Research Article
BibTex RIS Cite

AN ASSESSMENT ON ASH-RELATED ISSUES IN COMMERCIAL BIOMASS COMBUSTION SYSTEMS

Year 2024, Issue: 716, 462 - 486, 03.10.2024

Abstract

One of the prominent technologies in biomass energy applications is commercial biomass combustion systems. While burning forest-derived biomass is a well-established and proven technology, the combustion of agricultural residues poses more challenges compared to forest-derived fuels. These challenges vary depending on factors such as the design of the combustion system, operational conditions, and the type, physical, and chemical properties of the biomass to be burned. Sintering, agglomeration, slagging, and corrosion are among the major issues that affect the regular and continuous operation of the combustion system, leading to unplanned shutdowns. This study investigates the applicability of common coal ash indices, widely used in the literature to predict these problems, to biomass ash for pre-analysis. Five different biomass feedstocks (reed canary grass, corn stalk, pine, poplar, and tree root) stored in open silos were sampled at two different time periods. Analyses of ash mineral content, chlorine content, sulfur content, and ash fusion temperatures were conducted, and various indices were calculated. Thus, changes in the problems related to biomass fuels depending on storage conditions will also be examined. As a result of the analyses and calculations, no significant relationship or prediction could be demonstrated among the existing indices due to the considerable differences between biomass ash and coal ash, as well as the heterogeneous nature of biomass feedstocks. The contradictory results highlight the necessity for further research and experimental tests under real conditions to establish or verify these indices. It is concluded that a more comprehensive evaluation, taking into account the heterogeneous structure and physicochemical characterization of solid biomass fuels, will be required based on actual combustion experiences.

