Research Article
BibTex RIS Cite

RECONSTRUCTION AND ANALYSIS OF JET FLOW BY DYNAMIC MODE DECOMPOSITION

Year 2023, Volume: 9 Issue: 2, 19 - 24, 31.12.2023
https://doi.org/10.22531/muglajsci.1268109

Abstract

In this study, the behavior of Turbulent Jet flow was investigated using Dynamic Mode Decomposition, which is a data-driven, dimension reduction method. Jet flow, which is an important and popular research topic in Fluid Dynamics and engineering applications, was considered as the fluid flow. A Large Eddy Simulation (LES) was performed using the openFOAM software to model the Jet flow. 180 snapshots were generated with the simulation to create a Jet Flow dataset of approximately 150 gigabytes. Firstly, the dynamic modes of the jet flow were extracted from this dataset to reveal the characteristic features of the flow. Then, state estimation for reconstruction of the flow were made. This significantly reduced the CPU and RAM requirement for processing data set and saved lots of disk space for storage. Performance measurements were made for the reconstructed images obtained as a result of the analyses. Two metrics were used for the measurements, namely Root Mean Square Error and Structural Similarity Index.

References

  • Schmid, P. J. and Sesterhenn, J., “Dynamic mode decomposition of numerical and experimental data”, In 61st Annual Meeting of the APS Division of Fluid Dynamics. American Physical Society, 2008.
  • Schmid, P. J., “Dynamic mode decomposition of numerical and experimental data”, Journal of Fluid Mechanics, 656, 5–28, 2010.
  • Mezi´c, I., and Banaszuk, A., “Comparison of systems with complex behavior”, Physica D: Nonlinear Phenomena, 197, 101–133,2004.
  • Mezi´c, ı., “Spectral properties of dynamical systems, model reduction and decompositions”, Nonlinear Dynamics, 41, 309–325, 2005.
  • Mezi´c, I., “Analysis of fluid flows via spectral properties of the Koopman operator”, Annual Review of Fluid Mechanics, 45, 357–378, 2013.
  • Rowley, C. W., Mezi´c, I., Bagheri, S., Schlatter, P. and Henningson, D. S., “Spectral analysis of nonlinear flows”, Journal of Fluid Mechanics, 645, 115–127, 2009.
  • Koopman, B. O., “Hamiltonian systems and transformation in Hilbert space”, Proceedings of the National Academy of Sciences of the USA, 17, 315–318, 1931.
  • Kutz, J. N., Brunton, S. L., Brunton, J. L., Proctor, J. L., Dynamic Mode Decomposition: DataDriven Modeling of Complex Systems, SIAM, 2016
  • Pearson, K., “On lines and planes of closest fit to systems of points in space”, Philosophical Magazine, 2, 559–572, 1901.
  • Jolliffe, I., “Principal Component Analysis”, Encyclopedia of Statistics in Behavioral Science, 3, 1580–1584, 2005.
  • Vuorinen, V., Wehrfritz, A, Yu, J., Kaario, O., Larmi, M. and Boersma, B “Large-eddy simulation of subsonic jets,” Journal of Physics: Conference Series, 318, 32-52, 2011.
  • Freund, J. and Colonius, T., “Turbulence and sound-field pod analysis of a turbulent jet,” International Journal of Aeroacoustics, 8-4, 337-354, 2009.
  • Meyer, K., Pedersen, J. and Ozcan, O., “A turbulent jet in crossflow analysed with proper orthogonal decomposition,” Journal of Fluid Mechanics, 583, 199-228, 2007.
  • Tu, J. H., Rowley, C. W., Luchtenburg, D. M., Brunton, S. L. and Kutz, J. N., “On dynamic mode decomposition: Theory and applications”, Journal of Computational Dynamics, 1(2), pp. 391–421, 2014.
  • Sevcik, L., Voznak, M., Frnda, J., “QoE Prediction Model for Multimedia Services in IP Network, Applying Queuing Policy”, 17th International Symposium on Performance Evaluation of Computer and Telecommunication Systems (SPECTS) part of Summer Sim Multi conference, 2014, 593-598.
  • Frnda, J., Nedoma, J., Vanus, J., Martinek, R., A Hybrid “QoS-QoE Estimation System for IPTV Service”, Electronics,8, 585, 2019.
  • Frnda, J., Durica, M., Savrasovs, M., “Fournier-Viger, P. and Lin, J., QoS to QoE Mapping Function for Iptv Quality Assessement Based on Kohonen Map: A Pilot Study”, Transport and Telecommunication Journal,21, 181-190, 2020.

