Research Article
BibTex RIS Cite
Year 2018, Volume: 5 Issue: 3, 161 - 165, 31.03.2018
https://doi.org/10.17546/msd.400187

Abstract

References

  • 1. Ding GX, Duggan DM, Lu B, Hallahan DE, Cmelak A, Malcolm A, et al. Impact of inhomogeneity corrections on dose coverage in the treatment of lung cancer using stereotactic body radiation therapy. Med Phys. 2007;34(7):2985-2994.
  • 2. Das IJ, Ding GX, Ahnesjo¨ A. Small fields: nonequilibrium radiation dosimetry. Med Phys. 2008;35(1):206-215.
  • 3. Wilcox EE, Daskalov GM, Lincoln H, Shumway RC, Kaplan BM, Colasanto JM. Comparison of planned dose distributions calculatedby Monte Carlo and Ray-Trace algorithms for the treatment of lung tumors with cyberknife: a preliminary study in 33 patients. Int J Radiat Oncol Biol Phys. 2010;77(1):277-284.
  • 4. Roberts, R. How accurate is a CT-based dose calculation on a pencil beam TPS for a patient with a metallic prosthesis? Phys. Med. Biol.2001; 46: N227–34.
  • 5. Han T, Mikell JK, Salehpour M, Mourtada F. Dosimetric comparison ofAcuros XB deterministic radiation transport method with Monte Carlo and model-based convolution methods in heterogeneous media. Med Phys. 2011; 38:2651–64.
  • 6. Bush K, Gagne IM, Zavgorodni S, Ansbacher W, Beckham W. Dosimetric validation of Acuros XB with Monte Carlo methods for photon dose calculations. Med Phys. 2011; 38:2208–21.
  • 7. Han T, Followill D, Mikell J, Repchak R, Molineu A, Howell R et al. Dosimetric impact of AcurosXB deterministic radiation transport algorithm for heterogeneous dose calculation in lung cancer. Med Phys. 2013; 40:51710–21.
  • 8. Mißlbeck M, Kneschaurek P. Comparison between Acuros XB and Brainlab Monte Carlo algorithms for photon dose calculation. Strahlenther Onkol. 2012; 188:599–605.
  • 9. Timmerman RD. An overview of hypofractionation and introduction to this issue of seminars in radiation oncology. Semin Radiat Oncol. 2008;18(4):215–22
  • 10. Newhauser, W.D. Giebeler, A. Langen, K.M. Mirkovic D, Mohan R. Can megavoltage computed tomography reduce proton range uncertainties in treatment plans for patientswith large metal implants? Phys. Med. Biol.2008; 53:2327–44.
  • 11. Roberts, R. How accurate is a CT-based dose calculation on a pencil beam TPS for a patient with a metallic prosthesis? Phys. Med. Biol.2001; 46:227–34.
  • 12. Ojala JJ1, Kapanen M., Quantification of dose differences between two versions of Acuros XB algorithm compared to Monte Carlo simulations - the effect on clinical patient treatment planning. J Appl Clin Med Phys. 2015; 16(6):5642.
  • 13. Moskvin V Cheng CW, Fanelli L, Zhao L, Das IJ. A semi-empirical model for the therapeutic range shift estima¬tion caused by inhomogeneities in proton beam therapy. J Appl Clin Med Phys. 2012;13(2):3631
  • 14. Xiao Y, Papiez L, Paulus R, Timmerman R, Straube W L, Bosch W R, Michalski J and Galvin J M. Dosimetric evaluation of heterogeneity corrections for RTOG 0236: stereotactic body radiotherapy of inoperable stage I-II non–small-cell lung cancer Int. J. Radiat. Oncol. Biol. Phys.2009; 73 1235–42
  • 15. Wu VW, Tam KW, Tong SM. Evaluation of the influence of tumor location and size on the difference of dose calcula¬tion between Ray Tracing algorithm and Fast Monte Carlo algorithm in stereotactic body radiotherapy of non-small cell lung cancer using CyberKnife. J Appl Clin Med Phys. 2013; 14:68–78.

