Research Article
BibTex RIS Cite

Düzlemsel Bezier Eğrilerinin S(2) Denklik Şartları

Year 2017, Volume: 5 Issue: 2, 471 - 477, 01.12.2017

Abstract

Bu çalışmada R2 de  vektörlerden oluşan iki sistemin, yine R2 de tüm benzerlik dönüşümlerinin grubu olan  G=S(2) grubuna göre denklik şartlarının; bu vektörlerin G-invaryant  rasyonel fonksiyonlar  cismi olan R(x1,x2,…,xk)S(2)   cisminin üreteçleri cinsinden ifade edilmesi çalışılmıştır. Böylece R2 de verilen düzlemsel Bezier eğrilerinin  S(2) grubuna göre denklik şartları da ifade edilmiştir. 

References

  • Kurşun H.ve Kalkan Y., İstanbul’ da Farklı Tarihlerde Yapılmış Doğalgaz Alt Yapı Haritalarının Doğruluk Yönünden bir Karşılaştırılması, 2. Mühendislik Ölçmeleri Sempozyumu, 23-25 Kasım 2005, İTÜ, İstanbul
  • Yaprak S ve Yaprak H., Comparison of GPS Stop and Go Method and Electronic Tachometry Technique in Map Production, Gazi Üniversitesi Journal of Science ,18,4 (2005) 627-637.
  • Özer S., Kortewed –de Vries Denklemlerinin Nümerik Çözümü, Doktora Tezi, İnönü Üniversitesi Fen bilimleri Enstitüsü, 1995.
  • Kai- Tai Fang, et all, Critical value determination on similarity of Fingerprints, Chemometrics and Intelligent Laboratory Systems, 82, 1 (2006) 236-240.
  • Wang L.X., et all, Vectorial angle method for evaluating the similarity between two chromatographic fingerprints of chinese herb, Acta Pharmaceutica Sinica, 37, 9 (2002) 713-717.
  • Dresner Martin, Leisure versus business passengers: Similarities, differences, and implications, Journal of Air Transport Menagement, 12 (2006) 28-32.
  • Yo Horikawa, Bispectrum – based feature of 2D and 3D images invariant to similarity Transformations, Proc. IEEE, (2000) 511-514.
  • Yo Horikawa, Pattern recognition with invariance to similarity transformations based on the third- order correlation, Proc. 13th. International Conference on Pattern Recognition (ICPR’96) , 2 (1996) 200-204.
  • Weyl H., The Classical Groups, Their Invariants and Representations, 2nd ed., with suppl.. Princeton, Princeton University Press, 1946
  • Khadjiev Dj., An Application of the Invariant Theory to the Differential Geometry of Curves, Fan, Tashkent, 1988. ( in Russian )
  • İdris Oren, Invariants of Points fort he orthogonal groups O(3,1), PhD. Thesis, Karadeniz Technical University, 2007.
  • Yasemin Sağıroğlu, Affine Differential Invariants of parametric curves, Ph D. Thesis, Karadeniz Technical University, 2002.
  • Alexander Schrijver, Tensor subalgebras and first fundamental theorems in invariant theory, journal of Algebra, 319, (2008), 1305-1319.
  • Muhsin Incesu, Osman Gursoy, On Similarity Invarant Rational Function fot k vector variables and their genarators in R2, Modelling and Application Theory, V.1 issue 1 , (2016) ,37-53.
  • Muhsin Incesu, Osman Gursoy, LS(2)-Equivalence Conditions of Control Points and Application to Planar Bezier Curves” New Trends in Mathematical Science, V.5, No. 3, (2017) 70-84.
  • Greub W. H., Linear algebra, 3rd. Ed., Springer- Verlag Berlin Heidelberg, Netherland, 1967.
  • Marsh D., Applied Geometry for Computer Graphics and CAD, Springer-Verlag London Berlin Heidelberg, London, 1999.

The S(2) equivalence Conditions of Planar Bezier Curves

Year 2017, Volume: 5 Issue: 2, 471 - 477, 01.12.2017

Abstract

In this paper it is studied that the equivalence conditions of two systems consisted of vectors according to the group G=S(2) of similarity transformations in R2 in terms of the generator invariants of the field G-invariant rational functions R(x1,x2,…,xk)S(2).  So the equivalence conditions of two splanar Bezier curves are expressed. 

