Research Article
BibTex RIS Cite

PULLUK UÇ DEMİRİ MALZEME SEÇİMİ: SHANNON ENTROPİ TEMELLİ BULANIK TOPSIS UYGULAMASI

Year 2024, Volume: 65 Issue: 714, 177 - 197, 29.04.2024
https://doi.org/10.46399/muhendismakina.1346068

Abstract

Mühendislik tasarım sürecinde malzeme seçimi, çok sayıda malzeme olması ve birbirine zıt bir çok özelliğin bir arada olmasının gerekliliğinden zorlayıcı bir süreçtir. Pulluk, toprak işlemenin en önemli ve temel aracıdır. Toprağı işleyen pullukta büyük aşınmalar çatlaklar ve hatta ani kırılmalar oluşabilmektedir. Bu nedenle pulluk uç demiri üretimi için seçilen malzeme son derecede önemlidir. Bu çalışma da, öncelikle pulluk uç demiri seçiminde önemli olan kriterler belirlenmiş, kriterler Interval Shannon Entropi yöntemi ile ağırlıklandırılmıştır. Bulanık Çok Kriterli Karar Analizi (FTOPSIS) tekniği kullanılarak malzeme tercih sıralaması yapılmıştır. araştırma sonuçlarına göre, uç demiri malzeme seçim kriterleri sıralaması, sırasıyla; sertlik, aşınma dayanımı, tokluk, çeki gerilmesi, termal iletkenlik ve maliyet olarak tespit edilmiştir. FTOPSIS yöntemi kullanılarak yapılan seçim neticesinde; aday malzemelerden ilk sırada 33MnCrB5(1.7185)’nın tercih edilmesi gerektiği, ve daha sonrasında tercih sırasının, sırasıyla 51CrV4(1.8159), 60SiMn5(SAE9262), 41CrMo4 (1.7225QT-4140) olması gerektiği tespit edilmiştir. α = 0.1,0.5 ve 0.9 seviyelerinde duyarlılık analizi yapılmıştır.

