Research Article
BibTex RIS Cite

EFFECT OF PROPOFOL AND MEMANTINE ON ERYTHROCYTE DEFORMABILITY IN DIABETIC RAT MODEL

Year 2015, Volume: 2 Issue: 3, 221 - 224, 01.03.2015
https://doi.org/10.17546/msd.40291

Abstract

OBJECTIVES: In this study we aimed to investigate the effect of diabetes on erythrocyte deformability (ED) and whether it can be changed by an NMDA antagonist propofol or an NMDA agonist, memantine

BACKGROUND: Several clinical studies showed that ED decreases in diabetes. Recent studies showed that erythrocytes have N-methyl-D-aspartate (NMDA) receptors (NMDA Rec) on their membrane.

METHODS: Thirty rats were allocated to five groups containing 6 rats each. Memantine was given for 30 days to diabetic rats in one group (group DM) single dose propofol injection is added to this regimen in another group (group DP+ memantine) another group received propofol only (group DP). The remaining groups were controls and diabetic controls. ED was measured in each group and compared

RESULTS: The deformability index was significantly increased in the diabetic rats (p<0.0001). However, it was similar in Group DC and DP (p=0.551), Group DC and DM (p=1.000), Group DC and DPM (p=0.176).

CONCLUSION: Neither NMDA antagonist propofol nor NMDA agonist memantine affected the altered red cell rheology in diabetic rat model.

