Research Article
BibTex RIS Cite
Year 2021, Volume: 7 Issue: 1, 7 - 13, 29.06.2021
https://doi.org/10.22531/muglajsci.820783

Abstract

References

  • Simkó, M. and Mattsson, M.O., "5G wireless communication and health effects—A pragmatic review based on available studies regarding 6 to 100 GHz", International Journal of Environmental Research and Public Health, 16(18), 3406, 2019.
  • Perahia, E. and Gong, M.X., "Gigabit wireless LANs: an overview of IEEE 802.11 ac and 802.11 ad", ACM SIGMOBILE Mobile Computing and Communications Review, 15(3), 23–33, 2011.
  • Ishak, N.H., Ariffin, R., Ali, A., Sagiruddin, M.A. and Tawi, F.M.T., "Biological effects of WiFi electromagnetic radiation", Proceedings - 2011 IEEE International Conference on Control System, Computing and Engineering, ICCSCE 2011, 2011, pp. 551–556
  • Naik, G., Liu, J. and Park, J.M.J., "Coexistence of wireless technologies in the 5GHz bands: A survey of existing solutions and a roadmap for future research", IEEE Communications Surveys and Tutorials, 20(3), 1777–1798, 2018.
  • Hardell, L., Carlberg, M. and Hedendahl, L.K., "Radiofrequency radiation from nearby base stations gives high levels in an apartment in Stockholm, Sweden: A case report", Oncology Letters, 15(5), 7871–7883, 2018.
  • Di Ciaula, A., "Towards 5G communication systems: Are there health implications?", International Journal of Hygiene and Environmental Health, 221(3), 367–375, 2018.
  • Jurčević, M. and Malarić, K., "Assessment of Wi-Fi radiation on human health." 2016 24th International Conference on Software, Telecommunications and Computer Networks, SoftCOM 2016, Institute of Electrical and Electronics Engineers Inc., 2016.
  • Hardell, L., "World health organization, radiofrequency radiation and health - A hard nut to crack (Review)", International Journal of Oncology, 51(2), 405–413, 2017.
  • Atasoy, H.I., Gunal, M.Y., Atasoy, P., Elgun, S. and Bugdayci, G., "Immunohistopathologic demonstration of deleterious effects on growing rat testes of radiofrequency waves emitted from conventional Wi-Fi devices", Journal of Pediatric Urology, 9(2), 223–229, 2013.
  • Dasdag, S., Akdag, M.Z., Erdal, M.E., Erdal, N., Ay, O.I., Ay, M.E., Yilmaz, S.G., Tasdelen, B. and Yegin, K., "Effects of 2.4 GHz radiofrequency radiation emitted from Wi-Fi equipment on microRNA expression in brain tissue", International Journal of Radiation Biology, 91(7), 555–561, 2015.
  • Wietzikoski Lovato, E.C., Gurgel Velasquez, P.A., dos Santos Oliveira, C., Baruffi, C., Anghinoni, T., Machado, R.C., Lívero, F.A. dos R., Sato, S.W. and Martins, L. de A., "High frequency equipment promotes antibacterial effects dependent on intensity and exposure time", Clinical, Cosmetic and Investigational Dermatology, 11, 131–135, 2018.
  • Khoury, A.E., Lam, K., Ellis, B. and Costerton, J.W., "Prevention and control of bacterial infections associated with medical devices", ASAIO Journal, 38(3), M174-8, 1992.
  • Blenkinsopp, S.A., Khoury, A.E. and Costerton, J.W., "Electrical enhancement of biocide efficacy against Pseudomonas aeruginosa biofilms", Applied and Environmental Microbiology, 58(11), 3770–3773, 1992.