References

  • Aho, M., Silvennoinen, J. (2004). Preventing chlorine deposition on heat transfer surfaces with aluminum-silicon rich biomass residue and additive. Fuel, 83(9), 1299-1305. doi: https://doi.org/10.1016/j.fuel.2004.01.011.
  • Badem, A. & Olgun, H. (2023). Saha Koşullarında Depolanan Biyokütle Yakıtlarında Oluşan Kuru Madde Kayıplarının İncelenmesi. Mühendis ve Makina, 64 (712) , 549-575. doi: https://doi.org/10.46399/muhendismakina.1241446
  • Baxter, L. L., Miles, T. R., Jenkins, B. M., Milne, T., Dayton, D., Bryers, R. W., et al. (1998). The behavior of inorganic material in biomass-fired power boilers: field and laboratory experiences. Fuel Processing Technology, 54(1), 47-78. doi: https://doi.org/10.1016/S0378-3820(97)00060-X.
  • Behcet, R., & Yakın, A. (2020). Malatya İli Trafik Kaynaklı Hava Kirleticilerinin Emisyon Envanteri. Journal of the Institute of Science and Technology, 10(4), 2783-2790. doi: https://doi.org/10.21597/jist.704308
  • Bryers, R. W. (1996). Fireside slagging, fouling, and high-temperature corrosion of heat-transfer surface due to impurities in steam-raising fuels. Progress in Energy and Combustion Science, 22(1), 29-120. doi: https://doi.org/10.1016/0360-1285(95)00012-7.
  • Cuiping, L., Chuangzhi, W., & Haitao, H. (2004). Chemical elemental characteristics of biomass fuels in China. Biomass and Bioenergy, 27(2), 119-130. doi: https://doi.org/10.1016/j.biombioe.2004.01.002.
  • Demirbas, A. (2005). Potential applications of renewable energy sources, biomass combustion problems in boiler power systems and combustion related environmental issues. Progress in Energy and Combustion Science, 31(2), 171-192. doi: https://doi.org/10.1016/j.pecs.2005.02.002.
  • Dunnu, G., Maier, J., & Scheffknecht, G. (2010). Ash fusibility and compositional data of solid recovered fuels. 17th International Symposium on Alcohol Fuels, 89, 1534-1540. doi: https://doi.org/10.1016/j.fuel.2009.09.008.
  • Enerji ve Tabii Kaynaklar Bakanlığı. (2023). Erişim tarihi: [16.10.2023]. Erişim Adresi: [https://enerji.gov.tr].
  • Fernandez Llorente, M.J., & Carrasco García, J.E. (2005). Comparing methods for predicting the sintering of biomass ash in combustion. Fuel, 84(12), 1893-1900. doi: https://doi.org/10.1016/j.fuel.2005.04.010.
  • Garcia-Maraver, A., Mata-Schancez, J., Carpio, M., & Perez-Jimenez, J. A. (2017). Critical review of predictive coefficients for biomass ash deposition tendency. Journal of the Energy Institute. doi: https://doi.org/10.1016/j.joei.2016.02.002.
  • García, R., Pizarro, C., Alvarez, A., & Lavín, A.G. (2015). Study of biomass combustion wastes. Fuel, 148 (15), 152-159. doi: https://doi.org/10.1016/j.fuel.2015.01.079.
  • Gilbe, C., Ohman, M., Lindström, E., Boström, D., Backman, R., & Samuelsson, R. (2008). Slagging characteristics during residential combustion of biomass pellets. Energy & Fuels, 22(4), 3536-3543. doi: https://doi.org/10.1021/ef800087x.
  • Gray, R.J., & Moore, G.F. (1974). Burning the sub-bituminous coals of Montana and Wyoming in large utility boilers. ASME Paper, 74eWA/FUe1
  • Gupta, S.K., Gupta, R.P., Bryant, G.W., & Wall, T.F. (1998). The effect of potassium on the fusibility of coal ashes with high silica and alumina levels. Fuel, 77(11), 1195-1201. doi: https://doi.org/10.1016/S0016-2361(98)00016-7.
  • Jenkins, B. M., Baxter, L. L., Miles, T. R. Jr., & Miles, T. R. (1998). Combustion properties of biomass. Fuel Processing Technology, 54(1), 17-46. doi https://doi.org/:10.1016/S0378-3820(97)00059-3 .
  • Jenkins, B.M., Bakker, R.R., & Wei, J.B. (1996). On the properties of washed straw. Biomass and Bioenergy, 10(3-4), 177-200. doi: https://doi.org/10.1016/0961-9534(95)00058-5.
  • Knudsen, J. N., Jensen, P. A., Dam-Johansen, K. (2004). Transformation and release to the gas phase of Cl, K, and S during combustion of annual biomass. Energy & Fuels, 18(5), 1385-1399. doi: https://doi.org/10.1021/ef049944q.
  • Li, Q.H., Zhang, Y.G., Meng, A.H., Li, L., & Li, G.X. (2013). Study on ash fusion temperature using original and simulated biomass ashes. Fuel Processing Technology, 107, 107-112. doi: https://doi.org/10.1016/j.fuproc.2012.08.012.
  • Llorente, M., Laplaza, J., Cuadrado, R., & Garcia, J. (2006). Ash behaviour of lignocellulosic biomass in bubbling fluidised bed combustion. Fuel, 85(9), 1157-1165. doi: https://doi.org/10.1016/j.fuel.2005.11.019.
  • Miles, T.R., Baxter, L.L., Bryers, R.W., Jenkins, B.M., & Oden, L.L. (1996). Boiler deposits from firing biomass fuels. Biomass and Bioenergy, 10(3-4), 125-138. doi: https://doi.org/10.1016/0961-9534(95)00067-4.