DiNAMiK MOD AYRIŞIMI İLE JET AKIŞININ YENİDEN OLUŞTURULMASI VE ANALİZİ

Year 2023, Volume: 9 Issue: 2, 19 - 24, 31.12.2023
https://doi.org/10.22531/muglajsci.1268109

Abstract

Bu çalışmada, tamamen veri odaklı bir boyut indirgeme metodu olan Dinamik Mod Ayrışımı ile bir akışkanın davranışı incelenmiştir. Akış olarak, Akışkanlar Dinamiğinin ve mühendislik uygulamalarının önemli ve popüler araştırma konularından biri olan türbülanslı Jet Akışı ele alınmıştır. Akışın modellenmesi için gerekli simülasyon openFOAM yazılımı ile gerçekleştirilmiştir. Oluşturulan simülasyon ile 180 adet snapshot üretilerek akışa dair yaklaşık 150 gigabyte’lık veriseti oluşturulmuştur. Bu veriseti ile öncelikle Jet Akışının dinamik modları çıkarılarak akışın karakteristik özellikleri ortaya çıkarılmış, daha sonra akış görüntülerine dair durum tahmini ile akış yeniden oluşturulmuştur. Böylece verisetinin işlenmesi için gereken CPU ve RAM kullanımı önemli ölçüde azalmış, ayrıca sonraki işlemler için saklanacak veriye dair disk depolama alanında ciddi kazanımlar elde edilmiştir. Yapılan analizler sonucunda elde edilen yeniden oluşturulan görüntülerinin performans ölçümleri yapılmıştır. Ölçümler için iki metrik kullanılmış olup bunlar Kök Ortalama Kare Hatası ve Yapısal Benzerlik İndeksi’dir.

References

  • Schmid, P. J. and Sesterhenn, J., “Dynamic mode decomposition of numerical and experimental data”, In 61st Annual Meeting of the APS Division of Fluid Dynamics. American Physical Society, 2008.
  • Schmid, P. J., “Dynamic mode decomposition of numerical and experimental data”, Journal of Fluid Mechanics, 656, 5–28, 2010.
  • Mezi´c, I., and Banaszuk, A., “Comparison of systems with complex behavior”, Physica D: Nonlinear Phenomena, 197, 101–133,2004.
  • Mezi´c, ı., “Spectral properties of dynamical systems, model reduction and decompositions”, Nonlinear Dynamics, 41, 309–325, 2005.
  • Mezi´c, I., “Analysis of fluid flows via spectral properties of the Koopman operator”, Annual Review of Fluid Mechanics, 45, 357–378, 2013.
  • Rowley, C. W., Mezi´c, I., Bagheri, S., Schlatter, P. and Henningson, D. S., “Spectral analysis of nonlinear flows”, Journal of Fluid Mechanics, 645, 115–127, 2009.
  • Koopman, B. O., “Hamiltonian systems and transformation in Hilbert space”, Proceedings of the National Academy of Sciences of the USA, 17, 315–318, 1931.
  • Kutz, J. N., Brunton, S. L., Brunton, J. L., Proctor, J. L., Dynamic Mode Decomposition: DataDriven Modeling of Complex Systems, SIAM, 2016
  • Pearson, K., “On lines and planes of closest fit to systems of points in space”, Philosophical Magazine, 2, 559–572, 1901.
  • Jolliffe, I., “Principal Component Analysis”, Encyclopedia of Statistics in Behavioral Science, 3, 1580–1584, 2005.
  • Vuorinen, V., Wehrfritz, A, Yu, J., Kaario, O., Larmi, M. and Boersma, B “Large-eddy simulation of subsonic jets,” Journal of Physics: Conference Series, 318, 32-52, 2011.
  • Freund, J. and Colonius, T., “Turbulence and sound-field pod analysis of a turbulent jet,” International Journal of Aeroacoustics, 8-4, 337-354, 2009.
  • Meyer, K., Pedersen, J. and Ozcan, O., “A turbulent jet in crossflow analysed with proper orthogonal decomposition,” Journal of Fluid Mechanics, 583, 199-228, 2007.
  • Tu, J. H., Rowley, C. W., Luchtenburg, D. M., Brunton, S. L. and Kutz, J. N., “On dynamic mode decomposition: Theory and applications”, Journal of Computational Dynamics, 1(2), pp. 391–421, 2014.
  • Sevcik, L., Voznak, M., Frnda, J., “QoE Prediction Model for Multimedia Services in IP Network, Applying Queuing Policy”, 17th International Symposium on Performance Evaluation of Computer and Telecommunication Systems (SPECTS) part of Summer Sim Multi conference, 2014, 593-598.
  • Frnda, J., Nedoma, J., Vanus, J., Martinek, R., A Hybrid “QoS-QoE Estimation System for IPTV Service”, Electronics,8, 585, 2019.
  • Frnda, J., Durica, M., Savrasovs, M., “Fournier-Viger, P. and Lin, J., QoS to QoE Mapping Function for Iptv Quality Assessement Based on Kohonen Map: A Pilot Study”, Transport and Telecommunication Journal,21, 181-190, 2020.
There are 17 citations in total.