References

  • Aires, R. F. and Ferreira, L. (2022). "A New multi-criteria approach for sustainable material selection problem". Sustainability, 14(18), 11191. http://dx.doi.org/10.3390/su141811191
  • Ashby, M. F. (2010). Materials selection in mechanical design. Woburn, UK:Butterworth Heinemann.
  • Ayaǧ, Z. and Özdemir, R. G. (2006). "A fuzzy AHP approach to evaluating machine tool alternatives". Journal of Intelligent Manufacturing, 17(2), 179–190. https://doi.org/10.1007/s10845-005-6635-1
  • Balcı, A. (2004). Basınçlı Kaplarda Malzeme Seçimi için Karar Destek Sistemi Geliştirilmesi. (Yüksek Lisans Tezi). Gazi Üniversitesi, Fen Bilimleri Enstitüsü, Ankara.
  • Bayhan, Y. (1996). Trakya bölgesinde imal edilen bazı toprak işleme aletlerinin uç demirlerindeki aşınma ve aşınmaya etki eden bazı etkenlerin saptanması üzerine bir araştırma. (Doktora Tezi). Trakya Üniversitesi, Fen Bilimleri Enstitüsü, Edirne.
  • Baykal, N. ve Beyan, T. (2004). Bulanık mantık ilke ve temelleri. Ankara, Türkiye: Bıçaklar Kitapevi.
  • Boydaş, M. (2023). "Farklı ağız yapısına sahip kültivatör uç demirlerinin çeki kuvveti üzerine etkisinin sonlu elemanlar yöntemi kullanılarak belirlenmesi". Tekirdağ Ziraat Fakültesi Dergisi, 20(2), 306–317. https://doi.org/10.33462/jotaf.1087131
  • Chatterjee, S. and Chakraborty, S. (2021). "Material selection of a mechanical component based on criteria relationship evaluation and MCDM approach". Materials Today: Proceedings, 44, 1621–1626. https://doi.org/10.1016/j.matpr.2020.11.817
  • Chen-Tung Chen. (2000). "A note on Extension of fuzzy TOPSIS method based on interval-valued fuzzy sets". Fuzzy Sets and Systems, 114, 1–9. https://www.sciencedirect.com/science/article/abs/pii/S0165011497003771
  • Çakır, F. G. (2019). Pulluk uç demirlerine uygulanan yüzey işlemlerinin aşınma davranışına etkilerinin incelenmesi (Yüksek Lisans Tezi). Manis Celal Bayar Üniversitesi, Fen Bilimleri Enstitüsü, Manisa.
  • Das, M. C. and Sarkar, B. (2021). "Fusion between full consistency method and ideal solutions with constraint on values for material selection: A Consilient conspectus approach". Journal of The Institution of Engineers (India): SeriesC, 102(5), 1211–1230. https://doi.org/10.1007/s40032-021-00739-y
  • Emovon, I. and Oghenenyerovwho, O. S. (2020). "Application of MCDM method in material selection for optimal design: A review". Results in Materials, 7 (June), 100115. https://doi.org/10.1016/j.rinma.2020.100115
  • Er, Ü. (2003). Bor Yayınımıyla Yüzeyi Sertleştirilmiş Çeliklerin Aşınmaya Karşı Dayanımlarının ve Pulluk Uç Demirlerinde Uygulama Olanaklarının Araştırılması. Doktora tezi. Eskişehir Osmangazi Üniversitesi, Fen Bilimleri Enstitüsü, Eskişehir.
  • Gaalice, N. and Abdelrhman, A.M. (2024). "A Fuzzy logic approach for selecting bearing ring materials in pharmaceutical applications". Results in Materials, 21, 100513. https://doi.org/10.1016/j.rinma.2023.100513
  • Gürsel, K. T. and Köftecioğlu, E. Y. (2006). "Structural analysis of elements of two-bottom mouldboard plough". Journal of Engineering and Natural Sciences, Sigma, 0232, 46–55. https://www.ytusigmadergisi.com/pdfs/229.pdf
  • Hatamura, Y. (1999). The Practice of Machine Design. London: UK: Clarendon Press.
  • Kalácska, Á., De Baets, P., Fauconnier, D., Schramm, F., Frerichs, L. and Sukumaran, J. (2020). "Abrasive wear behaviour of 27MnB5 steel used in agriculturaltines". Wear, 442–443. https://doi.org/10.1016/j.wear.2019.203107
  • Lotfi, F. H. and Fallahnejad, R. (2010). "Imprecise shannon’s entropy and multi attribute decision making". Entropy, 12(1), 53–62. https://doi.org/10.3390/e12010053
  • Mamoon, A., Alhaji, A. U. and Abdullahi, I. (2021). "Application of neural network for material selection: A Review". International Journal of Material Science and Engineering, 7(2), 1–6. https://doi.org/10.14445/23948884/ijmse- v7i2p101