  • Caubet, R., Pedarros-Caubet, F., Chu, M., Freye, E., De Belém Rodrigues, M., Moreau, J.M. and Ellison, W.J., "A radio frequency electric current enhances antibiotic efficacy against bacterial biofilms", Antimicrobial Agents and Chemotherapy, 48(12), 4662–4664, 2004.
  • Rediske, A.M., Roeder, B.L., Brown, M.K., Nelson, J.L., Robison, R.L., Draper, D.O., Schaalje, G.B., Robison, R.A. and Pitt, W.G., "Ultrasonic enhancement of antibiotic action on Escherichia coli biofilms: An in vivo model", Antimicrobial Agents and Chemotherapy, 43(5), 1211–1214, 1999.
  • Stewart, P.S., Wattanakaroon, W., Goodrum, L., Fortun, S.M. and McLeod, B.R., "Electrolytic generation of oxygen partially explains electrical enhancement of tobramycin efficacy against Pseudomonas aeruginosa biofilm", Antimicrobial Agents and Chemotherapy, 43(2), 292–296, 1999.
  • Yang, H., Zhang, Y., Wang, Z., Zhong, S., Hu, G. and Zuo, W., "The Effects of Mobile Phone Radiofrequency Radiation on Cochlear Stria Marginal Cells in Sprague–Dawley Rats", Bioelectromagnetics, 41(3), 219–229, 2020.
  • Mohammadianinejad, S.E., Babaei, M. and Nazari, P., "The Effects of Exposure to Low Frequency Electromagnetic Fields in the Treatment of Migraine Headache: A Cohort Study", Electronic physician, 8(12), 3445–3449, 2016.
  • Hunt, P.R., "The C. elegans model in toxicity testing", Journal of Applied Toxicology, 37(1), 50–59, 2017.
  • Taheri, M., Mortazavi, S.M.J., Moradi, M., Mansouri, S., Hatam, G.R. and Nouri, F., "Evaluation of the effect of radiofrequency radiation emitted from Wi-Fi router and mobile phone simulator on the antibacterial susceptibility of pathogenic bacteria listeria monocytogenes and Escherichia coli", Dose-Response, 15(1), 1559325816688527, 2017.
  • Said-Salman, I.H., Jebaii, F.A., Yusef, H.H. and Moustafa, M.E., "Evaluation of Wi-Fi Radiation Effects on Antibiotic Susceptibility, Metabolic Activity and Biofilm Formation by Escherichia Coli O157H7, Staphylococcus Aureus and Staphylococcus Epidermis", Journal of Biomedical Physics and Engineering, 9(5), 579-586, 2019.
  • Nakouti, I., Hobbs, G., Teethaisong, Y. and Phipps, D., "A demonstration of athermal effects of continuous microwave irradiation on the growth and antibiotic sensitivity of Pseudomonas aeruginosa PAO1", Biotechnology Progress, 33(1), 37–44, 2017.
  • Salmen, S.H., Alharbi, S.A., Faden, A.A. and Wainwright, M., "Evaluation of effect of high frequency electromagnetic field on growth and antibiotic sensitivity of bacteria", Saudi Journal of Biological Sciences, 25(1), 105–110, 2018.
  • Diem, E., Schwarz, C., Adlkofer, F., Jahn, O., and Rüdiger, H., "Non-thermal DNA breakage by mobile-phone radiation (1800 MHz) in human fibroblasts and in transformed GFSH-R17 rat granulosa cells in vitro", Mutation Research - Genetic Toxicology and Environmental Mutagenesis, 583(2), 178–183, 2005.
  • Akdag, M.Z., Dasdag, S., Canturk, F., Karabulut, D., Caner, Y. and Adalier, N., "Does prolonged radiofrequency radiation emitted from Wi-Fi devices induce DNA damage in various tissues of rats?", Journal of Chemical Neuroanatomy, 75, 116–122, 2016.
  • Inhan-Garip, A., Aksu, B., Akan, Z., Akakin, D., Ozaydin, A.N. and San, T., "Effect of extremely low frequency electromagnetic fields on growth rate and morphology of bacteria", International Journal of Radiation Biology, 87(12), 1155–1161, 2011.
