Review
BibTex RIS Cite

DETERMINATION OF THE EFFECTS OF TITANIUM AND GRAPHENE ADDITIONS TO ALUMINA AS A MATRIX MATERIAL

Year 2024, Issue: 716, 487 - 520, 03.10.2024

Abstract

In this review, composite studies using titanium and graphene additions to alumina as matrix materials are summarized. In the light of studies conducted in recent years, the importance of graphene reinforcement and the effects of titanium reinforcement on the properties of ceramic matrix composites have been stated. Alumina matrix composites, which are the most widely used ceramic matrix composites, have been used in the industry from past to present due to their properties such as low density, high hardness and chemical stability. However, the low fracture toughness of alumina (3.5 MPa.m1/2) limits its usage area, therefore, the existing mechanical properties are improved with second phase additions, and higher hardness and fracture toughness are obtained with the reinforcements. Although it has been stated in the reviewed studies that titanium reinforcement into alumina matrix generally results in lower hardness, fracture toughness and bending strength compared to monolithic alumina and that titanium reinforcement is an important step in improving the properties of alumina with low fracture toughness, some studies have shown that titanium addition has increased fracture toughness (4,32 MPa.m1/2) and has been reported to increase bending strength. Studies have shown that a second reinforcement material is added to the Al2O3-Ti composite in order to improve the mechanical properties obtained by reinforcing titanium into alumina matrix. It has been observed that literature studies on the addition of graphene to the Al2O3-Ti structure are limited. In a limited study, results were obtained that graphene reinforcement reduced porosity and increased conductivity, wear resistance, hardness and fracture toughness (8.7 MPa.m1/2) compared to monolithic alumina and other reinforcements. These data show that the use of graphene supplements will continue to increase. In this review, the addition of titanium and graphene powders to the alumina matrix, production methods by powder metallurgy method, and the effects of the reinforcements on microstructure and mechanical properties were examined.

References

  • Ayaş, E. (2003). Al2O3-TiC/TiCN Kompozit Malzemelerin Üretim Yöntemleri. Anadolu Üniversitesi.
  • Bahraminasab, M., Ghaffari, S. ve Eslami-Shahed, H. (2017). Al2O3-Ti functionally graded material prepared by spark plasma sintering for orthopaedic applications. Journal of the Mechanical Behavior of Biomedical Materials, 72 (February), 82–89. doi: https://doi.org/10.1016/j.jmbbm.2017.04.024
  • Bedeloğlu, A. ve Taş, M. (2016). Graphene And Its Production Methods. Afyon Kocatepe University Journal of Sciences and Engineering, 16 (3), 544–554. doi: https://doi.org/10.5578/fmbd.32173
  • Çerezci, T. (2008). Nikel Partikül Takviyeli Alumina Seramik Kompozitlerin Sentezi ve Karakterizasyonu. Sakarya Üniversitesi.
  • Cheng, M., Liu, H., Zhao, B., Huang, C., Yao, P. ve Wang, B. (2017). Mechanical properties of two types of Al2O3/TiC ceramic cutting tool material at room and elevated temperatures. Ceramics International, 43 (16), 13869–13874. doi: https://doi.org/10.1016/j.ceramint.2017.07.110
  • Çivi, C. (2016). Toz Metal Parçaların Orta ve Düşük Frekanslı İndüksiyon ile Sinterlenmesinde Sinterleme Parametrelerinin Mekanik Özelliklere Etkisinin İncelenmesi. Celal Bayar Üniversitesi.
  • Cui, E., Zhao, J. ve Wang, X. (2019). Determination of microstructure and mechanical properties of graphene reinforced Al2O3-Ti(C, N) ceramic composites. Ceramics International, 45(16), 20593–20599. doi: https://doi.org/10.1016/j.ceramint.2019.07.041
  • Cui, E., Zhao, J., Wang, X., Sun, J., Huang, X. ve Wang, C. (2018). Microstructure and toughening mechanisms of Al2O3/(W, Ti)C/graphene composite ceramic tool material. Ceramics International, 44(12), 13538–13543. doi: https://doi.org/10.1016/j.ceramint.2018.04.185
  • Cui, E., Zhao, J., Wang, X. ve Sun, Z. (2022). Improved fracture resistance and toughening mechanisms of GNPs reinforced ceramic composites. Ceramics International, 48(17), 24687–24694. doi: https://doi.org/10.1016/j.ceramint.2022.05.115
  • Dörtoğul, C. (2018). Grafen Oksitin Sentezlenmesi ve Karakterizasyonu. Selçuk Üniversitesi.