References

  • Kurşun H.ve Kalkan Y., İstanbul’ da Farklı Tarihlerde Yapılmış Doğalgaz Alt Yapı Haritalarının Doğruluk Yönünden bir Karşılaştırılması, 2. Mühendislik Ölçmeleri Sempozyumu, 23-25 Kasım 2005, İTÜ, İstanbul
  • Yaprak S ve Yaprak H., Comparison of GPS Stop and Go Method and Electronic Tachometry Technique in Map Production, Gazi Üniversitesi Journal of Science ,18,4 (2005) 627-637.
  • Özer S., Kortewed –de Vries Denklemlerinin Nümerik Çözümü, Doktora Tezi, İnönü Üniversitesi Fen bilimleri Enstitüsü, 1995.
  • Kai- Tai Fang, et all, Critical value determination on similarity of Fingerprints, Chemometrics and Intelligent Laboratory Systems, 82, 1 (2006) 236-240.
  • Wang L.X., et all, Vectorial angle method for evaluating the similarity between two chromatographic fingerprints of chinese herb, Acta Pharmaceutica Sinica, 37, 9 (2002) 713-717.
  • Dresner Martin, Leisure versus business passengers: Similarities, differences, and implications, Journal of Air Transport Menagement, 12 (2006) 28-32.
  • Yo Horikawa, Bispectrum – based feature of 2D and 3D images invariant to similarity Transformations, Proc. IEEE, (2000) 511-514.
  • Yo Horikawa, Pattern recognition with invariance to similarity transformations based on the third- order correlation, Proc. 13th. International Conference on Pattern Recognition (ICPR’96) , 2 (1996) 200-204.
  • Weyl H., The Classical Groups, Their Invariants and Representations, 2nd ed., with suppl.. Princeton, Princeton University Press, 1946
  • Khadjiev Dj., An Application of the Invariant Theory to the Differential Geometry of Curves, Fan, Tashkent, 1988. ( in Russian )
  • İdris Oren, Invariants of Points fort he orthogonal groups O(3,1), PhD. Thesis, Karadeniz Technical University, 2007.
  • Yasemin Sağıroğlu, Affine Differential Invariants of parametric curves, Ph D. Thesis, Karadeniz Technical University, 2002.
  • Alexander Schrijver, Tensor subalgebras and first fundamental theorems in invariant theory, journal of Algebra, 319, (2008), 1305-1319.
  • Muhsin Incesu, Osman Gursoy, On Similarity Invarant Rational Function fot k vector variables and their genarators in R2, Modelling and Application Theory, V.1 issue 1 , (2016) ,37-53.
  • Muhsin Incesu, Osman Gursoy, LS(2)-Equivalence Conditions of Control Points and Application to Planar Bezier Curves” New Trends in Mathematical Science, V.5, No. 3, (2017) 70-84.
  • Greub W. H., Linear algebra, 3rd. Ed., Springer- Verlag Berlin Heidelberg, Netherland, 1967.
  • Marsh D., Applied Geometry for Computer Graphics and CAD, Springer-Verlag London Berlin Heidelberg, London, 1999.
There are 17 citations in total.

Details

Journal Section Research Article
Authors

Muhsin İncesu

Osman Gürsoy This is me

Publication Date December 1, 2017
Published in Issue Year 2017 Volume: 5 Issue: 2

Cite

APA İncesu, M., & Gürsoy, O. (2017). Düzlemsel Bezier Eğrilerinin S(2) Denklik Şartları. Muş Alparslan Üniversitesi Fen Bilimleri Dergisi, 5(2), 471-477.
AMA İncesu M, Gürsoy O. Düzlemsel Bezier Eğrilerinin S(2) Denklik Şartları. MAUN Fen Bil. Dergi. December 2017;5(2):471-477.
Chicago İncesu, Muhsin, and Osman Gürsoy. “Düzlemsel Bezier Eğrilerinin S(2) Denklik Şartları”. Muş Alparslan Üniversitesi Fen Bilimleri Dergisi 5, no. 2 (December 2017): 471-77.
EndNote İncesu M, Gürsoy O (December 1, 2017) Düzlemsel Bezier Eğrilerinin S(2) Denklik Şartları. Muş Alparslan Üniversitesi Fen Bilimleri Dergisi 5 2 471–477.
IEEE M. İncesu and O. Gürsoy, “Düzlemsel Bezier Eğrilerinin S(2) Denklik Şartları”, MAUN Fen Bil. Dergi., vol. 5, no. 2, pp. 471–477, 2017.
ISNAD İncesu, Muhsin - Gürsoy, Osman. “Düzlemsel Bezier Eğrilerinin S(2) Denklik Şartları”. Muş Alparslan Üniversitesi Fen Bilimleri Dergisi 5/2 (December 2017), 471-477.
JAMA İncesu M, Gürsoy O. Düzlemsel Bezier Eğrilerinin S(2) Denklik Şartları. MAUN Fen Bil. Dergi. 2017;5:471–477.
MLA İncesu, Muhsin and Osman Gürsoy. “Düzlemsel Bezier Eğrilerinin S(2) Denklik Şartları”. Muş Alparslan Üniversitesi Fen Bilimleri Dergisi, vol. 5, no. 2, 2017, pp. 471-7.
Vancouver İncesu M, Gürsoy O. Düzlemsel Bezier Eğrilerinin S(2) Denklik Şartları. MAUN Fen Bil. Dergi. 2017;5(2):471-7.