Stereotactic radiotherapy for patients with metallic implants on vertebral body: A dosimetric comparison

Year 2018, Volume: 5 Issue: 3, 161 - 165, 31.03.2018
https://doi.org/10.17546/msd.400187

Abstract







Objective: Metallic implants have impacts on
dose distribution of radiotherapy. Our purpose is evaluating impact of
metallic implants with different dose calculation algorithms on dose
distribution.


Material and
Methods:
Two
patients with metallic implants on vertebral body were included in this
study. They were treated with stereotactic radiotherapy. The data of the
patients were retrospectively re-calculated with different TPSs and
calculation algorithms. Ray-Tracing (Ry-Tc), Monte-Carlo (MC), Acuros XB
(AXB) and analytical anisotropic algorithms (AAA) were compared.


Results: Ry-Tc, AAA and AXB underestimated
minimum and maximum doses of target volumes and critical organs compared with
MC.


Conclusion: MC seems more reliable for dose
calculations in patients with metallic implants but more studies with more
number of patients should be done to identify the best dose calculation
algorithm for patients with metallic implants.


References

  • 1. Ding GX, Duggan DM, Lu B, Hallahan DE, Cmelak A, Malcolm A, et al. Impact of inhomogeneity corrections on dose coverage in the treatment of lung cancer using stereotactic body radiation therapy. Med Phys. 2007;34(7):2985-2994.
  • 2. Das IJ, Ding GX, Ahnesjo¨ A. Small fields: nonequilibrium radiation dosimetry. Med Phys. 2008;35(1):206-215.
  • 3. Wilcox EE, Daskalov GM, Lincoln H, Shumway RC, Kaplan BM, Colasanto JM. Comparison of planned dose distributions calculatedby Monte Carlo and Ray-Trace algorithms for the treatment of lung tumors with cyberknife: a preliminary study in 33 patients. Int J Radiat Oncol Biol Phys. 2010;77(1):277-284.
  • 4. Roberts, R. How accurate is a CT-based dose calculation on a pencil beam TPS for a patient with a metallic prosthesis? Phys. Med. Biol.2001; 46: N227–34.
  • 5. Han T, Mikell JK, Salehpour M, Mourtada F. Dosimetric comparison ofAcuros XB deterministic radiation transport method with Monte Carlo and model-based convolution methods in heterogeneous media. Med Phys. 2011; 38:2651–64.
  • 6. Bush K, Gagne IM, Zavgorodni S, Ansbacher W, Beckham W. Dosimetric validation of Acuros XB with Monte Carlo methods for photon dose calculations. Med Phys. 2011; 38:2208–21.
  • 7. Han T, Followill D, Mikell J, Repchak R, Molineu A, Howell R et al. Dosimetric impact of AcurosXB deterministic radiation transport algorithm for heterogeneous dose calculation in lung cancer. Med Phys. 2013; 40:51710–21.
  • 8. Mißlbeck M, Kneschaurek P. Comparison between Acuros XB and Brainlab Monte Carlo algorithms for photon dose calculation. Strahlenther Onkol. 2012; 188:599–605.
  • 9. Timmerman RD. An overview of hypofractionation and introduction to this issue of seminars in radiation oncology. Semin Radiat Oncol. 2008;18(4):215–22
  • 10. Newhauser, W.D. Giebeler, A. Langen, K.M. Mirkovic D, Mohan R. Can megavoltage computed tomography reduce proton range uncertainties in treatment plans for patientswith large metal implants? Phys. Med. Biol.2008; 53:2327–44.
  • 11. Roberts, R. How accurate is a CT-based dose calculation on a pencil beam TPS for a patient with a metallic prosthesis? Phys. Med. Biol.2001; 46:227–34.
  • 12. Ojala JJ1, Kapanen M., Quantification of dose differences between two versions of Acuros XB algorithm compared to Monte Carlo simulations - the effect on clinical patient treatment planning. J Appl Clin Med Phys. 2015; 16(6):5642.
  • 13. Moskvin V Cheng CW, Fanelli L, Zhao L, Das IJ. A semi-empirical model for the therapeutic range shift estima¬tion caused by inhomogeneities in proton beam therapy. J Appl Clin Med Phys. 2012;13(2):3631
  • 14. Xiao Y, Papiez L, Paulus R, Timmerman R, Straube W L, Bosch W R, Michalski J and Galvin J M. Dosimetric evaluation of heterogeneity corrections for RTOG 0236: stereotactic body radiotherapy of inoperable stage I-II non–small-cell lung cancer Int. J. Radiat. Oncol. Biol. Phys.2009; 73 1235–42
  • 15. Wu VW, Tam KW, Tong SM. Evaluation of the influence of tumor location and size on the difference of dose calcula¬tion between Ray Tracing algorithm and Fast Monte Carlo algorithm in stereotactic body radiotherapy of non-small cell lung cancer using CyberKnife. J Appl Clin Med Phys. 2013; 14:68–78.
There are 15 citations in total.