  • Ghazanlou, S. I., Ghazanlou, S. I., Ghazanlou, S. I., Hosseinpour, S., Liao, Y. ve Javidani, M. (2023). Improving the properties of an Al matrix composite fabricated by laser powder bed fusion using graphene–TiO2 nanohybrid. Journal of Alloys and Compounds, 938, 168596. doi: https://doi.org/10.1016/j.jallcom.2022.168596
  • Gürbüz, M. ve Mutuk, T. (2019). Karbon Esaslı Malzeme Takviyeli Titanyum Kompozitler ve Grafen Üzerine Yeni Eğilimler. Mühendis ve Makina, 60(695), 101–118.
  • Gürbüz, M., Şenel, M. C. ve Koç, E. (2018). The effect of sintering time, temperature, and graphene addition on the hardness and microstructure of aluminum composites. Journal of Composite Materials, 52(4), 553–563. doi: https://doi.org/10.1177/0021998317740200
  • Gutierrez-Gonzalez, C. F., Smirnov, A., Centeno, A., Fernández, A., Alonso, B., Rocha, V. G., … Bartolome, J. F. (2015). Wear behavior of graphene/alumina composite. Ceramics International, 41(6), 7434–7438. doi: https://doi.org/10.1016/j.ceramint.2015.02.061
  • Hrubovčáková, M., Múdra, E., Bureš, R., Kovalčíková, A., Sedlák, R., Girman, V. ve Hvizdoš, P. (2020). Microstructure, fracture behaviour and mechanical properties of conductive alumina based composites manufactured by SPS from graphenated Al2O3 powders. Journal of the European Ceramic Society, 40(14), 4818–4824. doi: https://doi.org/10.1016/j.jeurceramsoc.2020.03.072
  • Koruyucu, S. ve Soy, G. (2019). Alüminyum Matrisli Kompozitlerde Tungsten Karbür ve Grafen Takviyelerinin Mekanik Özelliklere Etkileri Üzerine Bir Araştırma. Düzce Üniversitesi Bilim ve Teknoloji Dergisi, 7(3), 1466–1487. doi: https://doi.org/10.29130/dubited.536359
  • Kurt, A. O. (2004). Toz Üretim Yöntemleri ve Sinterleme. Sakarya.
  • Liu, M., Wang, Z., Li, Q., Shi, G., Wu, C. ve Li, Y. (2015). Effects of Y2O3 on the mechanical properties of Ti/Al2O3 composites of hot pressing sintering. Materials Science and Engineering: A, 624(1), 181–185. doi: https://doi.org/10.1016/j.msea.2014.11.058
  • Lu, Y., Zhu, M., Zhang, Q., Hu, T., Wang, J. ve Zheng, K. (2020). Microstructure evolution and bonding strength of the Al2O3/Al2O3 interface brazed via Ni-Ti intermetallic phases. Journal of the European Ceramic Society, 40(4), 1496–1504. doi: https://doi.org/10.1016/j.jeurceramsoc.2019.11.066
  • Manes, A. ve Giglio, M. (2018). Microstructural numerical modeling of Al2O3/Ti composite. Procedia Structural Integrity, 8(2018), 24–32. doi: https://doi.org/10.1016/j.prostr.2017.12.004
  • Meir, S., Kalabukhov, S., Frage, N. ve Hayun, S. (2015). Mechanical properties of Al2O3\Ti composites fabricated by spark plasma sintering. Ceramics International, 41(3), 4637–4643. doi: https://doi.org/10.1016/j.ceramint.2014.12.008
  • Meir, S., Kalabukhov, S. ve Hayun, S. (2014). Low temperature spark plasma sintering of Al2O3-TiC composites. Ceramics International, 40, 12187–12192. doi: https://doi.org/10.1016/j.ceramint.2014.04.059
  • Özdemir, A. (2006). Seramik Malzemelerin Kırılma Tokluğu Değerlerinin Üç Boyutlu Sonlu Elemanlar Yöntemi İle Teorik Olarak Belirlenmesi. Dokuz Eylül Üniversitesi.
  • Öztürk, M. (2007). SiC İlaveli Alümina Seramik Kompozitler. Sakarya Üniversitesi.