Details

Primary Language English
Subjects Engineering
Journal Section Articles
Authors

Mustafa Hicret Yaman 0000-0001-6483-0140

Gamze Yüksel 0000-0003-3578-2762

Early Pub Date December 21, 2023
Publication Date December 31, 2023
Published in Issue Year 2023 Volume: 9 Issue: 2

Cite

APA Yaman, M. H., & Yüksel, G. (2023). RECONSTRUCTION AND ANALYSIS OF JET FLOW BY DYNAMIC MODE DECOMPOSITION. Mugla Journal of Science and Technology, 9(2), 19-24. https://doi.org/10.22531/muglajsci.1268109
AMA Yaman MH, Yüksel G. RECONSTRUCTION AND ANALYSIS OF JET FLOW BY DYNAMIC MODE DECOMPOSITION. MJST. December 2023;9(2):19-24. doi:10.22531/muglajsci.1268109
Chicago Yaman, Mustafa Hicret, and Gamze Yüksel. “RECONSTRUCTION AND ANALYSIS OF JET FLOW BY DYNAMIC MODE DECOMPOSITION”. Mugla Journal of Science and Technology 9, no. 2 (December 2023): 19-24. https://doi.org/10.22531/muglajsci.1268109.
EndNote Yaman MH, Yüksel G (December 1, 2023) RECONSTRUCTION AND ANALYSIS OF JET FLOW BY DYNAMIC MODE DECOMPOSITION. Mugla Journal of Science and Technology 9 2 19–24.
IEEE M. H. Yaman and G. Yüksel, “RECONSTRUCTION AND ANALYSIS OF JET FLOW BY DYNAMIC MODE DECOMPOSITION”, MJST, vol. 9, no. 2, pp. 19–24, 2023, doi: 10.22531/muglajsci.1268109.
ISNAD Yaman, Mustafa Hicret - Yüksel, Gamze. “RECONSTRUCTION AND ANALYSIS OF JET FLOW BY DYNAMIC MODE DECOMPOSITION”. Mugla Journal of Science and Technology 9/2 (December 2023), 19-24. https://doi.org/10.22531/muglajsci.1268109.
JAMA Yaman MH, Yüksel G. RECONSTRUCTION AND ANALYSIS OF JET FLOW BY DYNAMIC MODE DECOMPOSITION. MJST. 2023;9:19–24.
MLA Yaman, Mustafa Hicret and Gamze Yüksel. “RECONSTRUCTION AND ANALYSIS OF JET FLOW BY DYNAMIC MODE DECOMPOSITION”. Mugla Journal of Science and Technology, vol. 9, no. 2, 2023, pp. 19-24, doi:10.22531/muglajsci.1268109.
Vancouver Yaman MH, Yüksel G. RECONSTRUCTION AND ANALYSIS OF JET FLOW BY DYNAMIC MODE DECOMPOSITION. MJST. 2023;9(2):19-24.

5975f2e33b6ce.png
Mugla Journal of Science and Technology (MJST) is licensed under the Creative Commons Attribution-Noncommercial-Pseudonymity License 4.0 international license