkopenik obezite sıklığını incelemeyi ve tanısal yöntemleri karşılaştırmayı amaçlamaktadır. Yöntem: : Bu çalışmaya toplam 431 sağlıklı çocuk (230 kız, 201 erkek) dahil edildi. Boy, kilo ve beden kitle indeksi (BKİ) gibi çeşitli antropometrik ölçümler alındı. Ayrıca, vücut bileşimi, yağ kütlesi, iskelet kas kütlesi ve kas-yağ oranını (KYO) belirlemek için biyoelektrik empedans analizi (BİA) kullanılarak değerlendirildi. Ek olarak, kavrama gücü ölçüldü ve kavrama gücü/BKİ oranı belirlendi. Sarkopenik obeziteyi tanımlamak için McCarthy'nin yöntemi kullanılarak KYO eşik değerleri belirlendi. ROC eğrileri ile, kavrama gücü/BKİ oranının sarkopenik obezite riskini belirlemek için uygulandı. Bulgular: Kız çocuklarında sarkopenik obezite sıklığı %8,7, erkek çocuklarda %10,4 olarak bulundu. Kas/yağ oranı (KYO) ile karşılaştırıldığında, kavrama gücü/BKİ indeksi oranının sarkopenik obezite riskini saptamada önemli duyarlılık gösterdiği görüldü. 6-8 yaş grubundaki erkek ve kız çocuklarında kavrama gücü/BKİ oranı ile KYO arasındaki korelasyon zayıf (erkeklerde r=0,363, kızlarda r=0,458, p<0,001) iken, 9-10 yaş grubundaki erkek ve kız çocuklarında bu ilişki güçlü bulundu (Erkeklerde r=0,628, p<0,001; kızlarda r=0,612, p<0,001). 6-8 yaş grubu kız çocuklarında KYO’nın 3. kuintilde BKİ ile belirlenen kesme değeri ≤0,81, 9-10 yaş grubu kız çocuklarında ise ≤0,78 olarak saptandı. 6-8 yaş grubu erkek çocuklarında kesme değeri ≤0,96, 9-10 yaş grubu erkek çocuklarında ise ≤0,61 olarak bulundu. Kavrama gücü/BKİ oranı, sarkopenik obezite riskini tanımlamak için optimal kesme değerleri belirlemede başarıyla kullanıldı. Yaşa göre düzeltilmiş ikili regresyon modelinde, kız çocukları için OR (%95 GA): 11,833 (3,353-41,757) p<0,001; erkek çocuklar için OR ( %95 GA): 11,705 (3,318-41,290) p<0,001 olarak hesaplandı. Sonuç: Bu araştırma, COVID-19 pandemisinin çocuk sağlığı üzerindeki etkilerini aydınlatmaktadır. Özellikle sokağa çıkma yasakları ve okul kapanmaları nedeniyle egzersiz fırsatlarının azalması ve bu dönemde beslenme alışkanlıklarındaki değişiklikler, çocukların vücut kompozisyonunu olumsuz etkilemiş olabilir. Çocuklarda vücut kompozisyonu göstergelerini tahmin etmek için BIA kullanılması bu çalışmada değerli bilgiler sunmaktadır. Çalışma, sarkopenik obezite riskini belirlemek için kavrama gücü/BKİ oranının dikkate alınması gerektiğini önermektedir ve kavrama gücü/BKİ çocuk vakalarda bir tarama ölçüsü olarak kullanılabilir.