  • Martínez-Gómez, J. and Eduardo, P. J. (2023). "Coil high voltage spark plug boots insulators material selection using MCDM, simulation, and experimental validation". Processes, 11(1291), 2–23. https://doi.org/10.3390/pr11041292
  • Ordu, M. and Der, O. (2023). "Polymeric Materials selection for flexible pulsating heat pipe manufacturing using a comparative hybrid MCDM approach", Polymers, 15(13), 1–20. https://doi.org/10.3390/polym15132933
  • Patnaik, P. K., Swain, P. T. R., Mishra, S. K., Purohit, A. and Biswas, S. (2020)." Composite material selection for structural applications based on AHP-MOORA approach". Materials Today: Proceedings, 33, 5659–5663. https://doi.org/10.1016/j.matpr.2020.04.063
  • Raju, S., Palli, S., Prasad, P. D., Menda, V. R. and Ramakrishna, B. (2024). "A hybrid AHP-TOPSIS, MOORA technique for multi-objective optimization of thermal, mechanical, and water absorption behavior of epoxy/hemp, pine apple, and palm fiber composites". Journal of the Chinese Institute of Engineers, 47(1), 23-36. https://doi.org/10.1080/02533839.2023.2274092
  • Rathod, M. K. and Kanzaria, H. V. (2011). "A methodological concept for phase change material selection based on multiple criteria decision analysis with and without fuzzy environment". Materials and Design, 32(6), 3578–3585. https://doi.org/10.1016/j.matdes.2011.02.040
  • Remadi, F. D. and Frikha, H. M. (2023). "The triangular intuitionistic fuzzy numbers CODAS method for solving green material selection problem". International Journal of Operational Research, 46 (3), 398–415. https://doi. org/10.1504/IJOR.2023.129409
  • Roszkowska, E. (2013). "Rank ordering criteria weighting methods – A Comparative overview", Optimum. Studia Ekonomiczne, 5 (65), 14–33. https://doi.org/10.15290/ose.2013.05.65.02
  • Sarfaraz Khabbaz, R., Dehghan Manshadi, B., Abedian, A. and Mahmudi, R. (2009). "A simplified fuzzy logic approach for materials selection in mechanical engineering design". Materials and Design, 30(3), 687–697. https://doi.org/10.1016/j.matdes.2008.05.026
  • Yalçın Seçme, N and Özdemir, A. İ. (2010). "Bulanık anali̇ti̇k hi̇yerarşi̇ yöntemi̇ ile çok kri̇terli̇ strateji̇k tedari̇kçi seçi̇mi̇ : Türki̇ye örneği̇". Atatürk Universitesi İktisadi ve İdari Bilimler Fakültesi Dergisi, 22(2), 175–190.
  • Singh, J., Chatha, S. S. and Sidhu, B. S. (2020). "Effect of surface alloying on wear behaviour of EN-47 steel". Materials Today: Proceedings, 21,1340–1349. https://doi.org/10.1016/j.matpr.2020.01.172
  • Singh, J., Chatha, S. S. and Sidhu, B. S. (2021). "Abrasive wear characteristics and microstructure of Fe-based overlaid ploughshares in different field conditions". Soil and Tillage Research, 205(August 2020). https://doi. org/10.1016/j.still.2020.104771
  • Toksarı, M. and Toksarı, D. M. (2011). "Bulanık Analitik Hiyerarşi Prosese (AHP) yaklaşımı kullanılarak hedef pazarın belirlenmesi". ODTÜ Gelişme Dergisi, 38 (Nisan), 51–70.
  • Wang, Y. M. and Elhag, T. M. S. (2006). "Fuzzy TOPSIS method based on alpha level sets with an application to bridge risk assessment". Expert Systems with Applications, 31(2), 309–319. https://doi.org/10.1016/j.eswa.2005.09.040
  • Zadeh, L. A. (1965). "Fuzzy sets". Information and Control, 8, 338–353.
  • Zakeri, S., Chatterjee, P., Konstantas, D. and Ecer, F. (2023). "A decision analysis model for material selection using simple ranking process". In Scientific Reports 13 (1). Nature Publishing Group UK. https://doi.org/10.1038/ s41598-023-35405-z
  • Zimmermann, H. J. (2001). "Fuzzy set theory and its applications". In Fuzzy Set Theory-and Its Applications (4th Edition). Springer Science+Business Media, LLC. https://doi.org/10.1007/978-94-010-0646-0
  • Zoghi, M., Rostami, G., Khoshand, A and Motalleb, F. (2022). "Material selection in design for deconstruction using Kano model, fuzzy-AHP and TOPSIS methodology". Waste Management and Research, 40(4), 410–419. https://doi.org/10.1177/0734242X211013904