  • Hassanshahi, A., Shafeie, S.A., Fatemi, I., Hassanshahi, E., Allahtavakoli, M., Shabani, M., Roohbakhsh, A. and Shamsizadeh, A., "The effect of Wi-Fi electromagnetic waves in unimodal and multimodal object recognition tasks in male rats", Neurological Sciences, 38(6), 1069–1076, 2017.
  • Shokri, S., Soltani, A., Kazemi, M., Sardari, D. and Babapoor Mofrad, F., "Effects of Wi-Fi (2.45 GHz) exposure on apoptosis, sperm parameters and testicular histomorphometry in rats: A time course study", Cell Journal, 17(2), 322–331, 2015.
  • Pall, M.L., "Wi-Fi is an important threat to human health", Environmental Research, 164, 405–416, 2018.
  • Foster, K.R. and Moulder, J.E., "Wi-Fi and health: Review of current status of research", Health Physics, 105(6), 561–575, 2013.
  • Çiğ, B. and Naziroğlu, M., "Investigation of the effects of distance from sources on apoptosis, oxidative stress and cytosolic calcium accumulation via TRPV1 channels induced by mobile phones and Wi-Fi in breast cancer cells", Biochimica et Biophysica Acta - Biomembranes, 1848(10), 2756–2765, 2015.
  • Zečić, A., Dhondt, I. and Braeckman, B.P., "The nutritional requirements of Caenorhabditis elegans", Genes and Nutrition, 14(1), 15, 2019.
  • Fojt, L., Klapetek, P., Strašák, L. and Vetterl, V., "50 Hz magnetic field effect on the morphology of bacteria", Micron, 40(8), 918–922, 2009.
  • Cellini, L., Grande, R., Di Campli, E., Di Bartolomeo, S., Di Giulio, M., Robuffo, I., Trubiani, O. and Mariggiò, M.A., "Bacterial response to the exposure of 50 Hz electromagnetic fields", Bioelectromagnetics, 29(4), 302–311, 2008.
  • De Pomerai, D.I., Dawe, A., Djerbib, L., Allan, J., Brunt, G. and Daniells, C., "Growth and maturation of the nematode Caenorhabditis elegans following exposure to weak microwave fields", Enzyme and Microbial Technology, 30(1), 73–79, 2002.
  • Gao, Y., Lu, Y., Yi, J., Li, Z., Gao, D., Yu, Z., Wu, T. and Zhang, C., "A genome-wide mRNA expression profile in caenorhabditis elegans under prolonged exposure to 1750MHz radiofrequency fields", PLoS ONE, 11(1), e0147273, 2016.
  • Fasseas, M.K., Fragopoulou, A.F., Manta, A.K., Skouroliakou, A., Vekrellis, K., Margaritis, L.H. and Syntichaki, P., "Response of Caenorhabditis elegans to wireless devices radiation exposure", International Journal of Radiation Biology, 91(3), 286–293, 2015.
  • Daniells, C., Duce, I., Thomas, D., Sewell, P., Tattersall, J. and De Pomerai, D., "Transgenic nematodes as biomonitors of microwave-induced stress", Mutation Research - Fundamental and Molecular Mechanisms of Mutagenesis, 399(1), 55–64, 1998.
  • Junkersdorf, B., Bauer, H. and Gutzeit, H.O., "Electromagnetic fields enhance the stress response at elevated temperatures in the nematode Caenorhabditis elegans", Bioelectromagnetics, 21(2), 100–106, 2000.
  • Gul Guven, R., Guven, K., Dawe, A., Worthington, J., Harvell, C., Popple, A., Smith, T., Smith, B. and de Pomerai, D.I., "Effects of radio-frequency fields on bacterial cell membranes and nematode temperature-sensitive mutants", Enzyme and Microbial Technology, 39(4), 788–795, 2006.

