Research Article
BibTex RIS Cite

G=S(1), G=S(2) ve alt Grubları için G- Yörüngeler

Year 2018, Volume: 6 Issue: 2, 595 - 602, 24.12.2018

Abstract

(G, * )  bir grup, X bir küme olmak
üzere 
G:X  etkisi
verilsin. Bir 
Î C noktası
için Gx = 
{gx: gÎG}  kümesine
 x elemanının G- yörüngesi denir. (G, * )  bir grup
 olmak üzere bir Î C elemanının kendisini içeren en küçük G-invaryant
altküme  x’in  G-yörüngesidir. Bu çalışmada Benzerlik grubu G
= S(n)   ve  tüm alt grupları için n=1 ve n=2 durumlarında G-
invaryant alt uzaylar olan G- yörüngeler elde edilmiştir.

References

  • [1] G. Sartori, A theorem on orbit structures (strata) of compact linear Lie groups, Journal of Mathematical Physics 24, 765 (1983)
  • [2] Peter Symonds, The orbit space of the p-subgroup complex is contractible, Commentarii Mathematici Helvetici, 73 (1998) 400–405
  • [3] Kenzi Odani , Generic homeomorphisms have the pseudo-orbit tracing property, Proc. Amer. Math. Soc. 110 (1990), 281-284
  • [4] S. Mukhi, SL(2,R) conformal field theory, minimal models and two dimensional gravity, Proceedings of the International Colloquium on Modern Quantum Field Theory, 8-14 Jan 1990, TIFR, Bombay, India.
  • [5] R.Gatto, G.Sartori, Zeros of the D-term and complexification of the gauge group in supersymmetric theories, Physics Letters B, Volume 157, Issues 5–6, 25 July 1985, Pages 389-392.
  • [6] R. W. Richardson, Affine Coset Spaces of Reductive Algebraic Groups, Bulletin of the London Mathematical Society, Vol.9, Issue 1 , March 1977, Pages 38-41.
  • [7] Ozeki, Ikuzō. On the microlocal structure of the regular prehomogeneous vector space associated with $\mathrm{SL}\left( 5 \right) \times \mathrm{GL} \left( 4 \right)$, I. Proc. Japan Acad. Ser. A Math. Sci. 55 (1979), no. 2, 37-40. doi:10.3792/pjaa.55.37.
  • [8] SA Kirillov MI Kuznetsov and NG Chebochko , ON DEFORMATIONS OF THE LIE ALGEBRA OF TYPE G2 OF CHARACTERISTIC 3, Russian Mathematics ( Iz. VUZ), Vol 44. No. 3 pp 31-36, 2000
  • [9] Robert M. Guralnick (1997) Invertible Preservers and Algebraic Groups II: Preservers of Similarity Invariants and Overgroups of PSLn (F), Linear and Multilinear Algebra, 43:1-3, 221-255
  • [10] D. Hinrichsen and J. O’Halloran, A Complete Characterization of Orbit Closures of Controllable Singular Systems under Restricted System Equivalence , SIAM J. Control Optim., 28(3), 602–623
  • [11] INCESU, M. The complete system of point invariants in the similarity geometry. 2008. PhD Thesis. Phd. Thesis, Karadeniz Technical University, Trabzon.
  • [12] A. N. KOLMOGOROFF, Interpolation und Extrapolation, Bull. Acad. Sci. U.S.S.R. Ser. Math., (1941), pp. 3-14
  • [13] N. WIENER, Extrapolation, Interpolation, and Smoothing of Stationary Time Series, New York, 1949
