Research Article
BibTex RIS Cite

Metil Paration’nun Piruvat Kinaz Enzim Aktivitesine Etkisi

Year 2021, Volume: 9 Issue: 1, 811 - 815, 15.06.2021
https://doi.org/10.18586/msufbd.838448

Abstract

Metil paration, tarımda ve genel alanlarda zararlılara karşı kullanılan organofosfat grubu bir insektisittir. İnsektisitlerin çevre ve canlı organizmalar üzerinde önemli derecede toksik etkileri bulunmaktadır. İnsanlarda farklı toksisiteye neden olan Metil paration’un metabolizmayı kontrol eden önemli enzimleri etkilediği bilinmektedir. Allosterik özellik gösteren Piruvat kinaz (EC.2.7.1.40), glikolizin son enzimidir ve glikoliz ile devamındaki moleküler yolaklarda kontrolü sağlamaktadır. Çalışmamızda Metil paration’nun Piruvat kinaz enzim aktivitesi üzerine etkisi araştırıldı. Metil paration’un LD50 dozu (7mg.kg-1) intraperitoneal olarak farklı periyotlarla (2, 4, 8, 16, 32, 64 ve 72 saat) erkek ve dişi sıçanlara uygulandı. Sıçanların karaciğer, böbrek, beyin ve ince bağırsak dokularında Piruvat kinaz enzim aktivitesi analiz edildi. Metil paration maruziyeti sonucunda sıçan dokularında genel olarak Piruvat kinaz enzim aktivitesinde artışlar belirlendi. Bu aktivasyonların özellikle beyin dokusunda daha erken saatlerde gerçekleşmiş olması dikkat çekicidir. Karaciğer, böbrek ve ince bağırsak dokularında aktivasyonların dişilerde erkeklerden daha erken saatlerde olduğu gözlendi. Sonuç olarak bir insektisit olan Metil paration uygulamasının sıçan dokularında piruvat kinaz enzim aktivitesinde artışlara neden olduğu bulundu. Metil parationun glikoz metabolizmasını ve buna bağlı olarak diğer metabolik yolakları etkilediği tartışıldı. Bu nedenle Metil paration insektisitinin metabolizmayı etkilediği, farklı sağlık sorunlarına neden olabileceği düşünülmeli ve Dünya Sağlık örgütünün önerdiği uygulama dozuna dikkat edilerek güvenli kullanım için önlemler alınmalıdır.

Thanks

Bu çalışmada yardımlarından dolayı Hakan Tosunoğlu’na ve Bursa Uludağ Üniversitesi, Tıp Fakültesi, Farmakoloji Anabilim Dalına teşekkür ederiz