  • Mohan, D., Pittman, C.U., & Steele, P.H. (2006). Pyrolysis of Wood/Biomass for bio-oil: a critical review. Energy & Fuels, 20(20), 848-889. doi: https://doi.org/10.1021/ef0502397.
  • Moilanen, A. (2006). Thermogravimetric Characterisations of Biomass and Waste for Gasification Processes. VTT Technical Research Centre of Finland. Publications No 607.
  • Munir, S. (2010). Potential slagging and fouling problems associated with biomass-coal blends in coal-fired boilers. Journal of the Pakistan Institute of Chemical Engineers, 38(1), 1-11.
  • Niu, Y., Zhu, Y., Tan, H., Wang, X., Hui, S., & Du, W. (2014). Experimental study on the coexistent dual slagging in biomass-fired furnaces: alkali- and silicate melt-induced slagging. Proceedings of the Combustion Institute. doi: https://doi.org/10.1016/j.proci.2014.06.120.
  • Nordin, A. (1994). Chemical elemental characteristics of biomass fuels. Biomass and Bioenergy, 6(6), 339-347. doi: https://doi.org/10.1016/0961-9534(94)E0031-M.
  • Obernberger, I., Biedermann, F., Widmann, W., & Riedl, R. (1997). Concentrations of inorganic elements in biomass fuels and recovery in the different ash fractions. Biomass and Bioenergy, 12(3), 211-224. doi: https://doi.org/10.1016/S0961-9534(96)00051-7.
  • Ohman, M., Boman, C., Hedman, H., Nordin, A., & Boström, D. (2004). Slagging tendencies of wood pellet ash during combustion in residential pellet burners. Biomass and Bioenergy, 27(6), 585-596. doi: https://doi.org/10.1016/j.biombioe.2003.08.016 .
  • Pronobis, M. (2005). Evaluation of the influence of biomass co-combustion on boiler furnace slagging by means of fusibility correlations. Biomass and Bioenergy, 28(4), 375-383. doi: https://doi.org/10.1016/j.biombioe.2004.11.003.
  • Skrifvars, B.-J., Ohman, M., Nordin, A., & Hupa, M. (1999). Predicting bed agglomeration tendencies for biomass fuels fired in FBC boilers: a comparison of three different prediction methods. Energy & Fuels, 13(2), 359-363. doi: https://doi.org/10.1021/ef980045þ.
  • Strömberg, B. ve Herstad Svard, S. (2012). Branslehandboken. Varmeforsk, Stockholm.
  • Szemmelveisz, K., Szucs, I., Palotas, A. B., Winkler, L., & Eddings, E. G. (2009). Examination of the combustion conditions of herbaceous biomass. Fuel Processing Technology, 90(7-8), 839-847. doi: https://doi.org/10.1016/j.fuproc.2009.03.001.
  • Teixeira, P., Lopes, H., Gulyurtlu, I., Lapa, N., & Abelha, P. (2012). Evaluation of slagging and fouling tendency during biomass co-firing with coal in a fluidized bed. Biomass and Bioenergy, 39(39), 192-203. doi: https://doi.org/10.1016/j.biombioe.2012.01.010.
  • Tortosa Masia, A. A. A., Buhre, B. J. P. J. P., Gupta, R. P. P., & Wall, T. F. F. (2007). Characterising ash of biomass and waste, Impacts on Fuel Quality and Power Production. Fuel Processing Technology, 88(11-12), 1071-1081. doi: https://doi.org/10.1016/j.fuproc.2007.06.011. Vamvuka, D., & Zografos, D. (2004). Predicting the behavior of ash from agricultural wastes during combustion. In East Meets West Heavy Oil Technology Symposium (Vol. 83, pp. 2051-2057). doi: https://doi.org/10.1016/j.fuel.2004.04.012.
  • Vassilev, S. V., Baxter, D., & Vassileva, C. G. (2014). An overview of the behaviour of biomass during combustion: part II. Ash fusion and ash formation mechanisms of biomass types. Fuel, 117, 152-183. Doi: http://dx.doi.org/10.1016/j.fuel.2013.09.024
  • Werther, J., Saenger, M., Hartge, E.-U., Ogada, T., & Siagi, Z. (2000). Combustion of agricultural residues. Progress in Energy and Combustion Science, 26(1), 1-27. doi: https://doi.org/10.1016/S0360-1285(99)00005-2.
  • Wigley, F., Williamson, J., Malmgren, A., & Riley, G. (2007). Ash deposition at higher levels of coal replacement by biomass. Fuel Processing Technology, 88(7), 1148-1154. doi: https://doi.org/10.1016/j.fuproc.2007.06.015.
  • Wilen, C., Moilanen, A., & Kurkula, E. (1996). Biomass feedstock analyses. VTT Publications, 282, Espoo.
  • Yakın, A., & Behçet, R. (2019). Van İli Trafik Kaynaklı Hava Kirleticilerinin Emisyon Envanteri. Journal of the Institute of Science and Technology, 9(3), 1567-1573. Doi: https://doi.org/10.21597/jist.548606
  • Yu, L.Y., Wang, L.W., & Li, P.S. (2014). Study on prediction models of biomass ash softening temperature based on ash composition. Journal of the Energy Institute, 87(4), 215-219. doi: https://doi.org/10.1016/j.joei.2014.03.011.
  • Zevenhoven-Onderwater, M., Blomquist, J.-P., Skrifvars, B.-J., Backman, R., & Hupa, M. (2000). The prediction of behaviour of ashes from five different solid fuels in fluidised bed combustion. Fuel, 79, 1353-1361. Doi: http://dx.doi.org/10.1016/S0016-2361(99)00280-X.