  • [14] N. ARONSZAJN AND K. T. STMITH INVARIANT SUBSPACES OF COMPLETELY CONTINUOUS OPERATORS, ANNALS OF MATHEMATICS Vol. 60, No. 2, 1954
  • [15] Victor A. Galaktionov, Invariant subspaces and new explicit solutions to evolution equations with quadratic nonlinearities, Proceedings of the Royal Society of Edinburgh, 125A, 225-246,1995.
  • [16] Weyl H., The Classical Groups, Their Invariants and Representations, 2nd ed., with suppl.. Princeton, Princeton University Press, 1946.
  • [17] Khadjiev Dj., An Application of the Invariant Theory to the Differential Geometry of Curves, Fan, Tashkent, 1988. ( in Russian )
  • [18] Cassier E. T., The concept of group and the theory of perception, Philosophy and Phenomenological Research, 5 (1944) 1-35. (original French version published in 1938)
  • [19] Hoffman W. C., The Lie algebra of visual perception, Journal of Mathematical Psychology, 3 (1966) 65-98.
  • [20] Hoffman W. C., The Lie transformation group approach to visual neuropsychology, in E.L.J. Leewenberg & H. F. J. M. Buffart, Formal theories of visual perception, 27-66, Chichester, UK. Wiley, 1978.
  • [21] Chan &Chan, A transformational analysis of form recognition under plane isometries, Journal of Mathematical Psychology, 26, 3 (1982) 237-251.
  • [22] Chan &Chan, A mental space similarity Group model of Shape constancy, Journal of Mathematical Psychology, 43 (1999) 410-432.
  • [23] Leyton M. A theory of information structure: II.A theory of perceptual organization, Journal of Mathematical Psychology, 30 (1986) 257-305.
  • [24] V. Asil, T. Körpınar, S. Baş, New Parametric Representation of a Surfaces B-Pencil with a Common Line of Curvature, Siauliai Math. Semin., 9 (17) (2014), 5-14.
  • [25] T. Körpınar, S. Baş, Characterization of Quaternionic Curves by Inextensible Flows, Prespactime Journal 7(12) (2016), 1680-1684.
  • [26] Ören İ., Khadjiev D., Pekşen Ö., "Global invariants of paths and curves with respect to similarity groups in the two-dimensional Euclidean space and their applications to mechanics", INTERNATIONAL JOURNAL OF GEOMETRIC METHODS IN MODERN PHYSICS, vol.15, pp.1-32, 2018
  • [27] Khadjiev D., Ören İ., Pekşen Ö., "Generating systems of differential invariants and the theorem on existence for curves in the pseudo-Euclidean geometry", TURKISH JOURNAL OF MATHEMATICS, vol.37, no.1, pp.80-94, 2013
  • [28] Sağiroğlu Y., "Equi-affine differential invariants of a pair of curves", TWMS Journal of Pure and Applied Mathematics, vol.6, pp.238-245, 2015
  • [29] Yapar Z., Sağiroğlu Y., "Curvature Motion On Dual Hyperbolic Unit Sphere H_0^2", Journal of Applied Mathematics and Physics, vol.2, no.8, pp.828-826, 2014