5 GHZ WI FI EFFECTS ON ESCHERICHIA COLI, CAENORHABDITIS ELEGANS AND HUMAN NEUROBLASTOMA CELLS

Year 2021, Volume: 7 Issue: 1, 7 - 13, 29.06.2021
https://doi.org/10.22531/muglajsci.820783

Abstract

The use of 5 GHz Wi-Fi has spread and potential effects on microorganisms and human health are still under investigation. To investigate the possible effects for that, experiments were performed using three different microorganisms, Escherichia coli, SH-SY5Y human neuroblastoma cells and Caernohabditis elegans. The maximum allowed temperature for the Wi-Fi Access Point (AP) was considered in the measurement setup in order not to harm the internal circuitry of the router which can result impact the performance of the router. Suspension turbidity, optical density measurements and simultaneous counting of E. coli were performed. It was observed that 5 GHz Wi-Fi exposure slow down the E. coli growth rate at the same temperature conditions with sham exposed groups especially after the first 6 h. 5 GHz Wi-Fi induced decrease in cell viability remarkably for the cells seeded at densities 20,40, 100 (×103) and viability values were varied between 20 and 30%. C. elegans which is a nematode, plays key role in nutrient cycling and soil fertilization was affected by the radiation and egg-laying rates changed by 27.49%.