Project Number

Approval No: 2021-350

References

  • Abarca-Gómez L, Abdeen ZA, Hamid ZA, Abu-Rmeileh NM, Acosta-Cazares B, Acuin C, et al. Worldwide trends in body-mass index, underweight, overweight, and obesity from 1975 to 2016: a pooled analysis of 2416 population-based measurement studies in 128•9 million children, adolescents, and adults. The Lancet. 2017;390(10113):2627–42.
  • Özcebe H, Bosi TB, Yardım N, Çelikcan E, Çelikay N, Keskinkılıç B, et al. Türkiye’de çocuklarda fazla kiloluluk ve şişmanlık prevalansları: Owerweight and obesity among children in Turkey. TAF Preventive Medicine Bulletin. 2015;14(2):145–52.
  • Jia P, Zhang L, Yu W, Yu B, Liu M, Zhang D, et al. Impact of COVID-19 lockdown on activity patterns and weight status among youths in China: the COVID-19 Impact on lifestyle change survey (COINLICS). International Journal of Obesity. 2021;45(3):695-9.
  • Bartha KO, Csengeri L, Lichthammer A, Erdelyi A, Kubanyi J, Scucs ZC. Impact of the first COVID–19 lockdown on the lifestyle of elementary school children in: Acta Alimentaria.2022;51:382-9.
  • Stavridou A, Kapsali E, Panagouli E, Thirios A, Polychronis K, Bacopoulou F, et al. Obesity in children and adolescents during COVID-19 pandemic. Children. 2021;8(2):135.
  • Wabitsch M, Moss A, Denzer C, Fischer-Posovsky P. Metabolic syndrome. Monatsschr Kinderheilkd. 2012;160:277-92.
  • Park BS, Yoon JS. Relative skeletal muscle mass is associated with development of metabolic syndrome. Diabetes & metabolism journal. 2013;37(6):458–64.
  • Cauley JA. An overview of sarcopenic obesity. Journal of Clinical Densitometry. 2015;18(4):499–505.
  • Baumgartner RN. Body composition in healthy aging. Annals of the New York Academy of Sciences. 2006;904(1):437-448.
  • Biolo G, Cederholm T, Muscaritoli M. Muscle contractile and metabolic dysfunction is a common feature of sarcopenia of aging and chronic diseases: From sarcopenic obesity to cachexia. Clinical Nutrition. 2014;33(5):737–48.
  • Benson AC, Torode ME, Singh MA. Muscular Strength and Cardiorespiratory Fitness is Associated With Higher Insulin Sensitivity in Children and Adolescents. International Journal of Pediatric Obesity. 2006;1(4):222–31.
  • Cruz-Jentoft AJ, Baeyens JP, Bauer JM, Boirie Y, Cederholm T, Landi F, et al. Sarcopenia: European consensus on definition and diagnosis: Report of the european working group on sarcopenia in older people. Age and Ageing. 2010;39(4):412–23.
  • McCarthy HD, Samani-Radia D, Jebb SA, Prentice AM. Skeletal muscle mass reference curves for children and adolescents. Pediatric Obesity. 2014;9(4):249–59.
  • Kim K, Hong S, Kim EY. Reference values of skeletal muscle mass for Korean children and adolescents using data from the Korean National Health and Nutrition Examination Survey 2009-2011. Plos One. 2016;11(4):e0153383.
  • McLean RR, Shardell MD, Alley DE, Cawthon PM, Fragala MS, Harris TB, et al. Criteria for clinically relevant weakness and low lean mass and their longitudinal association with incident mobility impairment and mortality: the foundation for the National Institutes of Health (FNIH) sarcopenia project. Journals of Gerontology Series A: Biomedical Sciences and Medical Sciences. 2014;69(5):576–83.
  • Sert ZE, Temel AB. İlköğretim öğrencileri için fiziksel aktivite soru formunun Türk toplumuna uyarlanması: Geçerlilik ve güvenilirlik çalışması. Dokuz Eylül Üniversitesi Hemşirelik Fakültesi Elekronik Dergisi. 2014;7(2):109-114.
  • Gontarev S, Jakimovski M. Using relative handgrip strength to identify children at risk of sarcopenic obesity. Nutricion Hospitalaria. 2020;34(3):490-496.
  • Akobeng AK. Understanding diagnostic tests 3: Receiver operating characteristic curves. Acta Paediatrica. 2007; 96(5):644–7.
  • Vanderwall C, Eickhoff J, Clark R, Carrel A. Body composition, fitness, and eating behaviors deteriorate during the COVID-19 pandemic in at-risk pediatric patients" by, Medical Research Archives.2021;9(8):2-12.
  • Azoulay E, Yackobovitch-Gavan M, Yaacov H, Gilboa I, Lopez A, Sheppes T, at al. Weight status and body composition dynamics in children and adolescents during the COVID-19 pandemic. Frontiers in Pediatric. 2021;9:e707773
  • Fäldt A, Nejat S, Edvinsson Sollander S, Durbeej N, Holmgren A. Increased incidence of overweight and obesity among preschool Swedish children during the COVID-19 pandemic. European Journal of Public Health. 2023;33(1):127-31.
  • Bergmann GG, Cunha GB, Cunha GD, Cruz JH, Silva LR, Ferreira GD, et al. Changes in body weight and health behaviors of overweight children during the COVID-19 pandemic. Revista Brasileira de Atividade Física & Saúde.2020;25:1-7.
  • Vážná A, Vignerová J, Brabec M, Novák J, Procházka B, Gabera A, et al. Influence of COVID-19-related restrictions on the prevalence of overweight and obese Czech children. International Journal of Environmental Research and Public Health. 2022;19(19):e11902.
  • Rosenberg IH. Sarcopenia: Origins and clinical relevance. The Journal of Nutrition. 1997;127(5):990-1.
  • Woo J. Sarcopenia. Clinics in Geriatric Medicine. 2017;33(3):305–14.
  • Benson AC, Torode ME, Singh MA. Muscular strength and cardiorespiratory fitness is associated with higher insulin sensitivity in children and adolescents. International Journal of Pediatric Obesity. 2006;1(4):222–31
  • Steene-Johannessen J, Anderssen SA, Kolle E, Andersen LB. Low muscle fitness is associated with metabolic risk in youth. Medicine & Science in Sports & Exercise. 2009;41(7):1361–7.
  • Axelrod CL, Dantas WS, Kirwan JP. Sarcopenic obesity: emerging mechanisms and therapeutic potential. Metabolism. 2023;146:e155639.
  • Stefanaki C, Peppa M, Boschiero D, Chrousos GP. Healthy overweight/obese youth: early osteosarcopenic obesity features. European Journal of Clinical Investigation. 2016;46(9):767–78.
  • Gätjens I, Schmidt SCE, Plachta-Danielzik S, Bosy-Westphal A, Müller MJ. Body composition characteristics of a load-capacity model: Age-dependent and sex-specific percentiles in 5- to 17-year-old children. Obesity Facts. 2021;14(6):593–603.
  • Steffl M, Chrudimsky J, Tufano JJ. Using relative handgrip strength to identify children at risk of sarcopenic obesity. PloS One.2017;12(5):e0177006.
  • Coles N, Birken C, Hamilton J. Emerging treatments for severe obesity in children and adolescents. BMJ 2016;354:i4116.
  • Livingstone MBE, Robson PJ, Wallace JMW, McKinley MC. How active are we? Levels of routine physical activity in children and adults. Proceedings of the Nutrition Society. 2003;62(3):681–701.