References

  • Food and Agriculture Data for Over 245 Countries FAO; [cited:02.03.2020]. 2017. Available from: http://www.fao.org/faostat/en/#data/RP/visualize.
  • Tarım ve Orman Bakanlığı, Gıda ve Kontrol Genel Müdürlüğü; [cited:02.03.2020]. 2018. Available from: https://cevreselgostergeler.csb.gov.tr/tarim-ilaci-pestisit-kullanimi-i-85834.
  • Sidhu G.K., Singh S., Kumar V., Dhanjal D.S., Datta S., Singh J. Toxicity, monitoring and biodegradation of organophosphate pesticides: a review, Critical Reviews in Environmental Science and Technology, 49:13 1135-1187, 2019.
  • US Environmental Protection Agency, Pesticide Fact Sheet: Methyl parathion. EPA, 1986.
  • Edwards F.L., Tchounwou P.B. Environmental toxicology and health effects associated with methyl parathion exposure-a scientific review, International Journal of Environmental Research and Public Health, 2:3 430-441, 2005.
  • Vikrant S. Hepato-renal toxicity-associated with methyl parathion exposure, Hemoglobin (g/dL), 11:12 3-15, 2015.
  • Vabre P., Gatimel N., Moreau J., Gayrard V., Picard-Hagen N., Parinaud J., Leandri R.D. Environmental pollutants, a possible etiology for premature ovarian insufficiency: a narrative review of animal and human data, Environmental Health, 16:1 37, 2017.
  • Guo-Ross S.X., Meek E.C., Chambers J.E., Carr R.L. Effects of chlorpyrifos or methyl parathion on regional cholinesterase activity and muscarinic receptor subtype binding in juvenile rat brain, Journal of toxicology and pharmacology, 1, 2017.
  • Medina‐Díaz I.M., Ponce‐Ruiz N., Ramírez‐Chávez B., Rojas‐García A.E., Barrón‐Vivanco B.S., Elizondo G. Bernal‐Hernández Y.Y. Downregulation of human paraoxonase 1 (PON1) by organophosphate pesticides in HepG2 cells, Environmental toxicology, 32:2 490-500, 2017.
  • Khare A., Chhawani N., Kumari K. Glutathione reductase and catalase as potential biomarkers for synergistic intoxication of pesticides in fish, Biomarkers, 24:7 666-676, 2019.
  • Bartoli S., Bonora B., Colacci A., Niero A., Grilli S. DNA damaging activity of methyl parathion, Research communications in chemical pathology and pharmacology, 71:2 209-218, 1991.
  • Varga S.I., Matkovics B. Organophosphate effects on antioxidant system of carp (Cyprinus carpio) and catfish (Ictalurus nebulosus), Comparative Biochemistry and Physiology Part C: Pharmacology, Toxicology and Endocrinology, 117:1 83-88, 1997.
  • Hernandez-Cortes D., Alvarado-Cruz I., Solís-Heredia M.J., Quintanilla-Vega B. Epigenetic modulation of Nrf2 and Ogg1 gene expression in testicular germ cells by methyl parathion exposure, Toxicology and applied pharmacology, 346 19-27, 2018.
  • Gupta V., Bamezai R.N. Human pyruvate kinase M2: a multifunctional protein, Protein science, 19:11 2031-2044, 2010.
  • Valentini G., Chiarelli L., Fortin R., Speranza M.L., Galizzi A., Mattevi A. The allosteric regulation of pyruvate kinase A site-directed mutagenesis study, Journal of Biological Chemistry, 275:24 18145-18152, 2000.
  • Bohringer-Mannheim, Biochemical information, Pyruvate Kinase, 154, 1973.
  • Bradford M.M. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding, Analytical biochemistry, 72:1-2 248-254, 1976.
  • Petersen B., Tomerlin J.R., Barraj, L. Pesticide degradation: exceptions to the rule, Food technology (Chicago), 50:5 221-223, 1996.
  • Dikshit A.K., Pachauri D.C., Jindal, T. Maximum residue limit and risk assessment of beta-cyfluthrin and imidacloprid on tomato (Lycopersicon esculentum Mill), Bulletin of environmental contamination and toxicology, 70:6 1143-1150, 2003.
  • WHO, International Programme on Chemica Safety, Environmental Health Criteria, 1993.
  • Extoxnet Methyl parathion pesticide information profile, [cited:02.03.2020]. 1994. Available from: http://pmep.cce.cornell.edu/profiles/extoxnet/haloxyfop-methylparathion/methyl-parathion-ext.html.
  • Grover I.S., Malhi P.K. Genotoxic effects of some organophosphorous pesticides I. Induction of micronuclei in bone marrow cells in rat, Mutation Research/Genetic Toxicology, 155:3 131-134, 1985.
  • Celik I., Suzek H. The hematological effects of methyl parathion in rats, Journal of Hazardous Materials, 153:3 1117-1121, 2008.
  • Uzunhisarcikli M., Kalender, Y. Protective effects of vitamins C and E against hepatotoxicity induced by methyl parathion in rats, Ecotoxicology and environmental safety, 74:7 2112-2118, 2011.
  • Lushchak V.I., Matviishyn T.M., Husak V.V., Storey J.M., Storey, K.B. Pesticide toxicity: a mechanistic approach, EXCLI Journal, 17 1101, 2018.
  • Dere E., Ari F., Tosunoglu, H. Pyruvate kinase activity in various organs of rats exposed to dinitro-o-cresol and dichlorvos, Acta veterinaria, 58:5-6 439-447, 2008.
  • Nault R., Fader K.A., Kirby M.P., Ahmed S., Matthews J., Jones A.D., Lunt S.Y., Zacharewski T.R. Pyruvate kinase isoform switching and hepatic metabolic reprogramming by the environmental contaminant 2, 3, 7, 8-tetrachlorodibenzo-p-dioxin, Toxicological Sciences, 149:2 358-371, 2016.
  • Papadopoulos A.I., Anagnostis A., Lazarou D. Effect of insecticide injection on pyruvate kinase of the insect Tenebrio molitor (Coleopteran), Pesticide biochemistry and physiology, 82:2 115-124, 2005.
  • Monteiro D.A., De Almeida J.A., Rantin F.T., Kalinin A.L. Oxidative stress biomarkers in the freshwater characid fish, Brycon cephalus, exposed to organophosphorus insecticide Folisuper 600 (methyl parathion), Comparative Biochemistry and Physiology Part C: Toxicology Pharmacology, 143:2 141-149, 2006.
  • Rezg R., Mornagui B., El-Arbi M., Kamoun A., El-Fazaa S., Gharbi N. Effect of subchronic exposure to malathion on glycogen phosphorylase and hexokinase activities in rat liver using native PAGE, Toxicology, 223:1-2 9-14, 2006.
  • Matin M.A., Husain K., Khan, S.N. Modification of diazinon-induced changes in carbohydrate metabolism by adrenalectomy in rats, Biochemical pharmacology, 39:11 1781-1786, 1990.
  • Wilkinson J.G., Rajendra W., Oloffs P.C., Banister E.W. Diazinon treatment effects on heart and skeletal muscle enzyme activities, Journal of Environmental Science Health Part B, 21:2 103-113, 1986.
  • Gray L.R., Tompkins S.C., Taylor E.B. Regulation of pyruvate metabolism and human disease. Cellular and molecular life sciences, 71:14 2577-2604, 2014.