References

  • Simkó, M. and Mattsson, M.O., "5G wireless communication and health effects—A pragmatic review based on available studies regarding 6 to 100 GHz", International Journal of Environmental Research and Public Health, 16(18), 3406, 2019.
  • Perahia, E. and Gong, M.X., "Gigabit wireless LANs: an overview of IEEE 802.11 ac and 802.11 ad", ACM SIGMOBILE Mobile Computing and Communications Review, 15(3), 23–33, 2011.
  • Ishak, N.H., Ariffin, R., Ali, A., Sagiruddin, M.A. and Tawi, F.M.T., "Biological effects of WiFi electromagnetic radiation", Proceedings - 2011 IEEE International Conference on Control System, Computing and Engineering, ICCSCE 2011, 2011, pp. 551–556
  • Naik, G., Liu, J. and Park, J.M.J., "Coexistence of wireless technologies in the 5GHz bands: A survey of existing solutions and a roadmap for future research", IEEE Communications Surveys and Tutorials, 20(3), 1777–1798, 2018.
  • Hardell, L., Carlberg, M. and Hedendahl, L.K., "Radiofrequency radiation from nearby base stations gives high levels in an apartment in Stockholm, Sweden: A case report", Oncology Letters, 15(5), 7871–7883, 2018.
  • Di Ciaula, A., "Towards 5G communication systems: Are there health implications?", International Journal of Hygiene and Environmental Health, 221(3), 367–375, 2018.
  • Jurčević, M. and Malarić, K., "Assessment of Wi-Fi radiation on human health." 2016 24th International Conference on Software, Telecommunications and Computer Networks, SoftCOM 2016, Institute of Electrical and Electronics Engineers Inc., 2016.
  • Hardell, L., "World health organization, radiofrequency radiation and health - A hard nut to crack (Review)", International Journal of Oncology, 51(2), 405–413, 2017.
  • Atasoy, H.I., Gunal, M.Y., Atasoy, P., Elgun, S. and Bugdayci, G., "Immunohistopathologic demonstration of deleterious effects on growing rat testes of radiofrequency waves emitted from conventional Wi-Fi devices", Journal of Pediatric Urology, 9(2), 223–229, 2013.
  • Dasdag, S., Akdag, M.Z., Erdal, M.E., Erdal, N., Ay, O.I., Ay, M.E., Yilmaz, S.G., Tasdelen, B. and Yegin, K., "Effects of 2.4 GHz radiofrequency radiation emitted from Wi-Fi equipment on microRNA expression in brain tissue", International Journal of Radiation Biology, 91(7), 555–561, 2015.
  • Wietzikoski Lovato, E.C., Gurgel Velasquez, P.A., dos Santos Oliveira, C., Baruffi, C., Anghinoni, T., Machado, R.C., Lívero, F.A. dos R., Sato, S.W. and Martins, L. de A., "High frequency equipment promotes antibacterial effects dependent on intensity and exposure time", Clinical, Cosmetic and Investigational Dermatology, 11, 131–135, 2018.
  • Khoury, A.E., Lam, K., Ellis, B. and Costerton, J.W., "Prevention and control of bacterial infections associated with medical devices", ASAIO Journal, 38(3), M174-8, 1992.
  • Blenkinsopp, S.A., Khoury, A.E. and Costerton, J.W., "Electrical enhancement of biocide efficacy against Pseudomonas aeruginosa biofilms", Applied and Environmental Microbiology, 58(11), 3770–3773, 1992.
  • Caubet, R., Pedarros-Caubet, F., Chu, M., Freye, E., De Belém Rodrigues, M., Moreau, J.M. and Ellison, W.J., "A radio frequency electric current enhances antibiotic efficacy against bacterial biofilms", Antimicrobial Agents and Chemotherapy, 48(12), 4662–4664, 2004.
  • Rediske, A.M., Roeder, B.L., Brown, M.K., Nelson, J.L., Robison, R.L., Draper, D.O., Schaalje, G.B., Robison, R.A. and Pitt, W.G., "Ultrasonic enhancement of antibiotic action on Escherichia coli biofilms: An in vivo model", Antimicrobial Agents and Chemotherapy, 43(5), 1211–1214, 1999.
  • Stewart, P.S., Wattanakaroon, W., Goodrum, L., Fortun, S.M. and McLeod, B.R., "Electrolytic generation of oxygen partially explains electrical enhancement of tobramycin efficacy against Pseudomonas aeruginosa biofilm", Antimicrobial Agents and Chemotherapy, 43(2), 292–296, 1999.
  • Yang, H., Zhang, Y., Wang, Z., Zhong, S., Hu, G. and Zuo, W., "The Effects of Mobile Phone Radiofrequency Radiation on Cochlear Stria Marginal Cells in Sprague–Dawley Rats", Bioelectromagnetics, 41(3), 219–229, 2020.
  • Mohammadianinejad, S.E., Babaei, M. and Nazari, P., "The Effects of Exposure to Low Frequency Electromagnetic Fields in the Treatment of Migraine Headache: A Cohort Study", Electronic physician, 8(12), 3445–3449, 2016.
  • Hunt, P.R., "The C. elegans model in toxicity testing", Journal of Applied Toxicology, 37(1), 50–59, 2017.
  • Taheri, M., Mortazavi, S.M.J., Moradi, M., Mansouri, S., Hatam, G.R. and Nouri, F., "Evaluation of the effect of radiofrequency radiation emitted from Wi-Fi router and mobile phone simulator on the antibacterial susceptibility of pathogenic bacteria listeria monocytogenes and Escherichia coli", Dose-Response, 15(1), 1559325816688527, 2017.