PLOUGHSHARES MATERIAL SELECTION: SHANNON’S ENTROPY BASED FUZZY TOPSIS APPLICATION

Year 2024, Volume: 65 Issue: 714, 177 - 197, 29.04.2024
https://doi.org/10.46399/muhendismakina.1346068

Abstract

Material selection in the engineering design process is a challenging process because there are many materials and many contradictory features that must be together. The plough is the most important and basic tool of tillage. Large abrasions, cracks and even sudden breaks can occur in the plough that cultivates the soil. For this reason, the material chosen for the production of the ploughshares is extremely important. In this study, first of all, the criteria that are important in the selection of ploughshares iron were determined, and the criteria were weighted with the Interval Shannon Entropy method. Material preference ranking was made using "the Fuzzy Technique for Order Preference by Similarity to Ideal Solution" (FTOPSIS) technique. According to the result, the order of the ploughshare’s material selection criteria is, respectively; hardness, wear percentage, toughness, tensile stress, thermal conductivity and cost. As a result of the selection made using the FTOPSIS method; It has been determined that 33MnCrB5(1.7185) should be preferred in the first place among the candidate materials, and then the order of preference should be 51CrV4(1.8159), 60SiMn5(SAE9262), 41CrMo4 (1.7225QT-4140), respectively. Sensitivity analysis was performed at α =0.1,0.5 and 0.9 levels. Three α -cutting levels were identical to the sequence of alternatives.

