Research Article
BibTex RIS Cite

EXAMINING SPATIAL VARIABILITY IN THE ASSOCIATION BETWEEN SOME FACTORS AND NUMBER OF PRISONERS IN TURKEY: A GWR ANALYSIS

Year 2021, Volume: 7 Issue: 1, 141 - 148, 29.06.2021
https://doi.org/10.22531/muglajsci.928734

Abstract

The crime phenomenon requires an economic as well as a sociological analysis in terms of its occurrence, its causes and its consequences. In this study, the effects of socio-economic factors on crime were investigated by using Multiple Linear Regression and Geographical Weighted Regression Methods. The aim of the study is to analyze the factors that have an effect on crime, as well as to analyze which of the regression methods used gives more effective results. Method comparisons were made using R square and Akaike's Information Criterion. As a result of the analysis, it was seen that the Geographic Weighted Regression gave more effective results than the Multiple Linear Regression. In the study, Turkey's 81 provinces were included in the analysis and used the data of the year 2019. The number of prisoners is dependent variable, migration, literacy rate and unemployment rate are independent variables. The data used in this study are taken from the official web address Turkey Statistical Institute. Analyzes were made using the statistical R program.

References

  • Chiricos, T. G., “Rates of Crime and Unemployment; An Analysis of Aggregate Research Evidence”, Social Problems, 34(2), .187-212, 1987.
  • Imrohoroğlu, A., Merlo, A. and Rupert P., “What Accounts for the Decline in Crime?”, International Economic Review, 45(3), 707-729, 2004.
  • Hojman, D. E., “Explaining Crime in Buenos Aires: The Roles of Inequality, Unemployment and Structural Change”, Bulletin of Latin American Research, 21(1), 121-128, 2002.
  • Papps, K. and Winkelman, R., “Unemployment and Crime: New Answer to an Old Question”, IZA Discussion Paper, 25, 1- 25, 1998.
  • Buonanno, P. and Montolio, D., “Identifying the Socio- Economic and Demographic Determinants of Crime Across Spanish Provinces”, International Review of Law and Economics, 28(2), 89-97, 2008.
  • Güvel, E. A., “Suç ve Ceza Ekonomisi”, Roma Yayınları, Ankara, 2004.
  • Cömertler, N. and Kar, M., “Türkiye’de Suç Oranının Sosyo-ekonomik Belirleyicileri; Yatay Kesit Analizi”, Ankara Üniversitesi, Siyasal Bilgiler Fakültesi Dergisi, 62(2), .37-57, 2007.
  • Durusoy, S., Köse, S. and Karadeniz, O., “Başlıca Sosyo Ekonomik Sorunlar Suçun Belirleyicisi Olabilir mi? Türkiye’de Deliller Arası Bir Analiz”, Elektronik Sosyal Bilimler Dergisi, 7(23), ss.172-203, 2008.
  • Aytaç, M., Aytaç, S. and Bayram, N., “Suç Türlerini Etkileyen Faktörlerin İstatistiksel Analizi”, 8. Türkiye Ekonometri ve İstatistik Kongresi, İnönü Üniversitesi, Malatya, 24-25 Mayıs, 1-7, 2007.
  • Lochner, L. and Enrico, M., “The Effect of Education on Crime: Evidence from Prison Inmates, Arrests and Self-Report”, American Economic Review, 94(1), 155-189, 2004.
  • Freeman, R. B., Crime and The Job Market, NBER Working Paper Series, 4910, 1994.
  • Lochner, L., “Education, Work and Crime, Theory and Evidence”, Center for Economic Research Working Paper, 465, 1-52, 1999.
  • Usher, D., “Education as Deterrent to Crime”, Canadian Journal of Economics, 30(2), 367-384, 1997.
  • Case, A. C. and Lawrence F. K., “The Company You Keep the Effects of Family and Neighborhood on Disadvantaged Youth” NBER Working Paper, 3705, 1-25, 1991.
  • Meagan, E. C. and Gordon F. M., “The Determinants of Crime in Tucson, Arizona”, Urban Geography, 24(7), 582-610, 2003.
  • William, V. A., “Socioeconomic Correlates of Increasing Crime Rates in Smaller Communities”, The Professional Geographer, 50(3), 372-387, 1998.
  • Ayhan, İ. and Çubukçu, M, “Suç ve Kent İlişkisine Ampirik Bakış; Literatür Taraması”, Süleyman Demirel Üniversitesi Sosyal Bilimler Enstitüsü Dergisi, 3(5), .1-37, 2007.
  • Tobler, W.R., “A computer movie simulating urban growth in the Detroit region”, Econ. Geogr. 46, 234–240, 1970.
  • Moran, P.A., “Notes on continuous stochastic phenomena” Biometrika, 37, 17–23, 1950.
  • Jamal I. Daoud 2017, “Multicollinearity and Regression Analysis”, J. Phys.: Conf. Ser., 2017.
  • Debbie, J. D. and Maria-Pia, V.F., “Robust VIF regression with application to variable Selection in large data sets”, The Annals of Applied Statistics, 7(1), 319-341, 2013.
  • Andrews, R. and Currim, I., “Retention of latent segments in regression- based marketing models”, Int. J. Res. Mark, 20(4), 315–321, 2003.
  • Hairuo Yu, Huili Gong, Beibei Chen, Kaisi Liu and Mingliang Gao, “Analysis of the influence of groundwater on land subsidence in Beijing based on the geographical weighted regression (GWR) model”, Science of the Total Environment, 738, 2020.
  • Hintze, J. L., NCSS., User’s Guide III Regression and Curve Fitting, NCSS Inc., Kaysville, Utah, 2007.
  • Newbold, P., Carlson, W. L. and Thorne, B. M., Statistics for Business and Economics, Eighth Edition, Pearson, England, 2013.
  • Pace, R. and LeSage ,J., “Closed-form maximum likelihood estimates for spatial problems (mess)”, Geographical Analysis, 32(2), 157-172, 2000.
  • Pace, R. and LeSage, J., “Semiparametric maximum likelihood estimates of spatial de-pendence”, Geographical Analysis, 34(1), 76–90, 2002.
  • Pace, R. and LeSage, J., “Chebyshev approximation of log-determinant of spatial weight matrices”, Computational Statistics and Data Analysis, 45, 179-196 2004.
  • Martin, R., “Approximations to the determinant term in gaussian maximum likelihood estimation of some spatial models”, Statistical Theory Models, 22(1):189–205, 1993.
  • Smirnov, O. and Anselin, L., “Fast maximum likelihood estimation of very large spatial auto-regressive models: A characteristic polynomial approach”, Computational Statis-tics and Data Analysis, 35(3), 301–319, 2001.
  • Fotheringham, A.S., Brunsdon, C. and Charlton, M., Geographically Weigthed Regression the Analysis of Spatially Varying Relationships, Wiley, West Sussex, UK, 2002.