The Effect of Methyl Parathion on The Pyruvate Kinase Enzyme Activity

Year 2021, Volume: 9 Issue: 1, 811 - 815, 15.06.2021
https://doi.org/10.18586/msufbd.838448

Abstract

Methyl parathion is an organophosphate group insecticide used against pests in agriculture and general fields. Insecticides have a significant toxic effect on the environment and living organisms. Methyl parathion, which causes different toxicity in humans, is also known to affect important enzymes that control metabolism. Pyruvate kinase that allosteric properties (EC.2.7.1.40) is the last enzyme of glycolysis and provides control in glycolysis followed by molecular pathways. In our study, the effect of Methyl parathion on Pyruvate kinase enzyme activity was investigated. Methyl parathion LD50 dose (7mg.kg-1) was administered intraperitoneally to male and female rats at different periods (2, 4, 8, 16, 32, 64 and 72 hours). Pyruvate kinase enzyme activity was analyzed in liver, kidney, brain and small intestine tissues of rats. As a result of exposure of Methyl parathion, increases in Pyruvate kinase enzyme activity were generally determined in rat tissues. It was remarkable that the activations took place earlier, especially in the brain tissue. It was observed that these activations in liver, kidney and small intestine tissues were earlier in females than in males. As a result, the application of Methyl parathion was found to cause increases in pyruvate kinase enzyme activity in rat tissues. It was determined that methyl parathion affects glucose metabolism and the other metabolic pathways. Therefore, it should be considered that methyl parathion insecticide affects metabolism and may cause different health problems and precautions should be taken in use by paying attention to the application dose recommended by the World Health Organization.