The G- orbits for G=S(1), G=S(2) and their Subgroups

Year 2018, Volume: 6 Issue: 2, 595 - 602, 24.12.2018

Abstract



Let (G, * ) is a group and X is a nonempty set and let group action  are given. For any point  the set is called G- orbits of the element x.  Let
 
(G,
* ) is a group then, the smallest G- invariant subset  containing
 is G- orbit of x. In this paper G-orbits of the
similarity group S(n) and all subgroups of it in case n=1 and n=2, which are G-
invariant subspaces therewithal, are obtained.
    




References

  • [1] G. Sartori, A theorem on orbit structures (strata) of compact linear Lie groups, Journal of Mathematical Physics 24, 765 (1983)
  • [2] Peter Symonds, The orbit space of the p-subgroup complex is contractible, Commentarii Mathematici Helvetici, 73 (1998) 400–405
  • [3] Kenzi Odani , Generic homeomorphisms have the pseudo-orbit tracing property, Proc. Amer. Math. Soc. 110 (1990), 281-284
  • [4] S. Mukhi, SL(2,R) conformal field theory, minimal models and two dimensional gravity, Proceedings of the International Colloquium on Modern Quantum Field Theory, 8-14 Jan 1990, TIFR, Bombay, India.
  • [5] R.Gatto, G.Sartori, Zeros of the D-term and complexification of the gauge group in supersymmetric theories, Physics Letters B, Volume 157, Issues 5–6, 25 July 1985, Pages 389-392.
  • [6] R. W. Richardson, Affine Coset Spaces of Reductive Algebraic Groups, Bulletin of the London Mathematical Society, Vol.9, Issue 1 , March 1977, Pages 38-41.
  • [7] Ozeki, Ikuzō. On the microlocal structure of the regular prehomogeneous vector space associated with $\mathrm{SL}\left( 5 \right) \times \mathrm{GL} \left( 4 \right)$, I. Proc. Japan Acad. Ser. A Math. Sci. 55 (1979), no. 2, 37-40. doi:10.3792/pjaa.55.37.
  • [8] SA Kirillov MI Kuznetsov and NG Chebochko , ON DEFORMATIONS OF THE LIE ALGEBRA OF TYPE G2 OF CHARACTERISTIC 3, Russian Mathematics ( Iz. VUZ), Vol 44. No. 3 pp 31-36, 2000
  • [9] Robert M. Guralnick (1997) Invertible Preservers and Algebraic Groups II: Preservers of Similarity Invariants and Overgroups of PSLn (F), Linear and Multilinear Algebra, 43:1-3, 221-255
  • [10] D. Hinrichsen and J. O’Halloran, A Complete Characterization of Orbit Closures of Controllable Singular Systems under Restricted System Equivalence , SIAM J. Control Optim., 28(3), 602–623
  • [11] INCESU, M. The complete system of point invariants in the similarity geometry. 2008. PhD Thesis. Phd. Thesis, Karadeniz Technical University, Trabzon.
  • [12] A. N. KOLMOGOROFF, Interpolation und Extrapolation, Bull. Acad. Sci. U.S.S.R. Ser. Math., (1941), pp. 3-14
  • [13] N. WIENER, Extrapolation, Interpolation, and Smoothing of Stationary Time Series, New York, 1949
  • [14] N. ARONSZAJN AND K. T. STMITH INVARIANT SUBSPACES OF COMPLETELY CONTINUOUS OPERATORS, ANNALS OF MATHEMATICS Vol. 60, No. 2, 1954
  • [15] Victor A. Galaktionov, Invariant subspaces and new explicit solutions to evolution equations with quadratic nonlinearities, Proceedings of the Royal Society of Edinburgh, 125A, 225-246,1995.
  • [16] Weyl H., The Classical Groups, Their Invariants and Representations, 2nd ed., with suppl.. Princeton, Princeton University Press, 1946.
  • [17] Khadjiev Dj., An Application of the Invariant Theory to the Differential Geometry of Curves, Fan, Tashkent, 1988. ( in Russian )
  • [18] Cassier E. T., The concept of group and the theory of perception, Philosophy and Phenomenological Research, 5 (1944) 1-35. (original French version published in 1938)
  • [19] Hoffman W. C., The Lie algebra of visual perception, Journal of Mathematical Psychology, 3 (1966) 65-98.
  • [20] Hoffman W. C., The Lie transformation group approach to visual neuropsychology, in E.L.J. Leewenberg & H. F. J. M. Buffart, Formal theories of visual perception, 27-66, Chichester, UK. Wiley, 1978.
  • [21] Chan &Chan, A transformational analysis of form recognition under plane isometries, Journal of Mathematical Psychology, 26, 3 (1982) 237-251.
  • [22] Chan &Chan, A mental space similarity Group model of Shape constancy, Journal of Mathematical Psychology, 43 (1999) 410-432.
  • [23] Leyton M. A theory of information structure: II.A theory of perceptual organization, Journal of Mathematical Psychology, 30 (1986) 257-305.
  • [24] V. Asil, T. Körpınar, S. Baş, New Parametric Representation of a Surfaces B-Pencil with a Common Line of Curvature, Siauliai Math. Semin., 9 (17) (2014), 5-14.
  • [25] T. Körpınar, S. Baş, Characterization of Quaternionic Curves by Inextensible Flows, Prespactime Journal 7(12) (2016), 1680-1684.
  • [26] Ören İ., Khadjiev D., Pekşen Ö., "Global invariants of paths and curves with respect to similarity groups in the two-dimensional Euclidean space and their applications to mechanics", INTERNATIONAL JOURNAL OF GEOMETRIC METHODS IN MODERN PHYSICS, vol.15, pp.1-32, 2018
  • [27] Khadjiev D., Ören İ., Pekşen Ö., "Generating systems of differential invariants and the theorem on existence for curves in the pseudo-Euclidean geometry", TURKISH JOURNAL OF MATHEMATICS, vol.37, no.1, pp.80-94, 2013
  • [28] Sağiroğlu Y., "Equi-affine differential invariants of a pair of curves", TWMS Journal of Pure and Applied Mathematics, vol.6, pp.238-245, 2015
  • [29] Yapar Z., Sağiroğlu Y., "Curvature Motion On Dual Hyperbolic Unit Sphere H_0^2", Journal of Applied Mathematics and Physics, vol.2, no.8, pp.828-826, 2014
There are 29 citations in total.

