Research Article
BibTex RIS Cite

Paranormlu Uzaylarda α. Dereceden Deferred İstatistiksel Yakınsaklık

Year 2023, Volume: 11 Issue: 1, 1 - 6, 30.06.2023
https://doi.org/10.18586/msufbd.1188106

Abstract

Bu çalışmanın amacı paranormlu uzaylarda α. dereceden deferred istatistiksel yakınsaklık, paranormlu uzaylarda α. dereceden deferred istatistiksel Cauchy dizisi tanımları ile paranormlu uzaylarda deferred Cesáro yakınsaklık tanımını verip bunlar arasındaki ilişkiyi incelemektir.

References

  • Zygmund A. Trigonometric series, Cambridge University Press, Cambridge, 1979.
  • Steinhaus, H. Sur la convergence ordinaire et la convergence asymptotique, Colloquium Mathematicum. 2 73-74, 1951.
  • Fast, H. Sur la convergence statistique, Colloquium Mathematicum. 2 241- 24, 1951.
  • Schoenberg, I. J. The integrability of certain functions and related summability methods II, The American Mathematical Monthly. 66 562-563, 1959.
  • Connor, J. The statistical and strong p-Cesaro convergence of sequences, Analysis. 8 47-64, 1988. Fridy, J. A. On statistical convergence, Analysis. 5 301-314, 1985. Altundağ, S., Başarır M. Lacunary statistical convergence in a paranormed space, AIP Conference Proceedings, 1479- 929, 2012.
  • Çolak, R., Bektaş, Ç. A. λ-statistical convergence of order α, Acta Mathematica Scientia Series B. 31 953-959, 2011.
  • Mursaleen M. λ-statistically convergence Mathematica Slovaca. 50 111-115, 2000.
  • Cinar M., Karakas M., Et, M. On pointwise and uniform statistical convergence of order α for sequences of functions, Fixed Point Theory and Applications. 33 1–11 2013.
  • Şengül, H., Et, M. On lacunary statistical convergence of order α. Acta Mathematica Scientia. 34 473–482, 2014.
  • Wilansky, A. Summability through functional analysis, North Holland, 1984.
  • Niven, I., Zucherman, H. S. and Montgomery H. L. An introduction to the theory of numbers, John Wiley, New York, 1991.
  • Çolak, R. Statistical convergence of order α, Modern methods in analysis and its applications, İndia: Anamaya Pub., New Delhi, 121-129, 2010.
  • Alotaibi, A., Alroqi, A. M. Statistical convergence in a paranormed space, Journal of Inequalities and Applications. 39 1-6, 2012.
  • Ercan, S. On the statistical convergence of order α in paranormed space, Symmetry. 10 483-492, 2018.
  • Maddox, I. Elements of functional analysis, Cambiridge University press, 1970.
  • Agnew, R. P. On deferred Cesaro means, Annals of Mathematics. 33 413-421, 1932.
  • Küçükaslan, M., Yılmaztürk, M. On deferred statistical convergence of sequences, Kyungpook Mathematical Journal. 56 357-366, 2016.
  • Alghamdi, M. A., Mursaleen, M., λ-statistical convergence in paranormed space, Abstract and Applied Analysis. Art. ID 264520. 1-5 2013.

Deferred Statistical Convergence of Order α in Paranormed Space

Year 2023, Volume: 11 Issue: 1, 1 - 6, 30.06.2023
https://doi.org/10.18586/msufbd.1188106

Abstract

This study aims to define deferred statistical convergence of α. order in paranorm spaces, the definitions of deferred statistical Cauchy convergence of α. order in paranorm spaces and the definition of diferred Cesáro in paranorm spaces and to investigate the relation among these.