TÜRKİYE'DEKİ BAZI FAKTÖRLER İLE MAHKUM SAYISI ARASINDAKİ İLİŞKİDE MEKANSAL DEĞİŞKENLİĞİN İNCELENMESİ: BİR GWR ANALİZİ

Year 2021, Volume: 7 Issue: 1, 141 - 148, 29.06.2021
https://doi.org/10.22531/muglajsci.928734

Abstract

Suç olgusu, hem ortaya çıkış biçimi ve nedenleri ve hem de sonuçları açısından sosyolojik olduğu kadar ekonomik bir çözümlemeyi de gerekli kılmaktadır. Bu çalışmada, sosyo-ekonomik faktörlerin suç üzerindeki etkileri Çoklu Doğrusal Regresyon ve Coğrafik Ağırlıklı Regresyon Yöntemleri kullanılarak araştırılmıştır. Çalışmanın amacı, suç üzerinde etkili olan faktörleri analiz etmenin yanı sıra kullanılan regresyon yöntemlerinden hangisinin daha etkili sonuçlar verdiğini analiz etmektir. Yöntem karşılaştırmaları R^2 ve Akaike Bilgi Kriteri kullanılarak yapılmıştır. Analiz sonucu olarak Coğrafik Ağırlıklı Regresyonun Çoklu Doğrusal Regresyondan daha etkili sonuçlar verdiği görülmüştür. Çalışmada, Türkiye'nin 81 ili analize dahil edilmiş ve 2019 yılına ait veriler kullanılmıştır. Mahkûm sayısı bağımlı değişken, göç, okuryazar oranı ve işsizlik oranı bağımsız değişkenlerdir. Çalışmada kullanılan veriler Türkiye İstatistik Kurumu resmi web adresinden alınmıştır. Analizler istatiksel R programı kullanılarak yapılmıştır.