Details

Primary Language Turkish
Subjects Engineering
Journal Section Research Article
Authors

Muhsin İncesu

Osman Gürsoy This is me

Publication Date December 24, 2018
Published in Issue Year 2018 Volume: 6 Issue: 2

Cite

APA İncesu, M., & Gürsoy, O. (2018). G=S(1), G=S(2) ve alt Grubları için G- Yörüngeler. Muş Alparslan Üniversitesi Fen Bilimleri Dergisi, 6(2), 595-602.
AMA İncesu M, Gürsoy O. G=S(1), G=S(2) ve alt Grubları için G- Yörüngeler. MAUN Fen Bil. Dergi. December 2018;6(2):595-602.
Chicago İncesu, Muhsin, and Osman Gürsoy. “G=S(1), G=S(2) Ve Alt Grubları için G- Yörüngeler”. Muş Alparslan Üniversitesi Fen Bilimleri Dergisi 6, no. 2 (December 2018): 595-602.
EndNote İncesu M, Gürsoy O (December 1, 2018) G=S(1), G=S(2) ve alt Grubları için G- Yörüngeler. Muş Alparslan Üniversitesi Fen Bilimleri Dergisi 6 2 595–602.
IEEE M. İncesu and O. Gürsoy, “G=S(1), G=S(2) ve alt Grubları için G- Yörüngeler”, MAUN Fen Bil. Dergi., vol. 6, no. 2, pp. 595–602, 2018.
ISNAD İncesu, Muhsin - Gürsoy, Osman. “G=S(1), G=S(2) Ve Alt Grubları için G- Yörüngeler”. Muş Alparslan Üniversitesi Fen Bilimleri Dergisi 6/2 (December 2018), 595-602.
JAMA İncesu M, Gürsoy O. G=S(1), G=S(2) ve alt Grubları için G- Yörüngeler. MAUN Fen Bil. Dergi. 2018;6:595–602.
MLA İncesu, Muhsin and Osman Gürsoy. “G=S(1), G=S(2) Ve Alt Grubları için G- Yörüngeler”. Muş Alparslan Üniversitesi Fen Bilimleri Dergisi, vol. 6, no. 2, 2018, pp. 595-02.
Vancouver İncesu M, Gürsoy O. G=S(1), G=S(2) ve alt Grubları için G- Yörüngeler. MAUN Fen Bil. Dergi. 2018;6(2):595-602.