References

  • Food and Agriculture Data for Over 245 Countries FAO; [cited:02.03.2020]. 2017. Available from: http://www.fao.org/faostat/en/#data/RP/visualize.
  • Tarım ve Orman Bakanlığı, Gıda ve Kontrol Genel Müdürlüğü; [cited:02.03.2020]. 2018. Available from: https://cevreselgostergeler.csb.gov.tr/tarim-ilaci-pestisit-kullanimi-i-85834.
  • Sidhu G.K., Singh S., Kumar V., Dhanjal D.S., Datta S., Singh J. Toxicity, monitoring and biodegradation of organophosphate pesticides: a review, Critical Reviews in Environmental Science and Technology, 49:13 1135-1187, 2019.
  • US Environmental Protection Agency, Pesticide Fact Sheet: Methyl parathion. EPA, 1986.
  • Edwards F.L., Tchounwou P.B. Environmental toxicology and health effects associated with methyl parathion exposure-a scientific review, International Journal of Environmental Research and Public Health, 2:3 430-441, 2005.
  • Vikrant S. Hepato-renal toxicity-associated with methyl parathion exposure, Hemoglobin (g/dL), 11:12 3-15, 2015.
  • Vabre P., Gatimel N., Moreau J., Gayrard V., Picard-Hagen N., Parinaud J., Leandri R.D. Environmental pollutants, a possible etiology for premature ovarian insufficiency: a narrative review of animal and human data, Environmental Health, 16:1 37, 2017.
  • Guo-Ross S.X., Meek E.C., Chambers J.E., Carr R.L. Effects of chlorpyrifos or methyl parathion on regional cholinesterase activity and muscarinic receptor subtype binding in juvenile rat brain, Journal of toxicology and pharmacology, 1, 2017.
  • Medina‐Díaz I.M., Ponce‐Ruiz N., Ramírez‐Chávez B., Rojas‐García A.E., Barrón‐Vivanco B.S., Elizondo G. Bernal‐Hernández Y.Y. Downregulation of human paraoxonase 1 (PON1) by organophosphate pesticides in HepG2 cells, Environmental toxicology, 32:2 490-500, 2017.
  • Khare A., Chhawani N., Kumari K. Glutathione reductase and catalase as potential biomarkers for synergistic intoxication of pesticides in fish, Biomarkers, 24:7 666-676, 2019.
  • Bartoli S., Bonora B., Colacci A., Niero A., Grilli S. DNA damaging activity of methyl parathion, Research communications in chemical pathology and pharmacology, 71:2 209-218, 1991.
  • Varga S.I., Matkovics B. Organophosphate effects on antioxidant system of carp (Cyprinus carpio) and catfish (Ictalurus nebulosus), Comparative Biochemistry and Physiology Part C: Pharmacology, Toxicology and Endocrinology, 117:1 83-88, 1997.
  • Hernandez-Cortes D., Alvarado-Cruz I., Solís-Heredia M.J., Quintanilla-Vega B. Epigenetic modulation of Nrf2 and Ogg1 gene expression in testicular germ cells by methyl parathion exposure, Toxicology and applied pharmacology, 346 19-27, 2018.
  • Gupta V., Bamezai R.N. Human pyruvate kinase M2: a multifunctional protein, Protein science, 19:11 2031-2044, 2010.
  • Valentini G., Chiarelli L., Fortin R., Speranza M.L., Galizzi A., Mattevi A. The allosteric regulation of pyruvate kinase A site-directed mutagenesis study, Journal of Biological Chemistry, 275:24 18145-18152, 2000.
  • Bohringer-Mannheim, Biochemical information, Pyruvate Kinase, 154, 1973.
  • Bradford M.M. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding, Analytical biochemistry, 72:1-2 248-254, 1976.
  • Petersen B., Tomerlin J.R., Barraj, L. Pesticide degradation: exceptions to the rule, Food technology (Chicago), 50:5 221-223, 1996.
  • Dikshit A.K., Pachauri D.C., Jindal, T. Maximum residue limit and risk assessment of beta-cyfluthrin and imidacloprid on tomato (Lycopersicon esculentum Mill), Bulletin of environmental contamination and toxicology, 70:6 1143-1150, 2003.
  • WHO, International Programme on Chemica Safety, Environmental Health Criteria, 1993.
  • Extoxnet Methyl parathion pesticide information profile, [cited:02.03.2020]. 1994. Available from: http://pmep.cce.cornell.edu/profiles/extoxnet/haloxyfop-methylparathion/methyl-parathion-ext.html.
  • Grover I.S., Malhi P.K. Genotoxic effects of some organophosphorous pesticides I. Induction of micronuclei in bone marrow cells in rat, Mutation Research/Genetic Toxicology, 155:3 131-134, 1985.
  • Celik I., Suzek H. The hematological effects of methyl parathion in rats, Journal of Hazardous Materials, 153:3 1117-1121, 2008.
  • Uzunhisarcikli M., Kalender, Y. Protective effects of vitamins C and E against hepatotoxicity induced by methyl parathion in rats, Ecotoxicology and environmental safety, 74:7 2112-2118, 2011.
  • Lushchak V.I., Matviishyn T.M., Husak V.V., Storey J.M., Storey, K.B. Pesticide toxicity: a mechanistic approach, EXCLI Journal, 17 1101, 2018.
  • Dere E., Ari F., Tosunoglu, H. Pyruvate kinase activity in various organs of rats exposed to dinitro-o-cresol and dichlorvos, Acta veterinaria, 58:5-6 439-447, 2008.
  • Nault R., Fader K.A., Kirby M.P., Ahmed S., Matthews J., Jones A.D., Lunt S.Y., Zacharewski T.R. Pyruvate kinase isoform switching and hepatic metabolic reprogramming by the environmental contaminant 2, 3, 7, 8-tetrachlorodibenzo-p-dioxin, Toxicological Sciences, 149:2 358-371, 2016.
  • Papadopoulos A.I., Anagnostis A., Lazarou D. Effect of insecticide injection on pyruvate kinase of the insect Tenebrio molitor (Coleopteran), Pesticide biochemistry and physiology, 82:2 115-124, 2005.
  • Monteiro D.A., De Almeida J.A., Rantin F.T., Kalinin A.L. Oxidative stress biomarkers in the freshwater characid fish, Brycon cephalus, exposed to organophosphorus insecticide Folisuper 600 (methyl parathion), Comparative Biochemistry and Physiology Part C: Toxicology Pharmacology, 143:2 141-149, 2006.
  • Rezg R., Mornagui B., El-Arbi M., Kamoun A., El-Fazaa S., Gharbi N. Effect of subchronic exposure to malathion on glycogen phosphorylase and hexokinase activities in rat liver using native PAGE, Toxicology, 223:1-2 9-14, 2006.
  • Matin M.A., Husain K., Khan, S.N. Modification of diazinon-induced changes in carbohydrate metabolism by adrenalectomy in rats, Biochemical pharmacology, 39:11 1781-1786, 1990.
  • Wilkinson J.G., Rajendra W., Oloffs P.C., Banister E.W. Diazinon treatment effects on heart and skeletal muscle enzyme activities, Journal of Environmental Science Health Part B, 21:2 103-113, 1986.
  • Gray L.R., Tompkins S.C., Taylor E.B. Regulation of pyruvate metabolism and human disease. Cellular and molecular life sciences, 71:14 2577-2604, 2014.
There are 33 citations in total.

