Düzlemsel Bezier Eğrilerinin S(2) Denklik Şartları
Year 2017,
Volume: 5 Issue: 2, 471 - 477, 01.12.2017
Muhsin İncesu
,
Osman Gürsoy
Abstract
Bu çalışmada R2 de vektörlerden oluşan iki sistemin, yine R2 de tüm benzerlik dönüşümlerinin grubu olan G=S(2) grubuna göre denklik şartlarının; bu vektörlerin G-invaryant rasyonel fonksiyonlar cismi olan R(x1,x2,…,xk)S(2) cisminin üreteçleri cinsinden ifade edilmesi çalışılmıştır. Böylece R2 de verilen düzlemsel Bezier eğrilerinin S(2) grubuna göre denklik şartları da ifade edilmiştir.
References
- Kurşun H.ve Kalkan Y., İstanbul’ da Farklı Tarihlerde Yapılmış Doğalgaz Alt Yapı Haritalarının Doğruluk Yönünden bir Karşılaştırılması, 2. Mühendislik Ölçmeleri Sempozyumu, 23-25 Kasım 2005, İTÜ, İstanbul
- Yaprak S ve Yaprak H., Comparison of GPS Stop and Go Method and Electronic Tachometry Technique in Map Production, Gazi Üniversitesi Journal of Science ,18,4 (2005) 627-637.
- Özer S., Kortewed –de Vries Denklemlerinin Nümerik Çözümü, Doktora Tezi, İnönü Üniversitesi Fen bilimleri Enstitüsü, 1995.
- Kai- Tai Fang, et all, Critical value determination on similarity of Fingerprints, Chemometrics and Intelligent Laboratory Systems, 82, 1 (2006) 236-240.
- Wang L.X., et all, Vectorial angle method for evaluating the similarity between two chromatographic fingerprints of chinese herb, Acta Pharmaceutica Sinica, 37, 9 (2002) 713-717.
- Dresner Martin, Leisure versus business passengers: Similarities, differences, and implications, Journal of Air Transport Menagement, 12 (2006) 28-32.
- Yo Horikawa, Bispectrum – based feature of 2D and 3D images invariant to similarity Transformations, Proc. IEEE, (2000) 511-514.
- Yo Horikawa, Pattern recognition with invariance to similarity transformations based on the third- order correlation, Proc. 13th. International Conference on Pattern Recognition (ICPR’96) , 2 (1996) 200-204.
- Weyl H., The Classical Groups, Their Invariants and Representations, 2nd ed., with suppl.. Princeton, Princeton University Press, 1946
- Khadjiev Dj., An Application of the Invariant Theory to the Differential Geometry of Curves, Fan, Tashkent, 1988. ( in Russian )
- İdris Oren, Invariants of Points fort he orthogonal groups O(3,1), PhD. Thesis, Karadeniz Technical University, 2007.
- Yasemin Sağıroğlu, Affine Differential Invariants of parametric curves, Ph D. Thesis, Karadeniz Technical University, 2002.
- Alexander Schrijver, Tensor subalgebras and first fundamental theorems in invariant theory, journal of Algebra, 319, (2008), 1305-1319.
- Muhsin Incesu, Osman Gursoy, On Similarity Invarant Rational Function fot k vector variables and their genarators in R2, Modelling and Application Theory, V.1 issue 1 , (2016) ,37-53.
- Muhsin Incesu, Osman Gursoy, LS(2)-Equivalence Conditions of Control Points and Application to Planar Bezier Curves” New Trends in Mathematical Science, V.5, No. 3, (2017) 70-84.
- Greub W. H., Linear algebra, 3rd. Ed., Springer- Verlag Berlin Heidelberg, Netherland, 1967.
- Marsh D., Applied Geometry for Computer Graphics and CAD, Springer-Verlag London Berlin Heidelberg, London, 1999.
The S(2) equivalence Conditions of Planar Bezier Curves
Year 2017,
Volume: 5 Issue: 2, 471 - 477, 01.12.2017
Muhsin İncesu
,
Osman Gürsoy
Abstract
In this paper it is studied that the equivalence conditions of two systems consisted of vectors according to the group G=S(2) of similarity transformations in R2 in terms of the generator invariants of the field G-invariant rational functions R(x1,x2,…,xk)S(2). So the equivalence conditions of two splanar Bezier curves are expressed.
References
- Kurşun H.ve Kalkan Y., İstanbul’ da Farklı Tarihlerde Yapılmış Doğalgaz Alt Yapı Haritalarının Doğruluk Yönünden bir Karşılaştırılması, 2. Mühendislik Ölçmeleri Sempozyumu, 23-25 Kasım 2005, İTÜ, İstanbul
- Yaprak S ve Yaprak H., Comparison of GPS Stop and Go Method and Electronic Tachometry Technique in Map Production, Gazi Üniversitesi Journal of Science ,18,4 (2005) 627-637.
- Özer S., Kortewed –de Vries Denklemlerinin Nümerik Çözümü, Doktora Tezi, İnönü Üniversitesi Fen bilimleri Enstitüsü, 1995.
- Kai- Tai Fang, et all, Critical value determination on similarity of Fingerprints, Chemometrics and Intelligent Laboratory Systems, 82, 1 (2006) 236-240.
- Wang L.X., et all, Vectorial angle method for evaluating the similarity between two chromatographic fingerprints of chinese herb, Acta Pharmaceutica Sinica, 37, 9 (2002) 713-717.
- Dresner Martin, Leisure versus business passengers: Similarities, differences, and implications, Journal of Air Transport Menagement, 12 (2006) 28-32.
- Yo Horikawa, Bispectrum – based feature of 2D and 3D images invariant to similarity Transformations, Proc. IEEE, (2000) 511-514.
- Yo Horikawa, Pattern recognition with invariance to similarity transformations based on the third- order correlation, Proc. 13th. International Conference on Pattern Recognition (ICPR’96) , 2 (1996) 200-204.
- Weyl H., The Classical Groups, Their Invariants and Representations, 2nd ed., with suppl.. Princeton, Princeton University Press, 1946
- Khadjiev Dj., An Application of the Invariant Theory to the Differential Geometry of Curves, Fan, Tashkent, 1988. ( in Russian )
- İdris Oren, Invariants of Points fort he orthogonal groups O(3,1), PhD. Thesis, Karadeniz Technical University, 2007.
- Yasemin Sağıroğlu, Affine Differential Invariants of parametric curves, Ph D. Thesis, Karadeniz Technical University, 2002.
- Alexander Schrijver, Tensor subalgebras and first fundamental theorems in invariant theory, journal of Algebra, 319, (2008), 1305-1319.
- Muhsin Incesu, Osman Gursoy, On Similarity Invarant Rational Function fot k vector variables and their genarators in R2, Modelling and Application Theory, V.1 issue 1 , (2016) ,37-53.
- Muhsin Incesu, Osman Gursoy, LS(2)-Equivalence Conditions of Control Points and Application to Planar Bezier Curves” New Trends in Mathematical Science, V.5, No. 3, (2017) 70-84.
- Greub W. H., Linear algebra, 3rd. Ed., Springer- Verlag Berlin Heidelberg, Netherland, 1967.
- Marsh D., Applied Geometry for Computer Graphics and CAD, Springer-Verlag London Berlin Heidelberg, London, 1999.