References

  • Chien S. Red cell deformability and its relevance to blood flow. Annu Rev Physiol. 1987;49:177-92
  • Shin S, Ku Y, Babu N, Singh M. Erythrocyte deformability and its variation in diabetes mellitus. Indian J Exp Biol. 2007;45(1):121-8.
  • Brown CD, Ghali HS, Zhao Z, Thomas LL, Friedman EA. Association of reduced red blood cell deformability and diabetic nephropathy. Kidney Int. 2005;67(1):295-300.
  • Banerjee R, Nageshwari K, Puniyani RR. The diagnostic relevance of red cell rigidity. Clin Hemorheol Microcirc. 1998;19(1):21-4.
  • Koscielny J, Latza R, Wolf S, Kiesewetter H, Jung F. Early rheological and microcirculatory changes in children with type I diabetes mellitus. Clin Hemorheol Microcirc. 1998;19(2):139-50.
  • Hayden MR, Tyagi SC, Kerklo MM, Nicolls MR. Type 2 diabetes mellitus as a conformational disease. JOP. 2005;6(4):287-302.
  • Mawatari S, Saito K, Murakami K, Fujino T. Absence of correlation between glycated hemoglobin and lipid composition of erythrocyte membrane in type 2 diabetic patients. Metabolism. 2004;53(1):123-7.
  • Maksina AG, Daĭniak BA, Sebko TV, Kniazev IuA. [Effect of insulin on lipid peroxidation in the erythrocyte membranes of patients with insulin dependent diabetes mellitus]. Biofizika. 1997;42(3):671-4.
  • Picart C, Dalhaimer P, Discher DE. Actin protofilament orientation in deformation of the erythrocyte membrane skeleton. Biophys J. 2000;79(6):2987-3000.
  • Schwartz RS, Madsen JW, Rybicki AC, Nagel RL. Oxidation of spectrin and deformability defects in diabetic erythrocytes. Diabetes. 1991;40(6):701-8.
  • Makhro A, Wang J, Vogel J, Boldyrev AA, Gassmann M, Kaestner L et al. Functional NMDA receptors in rat erythrocytes. Am J Physiol Cell Physiol. 2010;298: 1315-25.
  • Tatlican S, Duran FS, Eren C et al. Reduced erythrocyte deformability in active and untreated Behçet’s disease patients. Int J Dermatol. 2010; 49 (2): 167-71.
  • Arslan M, Comu FM, Işık B et al. Effects of a general anaesthetic agent, propofol, on erythrocyte deformability. Bratisl Med J. 2010; 111 (3): 126-8.
  • Babu N, Singh M. Influence of hyperglycemia on aggregation, deformability and shape parameters of erythrocytes. Clin Hemorheol Microcirc. 2004;31(4):273-80.
  • Resmi H, Akhunlar H, Temiz Artmann A, Güner G. In vitro effects of high glucose concentrations on membrane protein oxidation, G-actin and deformability of human erythrocytes. Cell Biochem Funct. 2005;23(3):163-8.
  • Diamantopoulos EJ, Kittas C, Charitos D, Grigoriadou M, Ifanti G, Raptis SA. Impaired erythrocyte deformability precedes vascular changes in experimental diabetes mellitus. Horm Metab Res. 2004;36(3):142-7.
  • Yapislar H, Aydogan S. Effect of carnosine on erythrocyte deformability in diabetic rats. Arch Physiol Biochem. 2012;118(5):265-72.
  • Bogdanova A, Makhro A, Wang J, Lipp P, Kaestner L. Calcium in red blood cells-a perilous balance. Int J Mol Sci 2013;14: 9848–72.
  • Johson JW, Kotermanski SE. Mechanism of action of memantine. Curr Opin Pharmacol. 2006;6:61-7.
  • Reinhart WH, Geissmann-Ott C, Bogdanova A. Activation of N-methyl D-aspartate (NMDA) receptors has no influence on rheological properties of erythrocytes. Clin Hemorheol Microcirc. 2011;49(1-4):307-13.
  • Kotani Y, Shimazawa M, Yoshimura S, Iwama T, Hara H. The experimental and clinical pharmacology of propofol, an anesthetic agent with neuroprotective properties. CNS Neurosci Ther. 2008;14(2):95-106.
  • Comu FM, Ozturk L, Alkan M, Pampal K, Arslan M, Isik B et al. Investigation of the effects of propofol and vitamin C administration on erythrocyte deformability in rats with streptozotocin-induced diabetes Bratisl Lek Listy. 2014;115(7):400-4.
  • Reinhart WH, Felix Ch. Influence of propofol on erythrocyte morphology, blood viscosity and platelet function. Clin Hemorheol Microcirc. 2003;29(1):33-40.
  • Mokken FC, Henny CP, Gelb AW, Biervliet JD, Hardeman MR, Kedaria M et al. The effects of propofol compared to high-dose fentanyl anesthesia on rheologic parameters in coronary artery surgery. J Cardiothorac Vasc Anesth. 1993;7(1):10-6.
  • Kim YH, Chung HG, Myung SA, Rha JH, Yang S, Nam MH et al. In vitro effect of clinical propofol concentrations on red blood cell aggregation and deformability. Clin Hemorheol Microcirc. 2012;51(4):287-92.
Year 2015, Volume: 2 Issue: 3, 221 - 224, 01.03.2015
https://doi.org/10.17546/msd.40291