TİCARİ BİYOKÜTLE YAKMA SİSTEMLERİNDE KÜL KAYNAKLI PROBLEMLER ÜZERİNE BİR DEĞERLENDİRME

Year 2024, Issue: 716, 462 - 486, 03.10.2024

Abstract

Biyokütle enerji uygulamalarında kullanılan ticari teknolojilerin başında biyokütle yakma sistemleri gelmektedir. Orman kökenli biyokütlelerin ticari yakma sistemlerinde yakılması bilinen ve kanıtlamış bir teknoloji olmakla birlikte tarımsal atıklarının yakılması orman kökenli yakıtlara göre çok daha sorunlu olabilmektedir. Bu sorunlar; yakma sistemlerinin tasarımından, işletme koşullarına ve burada yakılacak biyokütlelerin türüne, fiziksel ve kimyasal özelliklerine bağlı olarak değişiklikler gösterebilmektedir. Bu sorunların başında, sistemin düzenli ve sürekli çalışmasını etkileyerek plansız duruşlara neden olan sinterleşme, aglomerasyon, cüruflaşma, korozyon gelmektedir. Bu çalışmada, bu sorunları önceden analiz etmek üzere literatürde yaygın olarak kullanılan kömür küllerinin indislerinin biyokütle külü üzerindeki uygulanabilirliği incelenmiştir. Açık alanda depolanan 5 farklı biyokütle hammaddesi (saz kamışı, mısır sapı, çam kapağı, kavak kapağı, ağaç kökü) silolarından iki farklı zaman diliminde alınan numunelerde kül mineral içeriği, klor içeriği, kükürt içeriği ve kül ergime sıcaklığı analizleri yapılarak indis hesaplamaları gerçekleştirilmiştir. Böylece biyokütle yakıtlarından kaynaklı sorunların depolama koşullarına bağlı değişimleri de incelenmiş olacaktır. Yapılan analizler ve hesaplamalar sonucunda biyokütle külünün kömürden önemli ölçüde farklı olması ve biyokütle hammaddelerinin heterojen yapısı nedeniyle kömüre özgü literatürde verilen indisler arasında herhangi bir ilişki veya öngörü net olarak ortaya konulamamıştır. Elde edilen çelişkili sonuçlar, bu indislerin oluşturulması veya doğrulanması için gerçek koşullar altında daha fazla araştırma ve deneysel testlerin gerekliliğini göstermektedir. Biyokütle yakıtlarının heterojen yapısı ve fizikokimyasal karakterizasyonu dikkate alınarak gerçek yanma deneyimlerine dayalı daha çok deneysel sonuçların birlikte değerlendirilmesine ihtiyaç duyulacağı görüşüne varılmıştır.