Assessing Sarcopenic Obesity Risk in Children During the COVID-19 Pandemic: Grip-to-BMI Ratio

Year 2024, Volume: 7 Issue: 1, 18 - 33, 25.03.2024
https://doi.org/10.55517/mrr.1374119

Abstract

Aim: The present investigation aimed to examine the prevalence of sarcopenic obesity in Turkish children aged 6-10 years during the COVID-19 pandemic, while also conducting a comparison of diagnostic methods. Methods: A total of 431 healthy children (230 females, 201 males) were recruited for this study. Various anthropometric measurements, including height, weight, and body mass index (BMI), were collected. Furthermore, body composition was assessed through the utilization of bioelectrical impedance analysis (BIA) to ascertain fat mass, skeletal muscle mass, and the muscle-to-fat ratio (MFR). Additionally, grip strength was measured to determine the grip strength-to-BMI ratio. McCarthy's framework was employed to define sarcopenic obesity based on MFR cut-offs. Receiver operating characteristic curves were implemented to evaluate the efficacy of the grip strength-to-BMI ratio in identifying the risk of sarcopenic obesity. Results: The prevalence of sarcopenic obesity was found to be 8.7% in females and 10.4% in males. In comparison to the MFR, the grip strength-to-BMI ratio exhibited considerable sensitivity in detecting the risk of sarcopenic obesity. The correlation between the ratio of grip strength to BMI and the muscle-to-fat ratio (MFR) was found to be weak among boys and girls aged 6-8 years (r=0.363, r=0.458, p<0.001), while it was strong among boys and girls aged 9-10 years (boys: r=0.628, p<0.001; girls: r=0.612, p<0.001). For girls aged 6-8 years, the cut-off value for the MFR in the 3rd quintile, as determined by the BMI, was found to be ≤0.81, while for girls aged 9-10 years, it was ≤0.78. For boys aged 6-8 years, the cut-off value was ≤0.96, and for boys aged 9-10 years, it was ≤0.61. The grip strength-to-BMI ratio was successfully used to establish optimal cut-off points for defining the risk of sarcopenic obesity. In the age-adjusted binary regression model, the odds ratio (OR) for girls was: 11,833 %95 CI (3,353-41,757) p<0,001, while for boys, it was OR 11,705, CI (3,318-41,290) with p<0.001. Conclusion: The research sheds light on the effects of the COVID-19 pandemic on child wellness. Specifically, reduced opportunities for exercise due to lockdowns and school closures, coupled with potential changes in nutrition during this period, could have negatively impacted body composition in children. By applying BIA to estimate body composition indicators amongst a sample of young participants, the study provides valuable insights. It suggests the grip-BMI ratio warrants consideration as a screening metric to identify at-risk pediatric demographics.