  • Said-Salman, I.H., Jebaii, F.A., Yusef, H.H. and Moustafa, M.E., "Evaluation of Wi-Fi Radiation Effects on Antibiotic Susceptibility, Metabolic Activity and Biofilm Formation by Escherichia Coli O157H7, Staphylococcus Aureus and Staphylococcus Epidermis", Journal of Biomedical Physics and Engineering, 9(5), 579-586, 2019.
  • Nakouti, I., Hobbs, G., Teethaisong, Y. and Phipps, D., "A demonstration of athermal effects of continuous microwave irradiation on the growth and antibiotic sensitivity of Pseudomonas aeruginosa PAO1", Biotechnology Progress, 33(1), 37–44, 2017.
  • Salmen, S.H., Alharbi, S.A., Faden, A.A. and Wainwright, M., "Evaluation of effect of high frequency electromagnetic field on growth and antibiotic sensitivity of bacteria", Saudi Journal of Biological Sciences, 25(1), 105–110, 2018.
  • Diem, E., Schwarz, C., Adlkofer, F., Jahn, O., and Rüdiger, H., "Non-thermal DNA breakage by mobile-phone radiation (1800 MHz) in human fibroblasts and in transformed GFSH-R17 rat granulosa cells in vitro", Mutation Research - Genetic Toxicology and Environmental Mutagenesis, 583(2), 178–183, 2005.
  • Akdag, M.Z., Dasdag, S., Canturk, F., Karabulut, D., Caner, Y. and Adalier, N., "Does prolonged radiofrequency radiation emitted from Wi-Fi devices induce DNA damage in various tissues of rats?", Journal of Chemical Neuroanatomy, 75, 116–122, 2016.
  • Inhan-Garip, A., Aksu, B., Akan, Z., Akakin, D., Ozaydin, A.N. and San, T., "Effect of extremely low frequency electromagnetic fields on growth rate and morphology of bacteria", International Journal of Radiation Biology, 87(12), 1155–1161, 2011.
  • Hassanshahi, A., Shafeie, S.A., Fatemi, I., Hassanshahi, E., Allahtavakoli, M., Shabani, M., Roohbakhsh, A. and Shamsizadeh, A., "The effect of Wi-Fi electromagnetic waves in unimodal and multimodal object recognition tasks in male rats", Neurological Sciences, 38(6), 1069–1076, 2017.
  • Shokri, S., Soltani, A., Kazemi, M., Sardari, D. and Babapoor Mofrad, F., "Effects of Wi-Fi (2.45 GHz) exposure on apoptosis, sperm parameters and testicular histomorphometry in rats: A time course study", Cell Journal, 17(2), 322–331, 2015.
  • Pall, M.L., "Wi-Fi is an important threat to human health", Environmental Research, 164, 405–416, 2018.
  • Foster, K.R. and Moulder, J.E., "Wi-Fi and health: Review of current status of research", Health Physics, 105(6), 561–575, 2013.
  • Çiğ, B. and Naziroğlu, M., "Investigation of the effects of distance from sources on apoptosis, oxidative stress and cytosolic calcium accumulation via TRPV1 channels induced by mobile phones and Wi-Fi in breast cancer cells", Biochimica et Biophysica Acta - Biomembranes, 1848(10), 2756–2765, 2015.
  • Zečić, A., Dhondt, I. and Braeckman, B.P., "The nutritional requirements of Caenorhabditis elegans", Genes and Nutrition, 14(1), 15, 2019.
  • Fojt, L., Klapetek, P., Strašák, L. and Vetterl, V., "50 Hz magnetic field effect on the morphology of bacteria", Micron, 40(8), 918–922, 2009.
  • Cellini, L., Grande, R., Di Campli, E., Di Bartolomeo, S., Di Giulio, M., Robuffo, I., Trubiani, O. and Mariggiò, M.A., "Bacterial response to the exposure of 50 Hz electromagnetic fields", Bioelectromagnetics, 29(4), 302–311, 2008.
  • De Pomerai, D.I., Dawe, A., Djerbib, L., Allan, J., Brunt, G. and Daniells, C., "Growth and maturation of the nematode Caenorhabditis elegans following exposure to weak microwave fields", Enzyme and Microbial Technology, 30(1), 73–79, 2002.
  • Gao, Y., Lu, Y., Yi, J., Li, Z., Gao, D., Yu, Z., Wu, T. and Zhang, C., "A genome-wide mRNA expression profile in caenorhabditis elegans under prolonged exposure to 1750MHz radiofrequency fields", PLoS ONE, 11(1), e0147273, 2016.
  • Fasseas, M.K., Fragopoulou, A.F., Manta, A.K., Skouroliakou, A., Vekrellis, K., Margaritis, L.H. and Syntichaki, P., "Response of Caenorhabditis elegans to wireless devices radiation exposure", International Journal of Radiation Biology, 91(3), 286–293, 2015.
  • Daniells, C., Duce, I., Thomas, D., Sewell, P., Tattersall, J. and De Pomerai, D., "Transgenic nematodes as biomonitors of microwave-induced stress", Mutation Research - Fundamental and Molecular Mechanisms of Mutagenesis, 399(1), 55–64, 1998.
  • Junkersdorf, B., Bauer, H. and Gutzeit, H.O., "Electromagnetic fields enhance the stress response at elevated temperatures in the nematode Caenorhabditis elegans", Bioelectromagnetics, 21(2), 100–106, 2000.
  • Gul Guven, R., Guven, K., Dawe, A., Worthington, J., Harvell, C., Popple, A., Smith, T., Smith, B. and de Pomerai, D.I., "Effects of radio-frequency fields on bacterial cell membranes and nematode temperature-sensitive mutants", Enzyme and Microbial Technology, 39(4), 788–795, 2006.
There are 40 citations in total.