References

  • Aho, M., Silvennoinen, J. (2004). Preventing chlorine deposition on heat transfer surfaces with aluminum-silicon rich biomass residue and additive. Fuel, 83(9), 1299-1305. doi: https://doi.org/10.1016/j.fuel.2004.01.011.
  • Badem, A. & Olgun, H. (2023). Saha Koşullarında Depolanan Biyokütle Yakıtlarında Oluşan Kuru Madde Kayıplarının İncelenmesi. Mühendis ve Makina, 64 (712) , 549-575. doi: https://doi.org/10.46399/muhendismakina.1241446
  • Baxter, L. L., Miles, T. R., Jenkins, B. M., Milne, T., Dayton, D., Bryers, R. W., et al. (1998). The behavior of inorganic material in biomass-fired power boilers: field and laboratory experiences. Fuel Processing Technology, 54(1), 47-78. doi: https://doi.org/10.1016/S0378-3820(97)00060-X.
  • Behcet, R., & Yakın, A. (2020). Malatya İli Trafik Kaynaklı Hava Kirleticilerinin Emisyon Envanteri. Journal of the Institute of Science and Technology, 10(4), 2783-2790. doi: https://doi.org/10.21597/jist.704308
  • Bryers, R. W. (1996). Fireside slagging, fouling, and high-temperature corrosion of heat-transfer surface due to impurities in steam-raising fuels. Progress in Energy and Combustion Science, 22(1), 29-120. doi: https://doi.org/10.1016/0360-1285(95)00012-7.
  • Cuiping, L., Chuangzhi, W., & Haitao, H. (2004). Chemical elemental characteristics of biomass fuels in China. Biomass and Bioenergy, 27(2), 119-130. doi: https://doi.org/10.1016/j.biombioe.2004.01.002.
  • Demirbas, A. (2005). Potential applications of renewable energy sources, biomass combustion problems in boiler power systems and combustion related environmental issues. Progress in Energy and Combustion Science, 31(2), 171-192. doi: https://doi.org/10.1016/j.pecs.2005.02.002.
  • Dunnu, G., Maier, J., & Scheffknecht, G. (2010). Ash fusibility and compositional data of solid recovered fuels. 17th International Symposium on Alcohol Fuels, 89, 1534-1540. doi: https://doi.org/10.1016/j.fuel.2009.09.008.
  • Enerji ve Tabii Kaynaklar Bakanlığı. (2023). Erişim tarihi: [16.10.2023]. Erişim Adresi: [https://enerji.gov.tr].
  • Fernandez Llorente, M.J., & Carrasco García, J.E. (2005). Comparing methods for predicting the sintering of biomass ash in combustion. Fuel, 84(12), 1893-1900. doi: https://doi.org/10.1016/j.fuel.2005.04.010.
  • Garcia-Maraver, A., Mata-Schancez, J., Carpio, M., & Perez-Jimenez, J. A. (2017). Critical review of predictive coefficients for biomass ash deposition tendency. Journal of the Energy Institute. doi: https://doi.org/10.1016/j.joei.2016.02.002.
  • García, R., Pizarro, C., Alvarez, A., & Lavín, A.G. (2015). Study of biomass combustion wastes. Fuel, 148 (15), 152-159. doi: https://doi.org/10.1016/j.fuel.2015.01.079.
  • Gilbe, C., Ohman, M., Lindström, E., Boström, D., Backman, R., & Samuelsson, R. (2008). Slagging characteristics during residential combustion of biomass pellets. Energy & Fuels, 22(4), 3536-3543. doi: https://doi.org/10.1021/ef800087x.
  • Gray, R.J., & Moore, G.F. (1974). Burning the sub-bituminous coals of Montana and Wyoming in large utility boilers. ASME Paper, 74eWA/FUe1
  • Gupta, S.K., Gupta, R.P., Bryant, G.W., & Wall, T.F. (1998). The effect of potassium on the fusibility of coal ashes with high silica and alumina levels. Fuel, 77(11), 1195-1201. doi: https://doi.org/10.1016/S0016-2361(98)00016-7.