Abstract

References

  • Chien S. Red cell deformability and its relevance to blood flow. Annu Rev Physiol. 1987;49:177-92
  • Shin S, Ku Y, Babu N, Singh M. Erythrocyte deformability and its variation in diabetes mellitus. Indian J Exp Biol. 2007;45(1):121-8.
  • Brown CD, Ghali HS, Zhao Z, Thomas LL, Friedman EA. Association of reduced red blood cell deformability and diabetic nephropathy. Kidney Int. 2005;67(1):295-300.
  • Banerjee R, Nageshwari K, Puniyani RR. The diagnostic relevance of red cell rigidity. Clin Hemorheol Microcirc. 1998;19(1):21-4.
  • Koscielny J, Latza R, Wolf S, Kiesewetter H, Jung F. Early rheological and microcirculatory changes in children with type I diabetes mellitus. Clin Hemorheol Microcirc. 1998;19(2):139-50.
  • Hayden MR, Tyagi SC, Kerklo MM, Nicolls MR. Type 2 diabetes mellitus as a conformational disease. JOP. 2005;6(4):287-302.
  • Mawatari S, Saito K, Murakami K, Fujino T. Absence of correlation between glycated hemoglobin and lipid composition of erythrocyte membrane in type 2 diabetic patients. Metabolism. 2004;53(1):123-7.
  • Maksina AG, Daĭniak BA, Sebko TV, Kniazev IuA. [Effect of insulin on lipid peroxidation in the erythrocyte membranes of patients with insulin dependent diabetes mellitus]. Biofizika. 1997;42(3):671-4.
  • Picart C, Dalhaimer P, Discher DE. Actin protofilament orientation in deformation of the erythrocyte membrane skeleton. Biophys J. 2000;79(6):2987-3000.
  • Schwartz RS, Madsen JW, Rybicki AC, Nagel RL. Oxidation of spectrin and deformability defects in diabetic erythrocytes. Diabetes. 1991;40(6):701-8.
  • Makhro A, Wang J, Vogel J, Boldyrev AA, Gassmann M, Kaestner L et al. Functional NMDA receptors in rat erythrocytes. Am J Physiol Cell Physiol. 2010;298: 1315-25.
  • Tatlican S, Duran FS, Eren C et al. Reduced erythrocyte deformability in active and untreated Behçet’s disease patients. Int J Dermatol. 2010; 49 (2): 167-71.
  • Arslan M, Comu FM, Işık B et al. Effects of a general anaesthetic agent, propofol, on erythrocyte deformability. Bratisl Med J. 2010; 111 (3): 126-8.
  • Babu N, Singh M. Influence of hyperglycemia on aggregation, deformability and shape parameters of erythrocytes. Clin Hemorheol Microcirc. 2004;31(4):273-80.
  • Resmi H, Akhunlar H, Temiz Artmann A, Güner G. In vitro effects of high glucose concentrations on membrane protein oxidation, G-actin and deformability of human erythrocytes. Cell Biochem Funct. 2005;23(3):163-8.
  • Diamantopoulos EJ, Kittas C, Charitos D, Grigoriadou M, Ifanti G, Raptis SA. Impaired erythrocyte deformability precedes vascular changes in experimental diabetes mellitus. Horm Metab Res. 2004;36(3):142-7.
  • Yapislar H, Aydogan S. Effect of carnosine on erythrocyte deformability in diabetic rats. Arch Physiol Biochem. 2012;118(5):265-72.
  • Bogdanova A, Makhro A, Wang J, Lipp P, Kaestner L. Calcium in red blood cells-a perilous balance. Int J Mol Sci 2013;14: 9848–72.
  • Johson JW, Kotermanski SE. Mechanism of action of memantine. Curr Opin Pharmacol. 2006;6:61-7.
  • Reinhart WH, Geissmann-Ott C, Bogdanova A. Activation of N-methyl D-aspartate (NMDA) receptors has no influence on rheological properties of erythrocytes. Clin Hemorheol Microcirc. 2011;49(1-4):307-13.
  • Kotani Y, Shimazawa M, Yoshimura S, Iwama T, Hara H. The experimental and clinical pharmacology of propofol, an anesthetic agent with neuroprotective properties. CNS Neurosci Ther. 2008;14(2):95-106.
  • Comu FM, Ozturk L, Alkan M, Pampal K, Arslan M, Isik B et al. Investigation of the effects of propofol and vitamin C administration on erythrocyte deformability in rats with streptozotocin-induced diabetes Bratisl Lek Listy. 2014;115(7):400-4.
  • Reinhart WH, Felix Ch. Influence of propofol on erythrocyte morphology, blood viscosity and platelet function. Clin Hemorheol Microcirc. 2003;29(1):33-40.
  • Mokken FC, Henny CP, Gelb AW, Biervliet JD, Hardeman MR, Kedaria M et al. The effects of propofol compared to high-dose fentanyl anesthesia on rheologic parameters in coronary artery surgery. J Cardiothorac Vasc Anesth. 1993;7(1):10-6.
  • Kim YH, Chung HG, Myung SA, Rha JH, Yang S, Nam MH et al. In vitro effect of clinical propofol concentrations on red blood cell aggregation and deformability. Clin Hemorheol Microcirc. 2012;51(4):287-92.
There are 25 citations in total.