References

  • Chiricos, T. G., “Rates of Crime and Unemployment; An Analysis of Aggregate Research Evidence”, Social Problems, 34(2), .187-212, 1987.
  • Imrohoroğlu, A., Merlo, A. and Rupert P., “What Accounts for the Decline in Crime?”, International Economic Review, 45(3), 707-729, 2004.
  • Hojman, D. E., “Explaining Crime in Buenos Aires: The Roles of Inequality, Unemployment and Structural Change”, Bulletin of Latin American Research, 21(1), 121-128, 2002.
  • Papps, K. and Winkelman, R., “Unemployment and Crime: New Answer to an Old Question”, IZA Discussion Paper, 25, 1- 25, 1998.
  • Buonanno, P. and Montolio, D., “Identifying the Socio- Economic and Demographic Determinants of Crime Across Spanish Provinces”, International Review of Law and Economics, 28(2), 89-97, 2008.
  • Güvel, E. A., “Suç ve Ceza Ekonomisi”, Roma Yayınları, Ankara, 2004.
  • Cömertler, N. and Kar, M., “Türkiye’de Suç Oranının Sosyo-ekonomik Belirleyicileri; Yatay Kesit Analizi”, Ankara Üniversitesi, Siyasal Bilgiler Fakültesi Dergisi, 62(2), .37-57, 2007.
  • Durusoy, S., Köse, S. and Karadeniz, O., “Başlıca Sosyo Ekonomik Sorunlar Suçun Belirleyicisi Olabilir mi? Türkiye’de Deliller Arası Bir Analiz”, Elektronik Sosyal Bilimler Dergisi, 7(23), ss.172-203, 2008.
  • Aytaç, M., Aytaç, S. and Bayram, N., “Suç Türlerini Etkileyen Faktörlerin İstatistiksel Analizi”, 8. Türkiye Ekonometri ve İstatistik Kongresi, İnönü Üniversitesi, Malatya, 24-25 Mayıs, 1-7, 2007.
  • Lochner, L. and Enrico, M., “The Effect of Education on Crime: Evidence from Prison Inmates, Arrests and Self-Report”, American Economic Review, 94(1), 155-189, 2004.
  • Freeman, R. B., Crime and The Job Market, NBER Working Paper Series, 4910, 1994.
  • Lochner, L., “Education, Work and Crime, Theory and Evidence”, Center for Economic Research Working Paper, 465, 1-52, 1999.
  • Usher, D., “Education as Deterrent to Crime”, Canadian Journal of Economics, 30(2), 367-384, 1997.
  • Case, A. C. and Lawrence F. K., “The Company You Keep the Effects of Family and Neighborhood on Disadvantaged Youth” NBER Working Paper, 3705, 1-25, 1991.
  • Meagan, E. C. and Gordon F. M., “The Determinants of Crime in Tucson, Arizona”, Urban Geography, 24(7), 582-610, 2003.
  • William, V. A., “Socioeconomic Correlates of Increasing Crime Rates in Smaller Communities”, The Professional Geographer, 50(3), 372-387, 1998.
  • Ayhan, İ. and Çubukçu, M, “Suç ve Kent İlişkisine Ampirik Bakış; Literatür Taraması”, Süleyman Demirel Üniversitesi Sosyal Bilimler Enstitüsü Dergisi, 3(5), .1-37, 2007.
  • Tobler, W.R., “A computer movie simulating urban growth in the Detroit region”, Econ. Geogr. 46, 234–240, 1970.
  • Moran, P.A., “Notes on continuous stochastic phenomena” Biometrika, 37, 17–23, 1950.
  • Jamal I. Daoud 2017, “Multicollinearity and Regression Analysis”, J. Phys.: Conf. Ser., 2017.
  • Debbie, J. D. and Maria-Pia, V.F., “Robust VIF regression with application to variable Selection in large data sets”, The Annals of Applied Statistics, 7(1), 319-341, 2013.
  • Andrews, R. and Currim, I., “Retention of latent segments in regression- based marketing models”, Int. J. Res. Mark, 20(4), 315–321, 2003.
  • Hairuo Yu, Huili Gong, Beibei Chen, Kaisi Liu and Mingliang Gao, “Analysis of the influence of groundwater on land subsidence in Beijing based on the geographical weighted regression (GWR) model”, Science of the Total Environment, 738, 2020.
  • Hintze, J. L., NCSS., User’s Guide III Regression and Curve Fitting, NCSS Inc., Kaysville, Utah, 2007.
  • Newbold, P., Carlson, W. L. and Thorne, B. M., Statistics for Business and Economics, Eighth Edition, Pearson, England, 2013.
  • Pace, R. and LeSage ,J., “Closed-form maximum likelihood estimates for spatial problems (mess)”, Geographical Analysis, 32(2), 157-172, 2000.
  • Pace, R. and LeSage, J., “Semiparametric maximum likelihood estimates of spatial de-pendence”, Geographical Analysis, 34(1), 76–90, 2002.
  • Pace, R. and LeSage, J., “Chebyshev approximation of log-determinant of spatial weight matrices”, Computational Statistics and Data Analysis, 45, 179-196 2004.
  • Martin, R., “Approximations to the determinant term in gaussian maximum likelihood estimation of some spatial models”, Statistical Theory Models, 22(1):189–205, 1993.
  • Smirnov, O. and Anselin, L., “Fast maximum likelihood estimation of very large spatial auto-regressive models: A characteristic polynomial approach”, Computational Statis-tics and Data Analysis, 35(3), 301–319, 2001.
  • Fotheringham, A.S., Brunsdon, C. and Charlton, M., Geographically Weigthed Regression the Analysis of Spatially Varying Relationships, Wiley, West Sussex, UK, 2002.
There are 31 citations in total.