Ethical Statement

Ethical approval for this study was obtained from the Gülhane Education and Research Hospital, Scientific Research Ethics Committee (Approval No: 2021-350).

Supporting Institution

Gülhane Education and Research Hospital, Scientific Research Ethics Committee (Approval No: 2021-350).

Project Number

Approval No: 2021-350

Thanks

Thank you to the participants.

References

  • Abarca-Gómez L, Abdeen ZA, Hamid ZA, Abu-Rmeileh NM, Acosta-Cazares B, Acuin C, et al. Worldwide trends in body-mass index, underweight, overweight, and obesity from 1975 to 2016: a pooled analysis of 2416 population-based measurement studies in 128•9 million children, adolescents, and adults. The Lancet. 2017;390(10113):2627–42.
  • Özcebe H, Bosi TB, Yardım N, Çelikcan E, Çelikay N, Keskinkılıç B, et al. Türkiye’de çocuklarda fazla kiloluluk ve şişmanlık prevalansları: Owerweight and obesity among children in Turkey. TAF Preventive Medicine Bulletin. 2015;14(2):145–52.
  • Jia P, Zhang L, Yu W, Yu B, Liu M, Zhang D, et al. Impact of COVID-19 lockdown on activity patterns and weight status among youths in China: the COVID-19 Impact on lifestyle change survey (COINLICS). International Journal of Obesity. 2021;45(3):695-9.
  • Bartha KO, Csengeri L, Lichthammer A, Erdelyi A, Kubanyi J, Scucs ZC. Impact of the first COVID–19 lockdown on the lifestyle of elementary school children in: Acta Alimentaria.2022;51:382-9.
  • Stavridou A, Kapsali E, Panagouli E, Thirios A, Polychronis K, Bacopoulou F, et al. Obesity in children and adolescents during COVID-19 pandemic. Children. 2021;8(2):135.
  • Wabitsch M, Moss A, Denzer C, Fischer-Posovsky P. Metabolic syndrome. Monatsschr Kinderheilkd. 2012;160:277-92.
  • Park BS, Yoon JS. Relative skeletal muscle mass is associated with development of metabolic syndrome. Diabetes & metabolism journal. 2013;37(6):458–64.
  • Cauley JA. An overview of sarcopenic obesity. Journal of Clinical Densitometry. 2015;18(4):499–505.
  • Baumgartner RN. Body composition in healthy aging. Annals of the New York Academy of Sciences. 2006;904(1):437-448.
  • Biolo G, Cederholm T, Muscaritoli M. Muscle contractile and metabolic dysfunction is a common feature of sarcopenia of aging and chronic diseases: From sarcopenic obesity to cachexia. Clinical Nutrition. 2014;33(5):737–48.
  • Benson AC, Torode ME, Singh MA. Muscular Strength and Cardiorespiratory Fitness is Associated With Higher Insulin Sensitivity in Children and Adolescents. International Journal of Pediatric Obesity. 2006;1(4):222–31.
  • Cruz-Jentoft AJ, Baeyens JP, Bauer JM, Boirie Y, Cederholm T, Landi F, et al. Sarcopenia: European consensus on definition and diagnosis: Report of the european working group on sarcopenia in older people. Age and Ageing. 2010;39(4):412–23.
  • McCarthy HD, Samani-Radia D, Jebb SA, Prentice AM. Skeletal muscle mass reference curves for children and adolescents. Pediatric Obesity. 2014;9(4):249–59.
  • Kim K, Hong S, Kim EY. Reference values of skeletal muscle mass for Korean children and adolescents using data from the Korean National Health and Nutrition Examination Survey 2009-2011. Plos One. 2016;11(4):e0153383.
  • McLean RR, Shardell MD, Alley DE, Cawthon PM, Fragala MS, Harris TB, et al. Criteria for clinically relevant weakness and low lean mass and their longitudinal association with incident mobility impairment and mortality: the foundation for the National Institutes of Health (FNIH) sarcopenia project. Journals of Gerontology Series A: Biomedical Sciences and Medical Sciences. 2014;69(5):576–83.
  • Sert ZE, Temel AB. İlköğretim öğrencileri için fiziksel aktivite soru formunun Türk toplumuna uyarlanması: Geçerlilik ve güvenilirlik çalışması. Dokuz Eylül Üniversitesi Hemşirelik Fakültesi Elekronik Dergisi. 2014;7(2):109-114.