References

  • Aires, R. F. and Ferreira, L. (2022). "A New multi-criteria approach for sustainable material selection problem". Sustainability, 14(18), 11191. http://dx.doi.org/10.3390/su141811191
  • Ashby, M. F. (2010). Materials selection in mechanical design. Woburn, UK:Butterworth Heinemann.
  • Ayaǧ, Z. and Özdemir, R. G. (2006). "A fuzzy AHP approach to evaluating machine tool alternatives". Journal of Intelligent Manufacturing, 17(2), 179–190. https://doi.org/10.1007/s10845-005-6635-1
  • Balcı, A. (2004). Basınçlı Kaplarda Malzeme Seçimi için Karar Destek Sistemi Geliştirilmesi. (Yüksek Lisans Tezi). Gazi Üniversitesi, Fen Bilimleri Enstitüsü, Ankara.
  • Bayhan, Y. (1996). Trakya bölgesinde imal edilen bazı toprak işleme aletlerinin uç demirlerindeki aşınma ve aşınmaya etki eden bazı etkenlerin saptanması üzerine bir araştırma. (Doktora Tezi). Trakya Üniversitesi, Fen Bilimleri Enstitüsü, Edirne.
  • Baykal, N. ve Beyan, T. (2004). Bulanık mantık ilke ve temelleri. Ankara, Türkiye: Bıçaklar Kitapevi.
  • Boydaş, M. (2023). "Farklı ağız yapısına sahip kültivatör uç demirlerinin çeki kuvveti üzerine etkisinin sonlu elemanlar yöntemi kullanılarak belirlenmesi". Tekirdağ Ziraat Fakültesi Dergisi, 20(2), 306–317. https://doi.org/10.33462/jotaf.1087131
  • Chatterjee, S. and Chakraborty, S. (2021). "Material selection of a mechanical component based on criteria relationship evaluation and MCDM approach". Materials Today: Proceedings, 44, 1621–1626. https://doi.org/10.1016/j.matpr.2020.11.817
  • Chen-Tung Chen. (2000). "A note on Extension of fuzzy TOPSIS method based on interval-valued fuzzy sets". Fuzzy Sets and Systems, 114, 1–9. https://www.sciencedirect.com/science/article/abs/pii/S0165011497003771
  • Çakır, F. G. (2019). Pulluk uç demirlerine uygulanan yüzey işlemlerinin aşınma davranışına etkilerinin incelenmesi (Yüksek Lisans Tezi). Manis Celal Bayar Üniversitesi, Fen Bilimleri Enstitüsü, Manisa.
  • Das, M. C. and Sarkar, B. (2021). "Fusion between full consistency method and ideal solutions with constraint on values for material selection: A Consilient conspectus approach". Journal of The Institution of Engineers (India): SeriesC, 102(5), 1211–1230. https://doi.org/10.1007/s40032-021-00739-y
  • Emovon, I. and Oghenenyerovwho, O. S. (2020). "Application of MCDM method in material selection for optimal design: A review". Results in Materials, 7 (June), 100115. https://doi.org/10.1016/j.rinma.2020.100115
  • Er, Ü. (2003). Bor Yayınımıyla Yüzeyi Sertleştirilmiş Çeliklerin Aşınmaya Karşı Dayanımlarının ve Pulluk Uç Demirlerinde Uygulama Olanaklarının Araştırılması. Doktora tezi. Eskişehir Osmangazi Üniversitesi, Fen Bilimleri Enstitüsü, Eskişehir.
  • Gaalice, N. and Abdelrhman, A.M. (2024). "A Fuzzy logic approach for selecting bearing ring materials in pharmaceutical applications". Results in Materials, 21, 100513. https://doi.org/10.1016/j.rinma.2023.100513
  • Gürsel, K. T. and Köftecioğlu, E. Y. (2006). "Structural analysis of elements of two-bottom mouldboard plough". Journal of Engineering and Natural Sciences, Sigma, 0232, 46–55. https://www.ytusigmadergisi.com/pdfs/229.pdf
  • Hatamura, Y. (1999). The Practice of Machine Design. London: UK: Clarendon Press.
  • Kalácska, Á., De Baets, P., Fauconnier, D., Schramm, F., Frerichs, L. and Sukumaran, J. (2020). "Abrasive wear behaviour of 27MnB5 steel used in agriculturaltines". Wear, 442–443. https://doi.org/10.1016/j.wear.2019.203107
  • Lotfi, F. H. and Fallahnejad, R. (2010). "Imprecise shannon’s entropy and multi attribute decision making". Entropy, 12(1), 53–62. https://doi.org/10.3390/e12010053
  • Mamoon, A., Alhaji, A. U. and Abdullahi, I. (2021). "Application of neural network for material selection: A Review". International Journal of Material Science and Engineering, 7(2), 1–6. https://doi.org/10.14445/23948884/ijmse- v7i2p101
  • Martínez-Gómez, J. and Eduardo, P. J. (2023). "Coil high voltage spark plug boots insulators material selection using MCDM, simulation, and experimental validation". Processes, 11(1291), 2–23. https://doi.org/10.3390/pr11041292
  • Ordu, M. and Der, O. (2023). "Polymeric Materials selection for flexible pulsating heat pipe manufacturing using a comparative hybrid MCDM approach", Polymers, 15(13), 1–20. https://doi.org/10.3390/polym15132933