  • Jenkins, B. M., Baxter, L. L., Miles, T. R. Jr., & Miles, T. R. (1998). Combustion properties of biomass. Fuel Processing Technology, 54(1), 17-46. doi https://doi.org/:10.1016/S0378-3820(97)00059-3 .
  • Jenkins, B.M., Bakker, R.R., & Wei, J.B. (1996). On the properties of washed straw. Biomass and Bioenergy, 10(3-4), 177-200. doi: https://doi.org/10.1016/0961-9534(95)00058-5.
  • Knudsen, J. N., Jensen, P. A., Dam-Johansen, K. (2004). Transformation and release to the gas phase of Cl, K, and S during combustion of annual biomass. Energy & Fuels, 18(5), 1385-1399. doi: https://doi.org/10.1021/ef049944q.
  • Li, Q.H., Zhang, Y.G., Meng, A.H., Li, L., & Li, G.X. (2013). Study on ash fusion temperature using original and simulated biomass ashes. Fuel Processing Technology, 107, 107-112. doi: https://doi.org/10.1016/j.fuproc.2012.08.012.
  • Llorente, M., Laplaza, J., Cuadrado, R., & Garcia, J. (2006). Ash behaviour of lignocellulosic biomass in bubbling fluidised bed combustion. Fuel, 85(9), 1157-1165. doi: https://doi.org/10.1016/j.fuel.2005.11.019.
  • Miles, T.R., Baxter, L.L., Bryers, R.W., Jenkins, B.M., & Oden, L.L. (1996). Boiler deposits from firing biomass fuels. Biomass and Bioenergy, 10(3-4), 125-138. doi: https://doi.org/10.1016/0961-9534(95)00067-4.
  • Mohan, D., Pittman, C.U., & Steele, P.H. (2006). Pyrolysis of Wood/Biomass for bio-oil: a critical review. Energy & Fuels, 20(20), 848-889. doi: https://doi.org/10.1021/ef0502397.
  • Moilanen, A. (2006). Thermogravimetric Characterisations of Biomass and Waste for Gasification Processes. VTT Technical Research Centre of Finland. Publications No 607.
  • Munir, S. (2010). Potential slagging and fouling problems associated with biomass-coal blends in coal-fired boilers. Journal of the Pakistan Institute of Chemical Engineers, 38(1), 1-11.
  • Niu, Y., Zhu, Y., Tan, H., Wang, X., Hui, S., & Du, W. (2014). Experimental study on the coexistent dual slagging in biomass-fired furnaces: alkali- and silicate melt-induced slagging. Proceedings of the Combustion Institute. doi: https://doi.org/10.1016/j.proci.2014.06.120.
  • Nordin, A. (1994). Chemical elemental characteristics of biomass fuels. Biomass and Bioenergy, 6(6), 339-347. doi: https://doi.org/10.1016/0961-9534(94)E0031-M.
  • Obernberger, I., Biedermann, F., Widmann, W., & Riedl, R. (1997). Concentrations of inorganic elements in biomass fuels and recovery in the different ash fractions. Biomass and Bioenergy, 12(3), 211-224. doi: https://doi.org/10.1016/S0961-9534(96)00051-7.
  • Ohman, M., Boman, C., Hedman, H., Nordin, A., & Boström, D. (2004). Slagging tendencies of wood pellet ash during combustion in residential pellet burners. Biomass and Bioenergy, 27(6), 585-596. doi: https://doi.org/10.1016/j.biombioe.2003.08.016 .
  • Pronobis, M. (2005). Evaluation of the influence of biomass co-combustion on boiler furnace slagging by means of fusibility correlations. Biomass and Bioenergy, 28(4), 375-383. doi: https://doi.org/10.1016/j.biombioe.2004.11.003.
  • Skrifvars, B.-J., Ohman, M., Nordin, A., & Hupa, M. (1999). Predicting bed agglomeration tendencies for biomass fuels fired in FBC boilers: a comparison of three different prediction methods. Energy & Fuels, 13(2), 359-363. doi: https://doi.org/10.1021/ef980045þ.