Details

Primary Language Turkish
Subjects Conservation and Biodiversity
Journal Section Research Article
Authors

Egemen Dere 0000-0001-9572-1051

Ferda Arı 0000-0002-6729-7908

Publication Date June 15, 2021
Published in Issue Year 2021 Volume: 9 Issue: 1

Cite

APA Dere, E., & Arı, F. (2021). Metil Paration’nun Piruvat Kinaz Enzim Aktivitesine Etkisi. Muş Alparslan Üniversitesi Fen Bilimleri Dergisi, 9(1), 811-815. https://doi.org/10.18586/msufbd.838448
AMA Dere E, Arı F. Metil Paration’nun Piruvat Kinaz Enzim Aktivitesine Etkisi. MAUN Fen Bil. Dergi. June 2021;9(1):811-815. doi:10.18586/msufbd.838448
Chicago Dere, Egemen, and Ferda Arı. “Metil Paration’nun Piruvat Kinaz Enzim Aktivitesine Etkisi”. Muş Alparslan Üniversitesi Fen Bilimleri Dergisi 9, no. 1 (June 2021): 811-15. https://doi.org/10.18586/msufbd.838448.
EndNote Dere E, Arı F (June 1, 2021) Metil Paration’nun Piruvat Kinaz Enzim Aktivitesine Etkisi. Muş Alparslan Üniversitesi Fen Bilimleri Dergisi 9 1 811–815.
IEEE E. Dere and F. Arı, “Metil Paration’nun Piruvat Kinaz Enzim Aktivitesine Etkisi”, MAUN Fen Bil. Dergi., vol. 9, no. 1, pp. 811–815, 2021, doi: 10.18586/msufbd.838448.
ISNAD Dere, Egemen - Arı, Ferda. “Metil Paration’nun Piruvat Kinaz Enzim Aktivitesine Etkisi”. Muş Alparslan Üniversitesi Fen Bilimleri Dergisi 9/1 (June 2021), 811-815. https://doi.org/10.18586/msufbd.838448.
JAMA Dere E, Arı F. Metil Paration’nun Piruvat Kinaz Enzim Aktivitesine Etkisi. MAUN Fen Bil. Dergi. 2021;9:811–815.
MLA Dere, Egemen and Ferda Arı. “Metil Paration’nun Piruvat Kinaz Enzim Aktivitesine Etkisi”. Muş Alparslan Üniversitesi Fen Bilimleri Dergisi, vol. 9, no. 1, 2021, pp. 811-5, doi:10.18586/msufbd.838448.
Vancouver Dere E, Arı F. Metil Paration’nun Piruvat Kinaz Enzim Aktivitesine Etkisi. MAUN Fen Bil. Dergi. 2021;9(1):811-5.