  • Patnaik, P. K., Swain, P. T. R., Mishra, S. K., Purohit, A. and Biswas, S. (2020)." Composite material selection for structural applications based on AHP-MOORA approach". Materials Today: Proceedings, 33, 5659–5663. https://doi.org/10.1016/j.matpr.2020.04.063
  • Raju, S., Palli, S., Prasad, P. D., Menda, V. R. and Ramakrishna, B. (2024). "A hybrid AHP-TOPSIS, MOORA technique for multi-objective optimization of thermal, mechanical, and water absorption behavior of epoxy/hemp, pine apple, and palm fiber composites". Journal of the Chinese Institute of Engineers, 47(1), 23-36. https://doi.org/10.1080/02533839.2023.2274092
  • Rathod, M. K. and Kanzaria, H. V. (2011). "A methodological concept for phase change material selection based on multiple criteria decision analysis with and without fuzzy environment". Materials and Design, 32(6), 3578–3585. https://doi.org/10.1016/j.matdes.2011.02.040
  • Remadi, F. D. and Frikha, H. M. (2023). "The triangular intuitionistic fuzzy numbers CODAS method for solving green material selection problem". International Journal of Operational Research, 46 (3), 398–415. https://doi. org/10.1504/IJOR.2023.129409
  • Roszkowska, E. (2013). "Rank ordering criteria weighting methods – A Comparative overview", Optimum. Studia Ekonomiczne, 5 (65), 14–33. https://doi.org/10.15290/ose.2013.05.65.02
  • Sarfaraz Khabbaz, R., Dehghan Manshadi, B., Abedian, A. and Mahmudi, R. (2009). "A simplified fuzzy logic approach for materials selection in mechanical engineering design". Materials and Design, 30(3), 687–697. https://doi.org/10.1016/j.matdes.2008.05.026
  • Yalçın Seçme, N and Özdemir, A. İ. (2010). "Bulanık anali̇ti̇k hi̇yerarşi̇ yöntemi̇ ile çok kri̇terli̇ strateji̇k tedari̇kçi seçi̇mi̇ : Türki̇ye örneği̇". Atatürk Universitesi İktisadi ve İdari Bilimler Fakültesi Dergisi, 22(2), 175–190.
  • Singh, J., Chatha, S. S. and Sidhu, B. S. (2020). "Effect of surface alloying on wear behaviour of EN-47 steel". Materials Today: Proceedings, 21,1340–1349. https://doi.org/10.1016/j.matpr.2020.01.172
  • Singh, J., Chatha, S. S. and Sidhu, B. S. (2021). "Abrasive wear characteristics and microstructure of Fe-based overlaid ploughshares in different field conditions". Soil and Tillage Research, 205(August 2020). https://doi. org/10.1016/j.still.2020.104771
  • Toksarı, M. and Toksarı, D. M. (2011). "Bulanık Analitik Hiyerarşi Prosese (AHP) yaklaşımı kullanılarak hedef pazarın belirlenmesi". ODTÜ Gelişme Dergisi, 38 (Nisan), 51–70.
  • Wang, Y. M. and Elhag, T. M. S. (2006). "Fuzzy TOPSIS method based on alpha level sets with an application to bridge risk assessment". Expert Systems with Applications, 31(2), 309–319. https://doi.org/10.1016/j.eswa.2005.09.040
  • Zadeh, L. A. (1965). "Fuzzy sets". Information and Control, 8, 338–353.
  • Zakeri, S., Chatterjee, P., Konstantas, D. and Ecer, F. (2023). "A decision analysis model for material selection using simple ranking process". In Scientific Reports 13 (1). Nature Publishing Group UK. https://doi.org/10.1038/ s41598-023-35405-z
  • Zimmermann, H. J. (2001). "Fuzzy set theory and its applications". In Fuzzy Set Theory-and Its Applications (4th Edition). Springer Science+Business Media, LLC. https://doi.org/10.1007/978-94-010-0646-0
  • Zoghi, M., Rostami, G., Khoshand, A and Motalleb, F. (2022). "Material selection in design for deconstruction using Kano model, fuzzy-AHP and TOPSIS methodology". Waste Management and Research, 40(4), 410–419. https://doi.org/10.1177/0734242X211013904
There are 36 citations in total.

Details

Primary Language English
Subjects Optimization Techniques in Mechanical Engineering, Material Design and Behaviors, Mechanical Engineering (Other)
Journal Section Research Article
Authors

Ahmet Bilal Şengül 0000-0002-1939-0550

Early Pub Date March 29, 2024
Publication Date April 29, 2024
Submission Date August 19, 2023
Acceptance Date January 22, 2024
Published in Issue Year 2024 Volume: 65 Issue: 714

Cite

APA Şengül, A. B. (2024). PLOUGHSHARES MATERIAL SELECTION: SHANNON’S ENTROPY BASED FUZZY TOPSIS APPLICATION. Mühendis Ve Makina, 65(714), 177-197. https://doi.org/10.46399/muhendismakina.1346068

Derginin DergiPark'a aktarımı devam ettiğinden arşiv sayılarına https://www.mmo.org.tr/muhendismakina adresinden erişebilirsiniz.

ISSN : 1300-3402

E-ISSN : 2667-7520