  • Petrus, M., Wozniak, J., Cygan, T., Kostecki, M., Cygan, S., Jaworska, L., … Olszyna, A. (2019). Comprehensive study on graphene-based reinforcements in Al2O3–ZrO2 and Al2O3–Ti(C,N) systems and their effect on mechanical and tribological properties. Ceramics International, 45(17), 21742–21750. doi: https://doi.org/10.1016/j.ceramint.2019.07.175
  • Rende, H. ve Hanyaloğlu, C. (2012). Rulmanlarda ve Kaymalı Yataklarda Serami̇kleri̇n Kullanımı. TMMOB MMO Mühendis ve Makina Dergisi, 53(633), 28–35. Erişim Adresi: http://www1.mmo.org.tr/resimler/dosya_ekler/f998a325e36f5e7_ek.pdf
  • Sabuan, N. A., Asmelash, M., Azhari, A., Mulubrhan, F. ve Alemu, T. (2021). Investigation on the electrical conductivity of Al2O3-Ti ceramic composites using a pressureless sintering process. Materials Today: Proceedings, 46, 1718–1723. doi: https://doi.org/10.1016/j.matpr.2020.07.520
  • Santra, S., Bose, A., Mitra, K. ve Adalder, A. (2024). Exploring two decades of graphene: The jack of all trades. Applied Materials Today, 36(January). doi: https://doi.org/10.1016/j.apmt.2024.102066
  • Şenel, M. C., Gürbüz, M. ve Koç, E. (2015). Grafen Takvi̇yeli̇ Alümi̇nyum Matri̇sli̇ Yeni̇ Nesi̇l Kompozi̇tler. Mühendis ve Makina, 56(669), 36–47.
  • Şenel, M. C., Gürbüz, M. ve Koç, E. (2017). Grafen Takviyeli Alüminyum Esaslı Kompozitlerin Üretimi ve Karakterizasyonu. Pamukkale University Journal of Engineering Sciences, 23(8), 974–978. doi: https://doi.org/10.5505/pajes.2017.65902
  • Şenel, M. C., Gürbüz, M. ve Koç, E. (2018). Toz Metalürjisi Metoduyla Üretilen Al-Si3N4 Metal Matrisli Kompozitlerin Mekanik Özelliklerinin İncelenmesi. Mühendis ve Makina, 59(693), 33–46.
  • Shi, G., Wang, Z., Liu, L. ve Wang, C. (2015). Influence of Y2O3 addition on the Ti/Al2O3 cermets by hot pressing sintering. Journal of Alloys and Compounds, 628(6), 413–415. doi: https://doi.org/10.1016/j.jallcom.2014.12.014
  • Shi, S., Cho, S., Goto, T., Kusunose, T. ve Sekino, T. (2018). Combinative effects of Y2O3 and Ti on Al2O3ceramics for optimizing mechanical and electrical properties. Ceramics International, 44(15), 18382–18388. doi: https://doi.org/10.1016/j.ceramint.2018.07.054
  • Shi, S., Cho, S., Goto, T. ve Sekino, T. (2020a). CNT-induced TiC toughened Al2O3/Ti composites: Mechanical, electrical, and room-temperature crack-healing behaviors. Journal of the American Ceramic Society, 103(8), 4573–4585. doi: https://doi.org/10.1111/jace.17152
  • Shi, S., Cho, S., Goto, T. ve Sekino, T. (2020b). Role of CeAl11O18 in reinforcing Al2O3/Ti composites by adding CeO2. International Journal of Applied Ceramic Technology, 18(1), 170–181. doi: https://doi.org/10.1111/ijac.13629
  • Shi, S., Sekino, T., Cho, S. ve Goto, T. (2020). Ti and TiC co-toughened Al2O3composites by in-situ synthesis from reaction of Ti and MWCNT. Materials Science and Engineering A, 777(January), 139066. doi: https://doi.org/10.1016/j.msea.2020.139066
  • Stolyarov, V. V., Frolova, V. ve Sudzhanskaya, I. V. (2020). Dielectric properties of nanocomposite ceramics Al2O3/graphene processed by spark plasma sintering. Ceramics International, 46(5), 6920–6925. doi: https://doi.org/10.1016/j.ceramint.2019.11.188
  • Verma, V. ve Kumar, M. B. V. (2017). Synthesis, Microstructure and Mechanical Properties of Al2O3/ZrO2/CeO2 Composites with Addition of Nickel and Titania Processed by Conventional Sintering. Materials Today: Proceedings, 4(2), 3062–3071. doi: https://doi.org/10.1016/j.matpr.2017.02.189
  • Wan, J., Yang, J., Zhou, X., Chen, B., Shen, J., Kondoh, K. ve Li, J. (2023). Superior tensile properties of graphene/Al composites assisted by in-situ alumina nanoparticles. Carbon, 204(January), 447–455. doi: https://doi.org/10.1016/j.carbon.2022.12.088