Details

Primary Language English
Subjects Health Care Administration
Journal Section Research Article
Authors

Serife Kuskonmaz

Erdal Cicek This is me

Faruk Comu

Mustafa Arslan

Omer Kurtipek This is me

Publication Date March 1, 2015
Published in Issue Year 2015 Volume: 2 Issue: 3

Cite

APA Kuskonmaz, S., Cicek, E., Comu, F., Arslan, M., et al. (2015). EFFECT OF PROPOFOL AND MEMANTINE ON ERYTHROCYTE DEFORMABILITY IN DIABETIC RAT MODEL. Medical Science and Discovery, 2(3), 221-224. https://doi.org/10.17546/msd.40291
AMA Kuskonmaz S, Cicek E, Comu F, Arslan M, Kurtipek O. EFFECT OF PROPOFOL AND MEMANTINE ON ERYTHROCYTE DEFORMABILITY IN DIABETIC RAT MODEL. Med Sci Discov. April 2015;2(3):221-224. doi:10.17546/msd.40291
Chicago Kuskonmaz, Serife, Erdal Cicek, Faruk Comu, Mustafa Arslan, and Omer Kurtipek. “EFFECT OF PROPOFOL AND MEMANTINE ON ERYTHROCYTE DEFORMABILITY IN DIABETIC RAT MODEL”. Medical Science and Discovery 2, no. 3 (April 2015): 221-24. https://doi.org/10.17546/msd.40291.
EndNote Kuskonmaz S, Cicek E, Comu F, Arslan M, Kurtipek O (April 1, 2015) EFFECT OF PROPOFOL AND MEMANTINE ON ERYTHROCYTE DEFORMABILITY IN DIABETIC RAT MODEL. Medical Science and Discovery 2 3 221–224.
IEEE S. Kuskonmaz, E. Cicek, F. Comu, M. Arslan, and O. Kurtipek, “EFFECT OF PROPOFOL AND MEMANTINE ON ERYTHROCYTE DEFORMABILITY IN DIABETIC RAT MODEL”, Med Sci Discov, vol. 2, no. 3, pp. 221–224, 2015, doi: 10.17546/msd.40291.
ISNAD Kuskonmaz, Serife et al. “EFFECT OF PROPOFOL AND MEMANTINE ON ERYTHROCYTE DEFORMABILITY IN DIABETIC RAT MODEL”. Medical Science and Discovery 2/3 (April 2015), 221-224. https://doi.org/10.17546/msd.40291.
JAMA Kuskonmaz S, Cicek E, Comu F, Arslan M, Kurtipek O. EFFECT OF PROPOFOL AND MEMANTINE ON ERYTHROCYTE DEFORMABILITY IN DIABETIC RAT MODEL. Med Sci Discov. 2015;2:221–224.
MLA Kuskonmaz, Serife et al. “EFFECT OF PROPOFOL AND MEMANTINE ON ERYTHROCYTE DEFORMABILITY IN DIABETIC RAT MODEL”. Medical Science and Discovery, vol. 2, no. 3, 2015, pp. 221-4, doi:10.17546/msd.40291.
Vancouver Kuskonmaz S, Cicek E, Comu F, Arslan M, Kurtipek O. EFFECT OF PROPOFOL AND MEMANTINE ON ERYTHROCYTE DEFORMABILITY IN DIABETIC RAT MODEL. Med Sci Discov. 2015;2(3):221-4.