Details

Primary Language English
Subjects Health Care Administration
Journal Section Research Article
Authors

Yasemin Guzle Adas

Omer Yazici

Esra Kekilli

Ferat Kiran This is me

Publication Date March 31, 2018
Published in Issue Year 2018 Volume: 5 Issue: 3

Cite

APA Guzle Adas, Y., Yazici, O., Kekilli, E., Kiran, F. (2018). Stereotactic radiotherapy for patients with metallic implants on vertebral body: A dosimetric comparison. Medical Science and Discovery, 5(3), 161-165. https://doi.org/10.17546/msd.400187
AMA Guzle Adas Y, Yazici O, Kekilli E, Kiran F. Stereotactic radiotherapy for patients with metallic implants on vertebral body: A dosimetric comparison. Med Sci Discov. March 2018;5(3):161-165. doi:10.17546/msd.400187
Chicago Guzle Adas, Yasemin, Omer Yazici, Esra Kekilli, and Ferat Kiran. “Stereotactic Radiotherapy for Patients With Metallic Implants on Vertebral Body: A Dosimetric Comparison”. Medical Science and Discovery 5, no. 3 (March 2018): 161-65. https://doi.org/10.17546/msd.400187.
EndNote Guzle Adas Y, Yazici O, Kekilli E, Kiran F (March 1, 2018) Stereotactic radiotherapy for patients with metallic implants on vertebral body: A dosimetric comparison. Medical Science and Discovery 5 3 161–165.
IEEE Y. Guzle Adas, O. Yazici, E. Kekilli, and F. Kiran, “Stereotactic radiotherapy for patients with metallic implants on vertebral body: A dosimetric comparison”, Med Sci Discov, vol. 5, no. 3, pp. 161–165, 2018, doi: 10.17546/msd.400187.
ISNAD Guzle Adas, Yasemin et al. “Stereotactic Radiotherapy for Patients With Metallic Implants on Vertebral Body: A Dosimetric Comparison”. Medical Science and Discovery 5/3 (March 2018), 161-165. https://doi.org/10.17546/msd.400187.
JAMA Guzle Adas Y, Yazici O, Kekilli E, Kiran F. Stereotactic radiotherapy for patients with metallic implants on vertebral body: A dosimetric comparison. Med Sci Discov. 2018;5:161–165.
MLA Guzle Adas, Yasemin et al. “Stereotactic Radiotherapy for Patients With Metallic Implants on Vertebral Body: A Dosimetric Comparison”. Medical Science and Discovery, vol. 5, no. 3, 2018, pp. 161-5, doi:10.17546/msd.400187.
Vancouver Guzle Adas Y, Yazici O, Kekilli E, Kiran F. Stereotactic radiotherapy for patients with metallic implants on vertebral body: A dosimetric comparison. Med Sci Discov. 2018;5(3):161-5.