  • Gontarev S, Jakimovski M. Using relative handgrip strength to identify children at risk of sarcopenic obesity. Nutricion Hospitalaria. 2020;34(3):490-496.
  • Akobeng AK. Understanding diagnostic tests 3: Receiver operating characteristic curves. Acta Paediatrica. 2007; 96(5):644–7.
  • Vanderwall C, Eickhoff J, Clark R, Carrel A. Body composition, fitness, and eating behaviors deteriorate during the COVID-19 pandemic in at-risk pediatric patients" by, Medical Research Archives.2021;9(8):2-12.
  • Azoulay E, Yackobovitch-Gavan M, Yaacov H, Gilboa I, Lopez A, Sheppes T, at al. Weight status and body composition dynamics in children and adolescents during the COVID-19 pandemic. Frontiers in Pediatric. 2021;9:e707773
  • Fäldt A, Nejat S, Edvinsson Sollander S, Durbeej N, Holmgren A. Increased incidence of overweight and obesity among preschool Swedish children during the COVID-19 pandemic. European Journal of Public Health. 2023;33(1):127-31.
  • Bergmann GG, Cunha GB, Cunha GD, Cruz JH, Silva LR, Ferreira GD, et al. Changes in body weight and health behaviors of overweight children during the COVID-19 pandemic. Revista Brasileira de Atividade Física & Saúde.2020;25:1-7.
  • Vážná A, Vignerová J, Brabec M, Novák J, Procházka B, Gabera A, et al. Influence of COVID-19-related restrictions on the prevalence of overweight and obese Czech children. International Journal of Environmental Research and Public Health. 2022;19(19):e11902.
  • Rosenberg IH. Sarcopenia: Origins and clinical relevance. The Journal of Nutrition. 1997;127(5):990-1.
  • Woo J. Sarcopenia. Clinics in Geriatric Medicine. 2017;33(3):305–14.
  • Benson AC, Torode ME, Singh MA. Muscular strength and cardiorespiratory fitness is associated with higher insulin sensitivity in children and adolescents. International Journal of Pediatric Obesity. 2006;1(4):222–31
  • Steene-Johannessen J, Anderssen SA, Kolle E, Andersen LB. Low muscle fitness is associated with metabolic risk in youth. Medicine & Science in Sports & Exercise. 2009;41(7):1361–7.
  • Axelrod CL, Dantas WS, Kirwan JP. Sarcopenic obesity: emerging mechanisms and therapeutic potential. Metabolism. 2023;146:e155639.
  • Stefanaki C, Peppa M, Boschiero D, Chrousos GP. Healthy overweight/obese youth: early osteosarcopenic obesity features. European Journal of Clinical Investigation. 2016;46(9):767–78.
  • Gätjens I, Schmidt SCE, Plachta-Danielzik S, Bosy-Westphal A, Müller MJ. Body composition characteristics of a load-capacity model: Age-dependent and sex-specific percentiles in 5- to 17-year-old children. Obesity Facts. 2021;14(6):593–603.
  • Steffl M, Chrudimsky J, Tufano JJ. Using relative handgrip strength to identify children at risk of sarcopenic obesity. PloS One.2017;12(5):e0177006.
  • Coles N, Birken C, Hamilton J. Emerging treatments for severe obesity in children and adolescents. BMJ 2016;354:i4116.
  • Livingstone MBE, Robson PJ, Wallace JMW, McKinley MC. How active are we? Levels of routine physical activity in children and adults. Proceedings of the Nutrition Society. 2003;62(3):681–701.
There are 33 citations in total.

Details

Primary Language English
Subjects Pediatric Endocrinology
Journal Section Research Article
Authors

Bahar Öztelcan Gündüz 0000-0003-1243-8731

Aysu Duyan Çamurdan 0000-0001-8384-7423

Mücahit Yıldız 0000-0001-8494-3484

F. Nur Baran Aksakal 0000-0002-8624-3307

Emine Nüket Ünsal 0000-0002-1491-7093

Project Number Approval No: 2021-350
Publication Date March 25, 2024
Submission Date October 10, 2023
Acceptance Date December 5, 2023
Published in Issue Year 2024 Volume: 7 Issue: 1

Cite

Vancouver Öztelcan Gündüz B, Duyan Çamurdan A, Yıldız M, Baran Aksakal FN, Ünsal EN. Assessing Sarcopenic Obesity Risk in Children During the COVID-19 Pandemic: Grip-to-BMI Ratio. MRR. 2024;7(1):18-33.