Details

Primary Language English
Subjects Engineering
Journal Section Journals
Authors

Bircan Dinç 0000-0002-9717-6410

Muhammad Ilyas 0000-0002-3207-451X

Hakan Kaygusuz 0000-0001-9336-1902

Osman Nuri Uçan 0000-0002-4100-0045

Publication Date June 29, 2021
Published in Issue Year 2021 Volume: 7 Issue: 1

Cite

APA Dinç, B., Ilyas, M., Kaygusuz, H., Uçan, O. N. (2021). 5 GHZ WI FI EFFECTS ON ESCHERICHIA COLI, CAENORHABDITIS ELEGANS AND HUMAN NEUROBLASTOMA CELLS. Mugla Journal of Science and Technology, 7(1), 7-13. https://doi.org/10.22531/muglajsci.820783
AMA Dinç B, Ilyas M, Kaygusuz H, Uçan ON. 5 GHZ WI FI EFFECTS ON ESCHERICHIA COLI, CAENORHABDITIS ELEGANS AND HUMAN NEUROBLASTOMA CELLS. Mugla Journal of Science and Technology. June 2021;7(1):7-13. doi:10.22531/muglajsci.820783
Chicago Dinç, Bircan, Muhammad Ilyas, Hakan Kaygusuz, and Osman Nuri Uçan. “5 GHZ WI FI EFFECTS ON ESCHERICHIA COLI, CAENORHABDITIS ELEGANS AND HUMAN NEUROBLASTOMA CELLS”. Mugla Journal of Science and Technology 7, no. 1 (June 2021): 7-13. https://doi.org/10.22531/muglajsci.820783.
EndNote Dinç B, Ilyas M, Kaygusuz H, Uçan ON (June 1, 2021) 5 GHZ WI FI EFFECTS ON ESCHERICHIA COLI, CAENORHABDITIS ELEGANS AND HUMAN NEUROBLASTOMA CELLS. Mugla Journal of Science and Technology 7 1 7–13.
IEEE B. Dinç, M. Ilyas, H. Kaygusuz, and O. N. Uçan, “5 GHZ WI FI EFFECTS ON ESCHERICHIA COLI, CAENORHABDITIS ELEGANS AND HUMAN NEUROBLASTOMA CELLS”, Mugla Journal of Science and Technology, vol. 7, no. 1, pp. 7–13, 2021, doi: 10.22531/muglajsci.820783.
ISNAD Dinç, Bircan et al. “5 GHZ WI FI EFFECTS ON ESCHERICHIA COLI, CAENORHABDITIS ELEGANS AND HUMAN NEUROBLASTOMA CELLS”. Mugla Journal of Science and Technology 7/1 (June 2021), 7-13. https://doi.org/10.22531/muglajsci.820783.
JAMA Dinç B, Ilyas M, Kaygusuz H, Uçan ON. 5 GHZ WI FI EFFECTS ON ESCHERICHIA COLI, CAENORHABDITIS ELEGANS AND HUMAN NEUROBLASTOMA CELLS. Mugla Journal of Science and Technology. 2021;7:7–13.
MLA Dinç, Bircan et al. “5 GHZ WI FI EFFECTS ON ESCHERICHIA COLI, CAENORHABDITIS ELEGANS AND HUMAN NEUROBLASTOMA CELLS”. Mugla Journal of Science and Technology, vol. 7, no. 1, 2021, pp. 7-13, doi:10.22531/muglajsci.820783.
Vancouver Dinç B, Ilyas M, Kaygusuz H, Uçan ON. 5 GHZ WI FI EFFECTS ON ESCHERICHIA COLI, CAENORHABDITIS ELEGANS AND HUMAN NEUROBLASTOMA CELLS. Mugla Journal of Science and Technology. 2021;7(1):7-13.

5975f2e33b6ce.png
Mugla Journal of Science and Technology (MJST) is licensed under the Creative Commons Attribution-Noncommercial-Pseudonymity License 4.0 international license