References

  • Zygmund A. Trigonometric series, Cambridge University Press, Cambridge, 1979.
  • Steinhaus, H. Sur la convergence ordinaire et la convergence asymptotique, Colloquium Mathematicum. 2 73-74, 1951.
  • Fast, H. Sur la convergence statistique, Colloquium Mathematicum. 2 241- 24, 1951.
  • Schoenberg, I. J. The integrability of certain functions and related summability methods II, The American Mathematical Monthly. 66 562-563, 1959.
  • Connor, J. The statistical and strong p-Cesaro convergence of sequences, Analysis. 8 47-64, 1988. Fridy, J. A. On statistical convergence, Analysis. 5 301-314, 1985. Altundağ, S., Başarır M. Lacunary statistical convergence in a paranormed space, AIP Conference Proceedings, 1479- 929, 2012.
  • Çolak, R., Bektaş, Ç. A. λ-statistical convergence of order α, Acta Mathematica Scientia Series B. 31 953-959, 2011.
  • Mursaleen M. λ-statistically convergence Mathematica Slovaca. 50 111-115, 2000.
  • Cinar M., Karakas M., Et, M. On pointwise and uniform statistical convergence of order α for sequences of functions, Fixed Point Theory and Applications. 33 1–11 2013.
  • Şengül, H., Et, M. On lacunary statistical convergence of order α. Acta Mathematica Scientia. 34 473–482, 2014.
  • Wilansky, A. Summability through functional analysis, North Holland, 1984.
  • Niven, I., Zucherman, H. S. and Montgomery H. L. An introduction to the theory of numbers, John Wiley, New York, 1991.
  • Çolak, R. Statistical convergence of order α, Modern methods in analysis and its applications, İndia: Anamaya Pub., New Delhi, 121-129, 2010.
  • Alotaibi, A., Alroqi, A. M. Statistical convergence in a paranormed space, Journal of Inequalities and Applications. 39 1-6, 2012.
  • Ercan, S. On the statistical convergence of order α in paranormed space, Symmetry. 10 483-492, 2018.
  • Maddox, I. Elements of functional analysis, Cambiridge University press, 1970.
  • Agnew, R. P. On deferred Cesaro means, Annals of Mathematics. 33 413-421, 1932.
  • Küçükaslan, M., Yılmaztürk, M. On deferred statistical convergence of sequences, Kyungpook Mathematical Journal. 56 357-366, 2016.
  • Alghamdi, M. A., Mursaleen, M., λ-statistical convergence in paranormed space, Abstract and Applied Analysis. Art. ID 264520. 1-5 2013.
There are 18 citations in total.

Details

Primary Language Turkish
Subjects Engineering
Journal Section Research Article
Authors

Haşmet Kapşigay 0000-0003-1700-3470

Muhammed Çınar 0000-0002-0958-0705

Publication Date June 30, 2023
Published in Issue Year 2023 Volume: 11 Issue: 1

Cite

APA Kapşigay, H., & Çınar, M. (2023). Paranormlu Uzaylarda α. Dereceden Deferred İstatistiksel Yakınsaklık. Mus Alparslan University Journal of Science, 11(1), 1-6. https://doi.org/10.18586/msufbd.1188106
AMA Kapşigay H, Çınar M. Paranormlu Uzaylarda α. Dereceden Deferred İstatistiksel Yakınsaklık. MAUN Fen Bil. Dergi. June 2023;11(1):1-6. doi:10.18586/msufbd.1188106
Chicago Kapşigay, Haşmet, and Muhammed Çınar. “Paranormlu Uzaylarda α. Dereceden Deferred İstatistiksel Yakınsaklık”. Mus Alparslan University Journal of Science 11, no. 1 (June 2023): 1-6. https://doi.org/10.18586/msufbd.1188106.
EndNote Kapşigay H, Çınar M (June 1, 2023) Paranormlu Uzaylarda α. Dereceden Deferred İstatistiksel Yakınsaklık. Mus Alparslan University Journal of Science 11 1 1–6.
IEEE H. Kapşigay and M. Çınar, “Paranormlu Uzaylarda α. Dereceden Deferred İstatistiksel Yakınsaklık”, MAUN Fen Bil. Dergi., vol. 11, no. 1, pp. 1–6, 2023, doi: 10.18586/msufbd.1188106.
ISNAD Kapşigay, Haşmet - Çınar, Muhammed. “Paranormlu Uzaylarda α. Dereceden Deferred İstatistiksel Yakınsaklık”. Mus Alparslan University Journal of Science 11/1 (June 2023), 1-6. https://doi.org/10.18586/msufbd.1188106.
JAMA Kapşigay H, Çınar M. Paranormlu Uzaylarda α. Dereceden Deferred İstatistiksel Yakınsaklık. MAUN Fen Bil. Dergi. 2023;11:1–6.
MLA Kapşigay, Haşmet and Muhammed Çınar. “Paranormlu Uzaylarda α. Dereceden Deferred İstatistiksel Yakınsaklık”. Mus Alparslan University Journal of Science, vol. 11, no. 1, 2023, pp. 1-6, doi:10.18586/msufbd.1188106.
Vancouver Kapşigay H, Çınar M. Paranormlu Uzaylarda α. Dereceden Deferred İstatistiksel Yakınsaklık. MAUN Fen Bil. Dergi. 2023;11(1):1-6.