  • Strömberg, B. ve Herstad Svard, S. (2012). Branslehandboken. Varmeforsk, Stockholm.
  • Szemmelveisz, K., Szucs, I., Palotas, A. B., Winkler, L., & Eddings, E. G. (2009). Examination of the combustion conditions of herbaceous biomass. Fuel Processing Technology, 90(7-8), 839-847. doi: https://doi.org/10.1016/j.fuproc.2009.03.001.
  • Teixeira, P., Lopes, H., Gulyurtlu, I., Lapa, N., & Abelha, P. (2012). Evaluation of slagging and fouling tendency during biomass co-firing with coal in a fluidized bed. Biomass and Bioenergy, 39(39), 192-203. doi: https://doi.org/10.1016/j.biombioe.2012.01.010.
  • Tortosa Masia, A. A. A., Buhre, B. J. P. J. P., Gupta, R. P. P., & Wall, T. F. F. (2007). Characterising ash of biomass and waste, Impacts on Fuel Quality and Power Production. Fuel Processing Technology, 88(11-12), 1071-1081. doi: https://doi.org/10.1016/j.fuproc.2007.06.011. Vamvuka, D., & Zografos, D. (2004). Predicting the behavior of ash from agricultural wastes during combustion. In East Meets West Heavy Oil Technology Symposium (Vol. 83, pp. 2051-2057). doi: https://doi.org/10.1016/j.fuel.2004.04.012.
  • Vassilev, S. V., Baxter, D., & Vassileva, C. G. (2014). An overview of the behaviour of biomass during combustion: part II. Ash fusion and ash formation mechanisms of biomass types. Fuel, 117, 152-183. Doi: http://dx.doi.org/10.1016/j.fuel.2013.09.024
  • Werther, J., Saenger, M., Hartge, E.-U., Ogada, T., & Siagi, Z. (2000). Combustion of agricultural residues. Progress in Energy and Combustion Science, 26(1), 1-27. doi: https://doi.org/10.1016/S0360-1285(99)00005-2.
  • Wigley, F., Williamson, J., Malmgren, A., & Riley, G. (2007). Ash deposition at higher levels of coal replacement by biomass. Fuel Processing Technology, 88(7), 1148-1154. doi: https://doi.org/10.1016/j.fuproc.2007.06.015.
  • Wilen, C., Moilanen, A., & Kurkula, E. (1996). Biomass feedstock analyses. VTT Publications, 282, Espoo.
  • Yakın, A., & Behçet, R. (2019). Van İli Trafik Kaynaklı Hava Kirleticilerinin Emisyon Envanteri. Journal of the Institute of Science and Technology, 9(3), 1567-1573. Doi: https://doi.org/10.21597/jist.548606
  • Yu, L.Y., Wang, L.W., & Li, P.S. (2014). Study on prediction models of biomass ash softening temperature based on ash composition. Journal of the Energy Institute, 87(4), 215-219. doi: https://doi.org/10.1016/j.joei.2014.03.011.
  • Zevenhoven-Onderwater, M., Blomquist, J.-P., Skrifvars, B.-J., Backman, R., & Hupa, M. (2000). The prediction of behaviour of ashes from five different solid fuels in fluidised bed combustion. Fuel, 79, 1353-1361. Doi: http://dx.doi.org/10.1016/S0016-2361(99)00280-X.
There are 41 citations in total.

Details

Primary Language Turkish
Subjects Energy Systems Engineering (Other)
Journal Section Research Article
Authors

Anıl Badem 0000-0002-9492-9819

Hayati Olgun 0000-0002-1777-2010

Early Pub Date September 25, 2024
Publication Date October 3, 2024
Submission Date November 22, 2023
Acceptance Date May 2, 2024
Published in Issue Year 2024 Issue: 716

Cite

APA Badem, A., & Olgun, H. (2024). TİCARİ BİYOKÜTLE YAKMA SİSTEMLERİNDE KÜL KAYNAKLI PROBLEMLER ÜZERİNE BİR DEĞERLENDİRME. Mühendis Ve Makina(716), 462-486.

Derginin DergiPark'a aktarımı devam ettiğinden arşiv sayılarına https://www.mmo.org.tr/muhendismakina adresinden erişebilirsiniz.

ISSN : 1300-3402

E-ISSN : 2667-7520