Details

Primary Language English
Journal Section Journals
Authors

Bahadır Yüzbaşı 0000-0002-6196-3201

Çetin Görür 0000-0002-9556-5068

Publication Date June 29, 2021
Published in Issue Year 2021 Volume: 7 Issue: 1

Cite

APA Yüzbaşı, B., & Görür, Ç. (2021). EXAMINING SPATIAL VARIABILITY IN THE ASSOCIATION BETWEEN SOME FACTORS AND NUMBER OF PRISONERS IN TURKEY: A GWR ANALYSIS. Mugla Journal of Science and Technology, 7(1), 141-148. https://doi.org/10.22531/muglajsci.928734
AMA Yüzbaşı B, Görür Ç. EXAMINING SPATIAL VARIABILITY IN THE ASSOCIATION BETWEEN SOME FACTORS AND NUMBER OF PRISONERS IN TURKEY: A GWR ANALYSIS. MJST. June 2021;7(1):141-148. doi:10.22531/muglajsci.928734
Chicago Yüzbaşı, Bahadır, and Çetin Görür. “EXAMINING SPATIAL VARIABILITY IN THE ASSOCIATION BETWEEN SOME FACTORS AND NUMBER OF PRISONERS IN TURKEY: A GWR ANALYSIS”. Mugla Journal of Science and Technology 7, no. 1 (June 2021): 141-48. https://doi.org/10.22531/muglajsci.928734.
EndNote Yüzbaşı B, Görür Ç (June 1, 2021) EXAMINING SPATIAL VARIABILITY IN THE ASSOCIATION BETWEEN SOME FACTORS AND NUMBER OF PRISONERS IN TURKEY: A GWR ANALYSIS. Mugla Journal of Science and Technology 7 1 141–148.
IEEE B. Yüzbaşı and Ç. Görür, “EXAMINING SPATIAL VARIABILITY IN THE ASSOCIATION BETWEEN SOME FACTORS AND NUMBER OF PRISONERS IN TURKEY: A GWR ANALYSIS”, MJST, vol. 7, no. 1, pp. 141–148, 2021, doi: 10.22531/muglajsci.928734.
ISNAD Yüzbaşı, Bahadır - Görür, Çetin. “EXAMINING SPATIAL VARIABILITY IN THE ASSOCIATION BETWEEN SOME FACTORS AND NUMBER OF PRISONERS IN TURKEY: A GWR ANALYSIS”. Mugla Journal of Science and Technology 7/1 (June 2021), 141-148. https://doi.org/10.22531/muglajsci.928734.
JAMA Yüzbaşı B, Görür Ç. EXAMINING SPATIAL VARIABILITY IN THE ASSOCIATION BETWEEN SOME FACTORS AND NUMBER OF PRISONERS IN TURKEY: A GWR ANALYSIS. MJST. 2021;7:141–148.
MLA Yüzbaşı, Bahadır and Çetin Görür. “EXAMINING SPATIAL VARIABILITY IN THE ASSOCIATION BETWEEN SOME FACTORS AND NUMBER OF PRISONERS IN TURKEY: A GWR ANALYSIS”. Mugla Journal of Science and Technology, vol. 7, no. 1, 2021, pp. 141-8, doi:10.22531/muglajsci.928734.
Vancouver Yüzbaşı B, Görür Ç. EXAMINING SPATIAL VARIABILITY IN THE ASSOCIATION BETWEEN SOME FACTORS AND NUMBER OF PRISONERS IN TURKEY: A GWR ANALYSIS. MJST. 2021;7(1):141-8.

5975f2e33b6ce.png
Mugla Journal of Science and Technology (MJST) is licensed under the Creative Commons Attribution-Noncommercial-Pseudonymity License 4.0 international license