Research Article
BibTex RIS Cite

Some New Hilbert Sequence Spaces

Year 2016, Volume: 4 Issue: 1, 367 - 372, 01.06.2016

Abstract

The main purpose of the present paper is to study of some new Hilbert sequence spaces   ,   and  . New Hilbert sequence spaces  ,   and   consisting all the sequences whose  - transforms are in the spaces  ,  and  , respectively. The new Hilbert sequence spaces  ,   and   that are  - spaces and prove that the spaces  ,   and   are linearly isomorphic to the spaces  ,  and  , respectively. Afterward the bases and α, β and γ duals of these spaces will be given. Finally, matrix the classes   and   have been characterized.

References

  • [1] Choudhary, B., Nanda, S. Functional analysis with applications. Wiley, 1989.
  • [2] Kırıscı, M. On The Taylor Sequence Spaces Of Nonabsolute Type Whıch Include The Spaces c0 AND c, Journal of Mathematical Analisys, 2, 22-35,2015.
  • [3] Altay, B., Basar, F. On some Euler sequence spaces of nonabsolute type. Ukrainian Mathematical Journal, 57(1), 1-17, 2005.
  • [4] Sengonül, M., Basar, F. Some new cesaro sequence spaces of non-absolute type which include. Soochow Journal of Mathematics, 31(1), 107-119, 2005.
  • [5] Altay, B., Başar, F., Mursaleen, M. On the Euler sequence spaces which include in the spaces and ∞ I. Information Sciences, 176(10), 1450-1462, 2006.
  • [6] Malkowsky, E. Recent results in the theory of matrix transformations in sequences spaces, Mat. Vesnik 49, 187-196, 1997
  • [7] Ng, P. N., Lee, P. Y. Cesaro sequence spaces of non-absolute type. Comment. Math. Prace Mat, 20(2), 429-433, 1978
  • [8] Wang, C. S. On Nörlund seqence spaces, Tamkang J. Math., 9, 269-274, 1978.
  • [9] Raja, P. V. K., Chakravarthy, A. S. N., Avadhani, P. S. A Cryptosystem Based on Hilbert Matrix using Cipher Block Chaining Mode. arXiv preprint arXiv:1110.1498, 2011.
  • [10] Tabanjeh, M. M. New Approach for the Inversion of Structured Matrices via Newton's Iteration, Advances in Linear Algebra and Matrix Theory, 5,(1) 1-15,2015.
  • [11] Maddox, I. J. Elements of Functional Analysis, Cambridge University Press, Cambridge 1988.
  • [12] Garling, D. J. H. The β-and γ-duality of sequence spaces. In Mathematical Proceedings of the Cambridge Philosophical Society, 63(4), 963-981, 1967
  • [13] Stieglitz, M., Tietz, H. Matrixtransformationen von folgenräumen eine ergebnisübersicht. Mathematische Zeitschrift, 154(1), 1-16, 1977

Some New Hilbert Sequence Spaces

Year 2016, Volume: 4 Issue: 1, 367 - 372, 01.06.2016

Abstract

The main purpose of the present paper is to study of some new Hilbert sequence spaces   ,   and  . New Hilbert sequence spaces  ,   and   consisting all the sequences whose  - transforms are in the spaces  ,  and  , respectively. The new Hilbert sequence spaces  ,   and   that are  - spaces and prove that the spaces  ,   and   are linearly isomorphic to the spaces  ,  and  , respectively. Afterward the bases and α, β and γ duals of these spaces will be given. Finally, matrix the classes   and   have been characterized.

References

  • [1] Choudhary, B., Nanda, S. Functional analysis with applications. Wiley, 1989.
  • [2] Kırıscı, M. On The Taylor Sequence Spaces Of Nonabsolute Type Whıch Include The Spaces c0 AND c, Journal of Mathematical Analisys, 2, 22-35,2015.
  • [3] Altay, B., Basar, F. On some Euler sequence spaces of nonabsolute type. Ukrainian Mathematical Journal, 57(1), 1-17, 2005.
  • [4] Sengonül, M., Basar, F. Some new cesaro sequence spaces of non-absolute type which include. Soochow Journal of Mathematics, 31(1), 107-119, 2005.
  • [5] Altay, B., Başar, F., Mursaleen, M. On the Euler sequence spaces which include in the spaces and ∞ I. Information Sciences, 176(10), 1450-1462, 2006.
  • [6] Malkowsky, E. Recent results in the theory of matrix transformations in sequences spaces, Mat. Vesnik 49, 187-196, 1997
  • [7] Ng, P. N., Lee, P. Y. Cesaro sequence spaces of non-absolute type. Comment. Math. Prace Mat, 20(2), 429-433, 1978
  • [8] Wang, C. S. On Nörlund seqence spaces, Tamkang J. Math., 9, 269-274, 1978.
  • [9] Raja, P. V. K., Chakravarthy, A. S. N., Avadhani, P. S. A Cryptosystem Based on Hilbert Matrix using Cipher Block Chaining Mode. arXiv preprint arXiv:1110.1498, 2011.
  • [10] Tabanjeh, M. M. New Approach for the Inversion of Structured Matrices via Newton's Iteration, Advances in Linear Algebra and Matrix Theory, 5,(1) 1-15,2015.
  • [11] Maddox, I. J. Elements of Functional Analysis, Cambridge University Press, Cambridge 1988.
  • [12] Garling, D. J. H. The β-and γ-duality of sequence spaces. In Mathematical Proceedings of the Cambridge Philosophical Society, 63(4), 963-981, 1967
  • [13] Stieglitz, M., Tietz, H. Matrixtransformationen von folgenräumen eine ergebnisübersicht. Mathematische Zeitschrift, 154(1), 1-16, 1977
There are 13 citations in total.

Details

Subjects Engineering
Journal Section Research Article
Authors

Harun Polat

Publication Date June 1, 2016
Published in Issue Year 2016 Volume: 4 Issue: 1

Cite

APA Polat, H. (2016). Some New Hilbert Sequence Spaces. Muş Alparslan Üniversitesi Fen Bilimleri Dergisi, 4(1), 367-372.
AMA Polat H. Some New Hilbert Sequence Spaces. MAUN Fen Bil. Dergi. June 2016;4(1):367-372.
Chicago Polat, Harun. “Some New Hilbert Sequence Spaces”. Muş Alparslan Üniversitesi Fen Bilimleri Dergisi 4, no. 1 (June 2016): 367-72.
EndNote Polat H (June 1, 2016) Some New Hilbert Sequence Spaces. Muş Alparslan Üniversitesi Fen Bilimleri Dergisi 4 1 367–372.
IEEE H. Polat, “Some New Hilbert Sequence Spaces”, MAUN Fen Bil. Dergi., vol. 4, no. 1, pp. 367–372, 2016.
ISNAD Polat, Harun. “Some New Hilbert Sequence Spaces”. Muş Alparslan Üniversitesi Fen Bilimleri Dergisi 4/1 (June 2016), 367-372.
JAMA Polat H. Some New Hilbert Sequence Spaces. MAUN Fen Bil. Dergi. 2016;4:367–372.
MLA Polat, Harun. “Some New Hilbert Sequence Spaces”. Muş Alparslan Üniversitesi Fen Bilimleri Dergisi, vol. 4, no. 1, 2016, pp. 367-72.
Vancouver Polat H. Some New Hilbert Sequence Spaces. MAUN Fen Bil. Dergi. 2016;4(1):367-72.