  • Wang, X., Zhao, J., Cui, E., Song, S., Liu, H. ve Song, W. (2019). Microstructure, mechanical properties and toughening mechanisms of graphene reinforced Al2O3 -WC-TiC composite ceramic tool material. Ceramics International, 45(8), 10321–10329. doi: https://doi.org/10.1016/j.ceramint.2019.02.087
  • Wang, X., Zhao, J., Gan, Y., Tang, X., Gai, S. ve Sun, X. (2022). Cutting performance and wear mechanisms of the graphene-reinforced Al2O3-WC-TiC composite ceramic tool in turning hardened 40Cr steel. Ceramics International, 48(10), 13695–13705. doi: https://doi.org/10.1016/j.ceramint.2022.01.251 Wu, C., Li, Y. ve Wang, Z. (2016). Evolution and mechanism of crack propagation method of interface in laminated Ti/Al2O3 composite. Journal of Alloys and Compounds, 665, 37–41. doi: https://doi.org/10.1016/j.jallcom.2016.01.041
  • Wu, C., Wang, Z., Li, Q., Shi, G., Liu, M. ve Li, Y. (2014). Mechanical properties and microstructure evolution of Ti/Al 2O3 cermet composite with CeO2 addition. Journal of Alloys and Compounds, 617, 729–733. doi: https://doi.org/10.1016/j.jallcom.2014.08.007
  • Xiu, Z., Laeng, J., Sun, X., Li, Q., Hur, S. K. ve Liu, Y. (2008). Phase formation of Al2O3/Ti(C,N)-NiTi composite. Journal of Alloys and Compounds, 458(1–2), 398–404. doi: https://doi.org/10.1016/j.jallcom.2007.03.116
  • Xu, H., Wang, Z., Wu, J., Li, Q., Liu, M. ve Li, Y. (2016). Mechanical properties and microstructure of Ti/Al2O3 composites with Pr6O11 addition by hot pressing sintering. Materials and Design, 101, 1–6. doi: https://doi.org/10.1016/j.matdes.2016.03.127
  • Xu, H., Zhang, L., Wang, Z., Wu, J. ve Yang, F. (2017). Effects of Ta2O5 on mechanical properties and elements diffusion of Ti/Al2O3 composites prepared via hot pressing sintering. Ceramics International, 43(10), 7935–7941. doi: https://doi.org/10.1016/j.ceramint.2017.03.003
  • Yavaş, B. (2014). Monolitik ve Takviyeli Bor Karbür Seramiklerin Spark Plazma Sinterleme (SPS) Yöntemi ile Üretimi ve Karakterizasyonu. İstanbul Teknik Üniversitesi. Erişim Adresi: https://eje.bioscientifica.com/view/journals/eje/171/6/727.xml
  • Yazdani, B., Xia, Y., Ahmad, I. ve Zhu, Y. (2015). Graphene and carbon nanotube (GNT)-reinforced alumina nanocomposites. Journal of the European Ceramic Society, 35(1), 179–186. doi: https://doi.org/10.1016/j.jeurceramsoc.2014.08.043
  • Yin, Z., Huang, C., Zou, B., Liu, H., Zhu, H. ve Wang, J. (2013). Preparation and characterization of Al2O3/TiC micro-nano-composite ceramic tool materials. Ceramics International, 39(4), 4253–4262. doi: https://doi.org/10.1016/j.ceramint.2012.10.277
  • Yin, Z., Yuan, J., Huang, C., Wang, Z., Huang, L. ve Cheng, Y. (2016). Friction and wear behaviors of Al2O3/TiC micro-nano-composite ceramic sliding against metals and hard materials. Ceramics International, 42(1), 1982–1989. doi: https://doi.org/10.1016/j.ceramint.2015.10.001
  • Yin, Z., Yuan, J., Wang, Z., Hu, H., Cheng, Y. ve Hu, X. (2016). Preparation and properties of an Al2O3/Ti(C,N) micro-nano-composite ceramic tool material by microwave sintering. Ceramics International, 42(3), 4099–4106. doi: https://doi.org/10.1016/j.ceramint.2015.11.082
  • Yontar, O. (2021). Grafe-Silisyum Nitrür Partikül Takviyeli Kalsiyum Fosfat Matrisli Hibrit Kompozitlerin Üretimi ve Mekanik Davranışlarının İncelenmesi. Ondokuz Mayıs Üniversiyesi.
  • You, X. Q., Si, T. Z., Liu, N., Ren, P. P., Xu, Y. D. ve Feng, J. P. (2005). Effect of grain size on thermal shock resistance of Al2O3-TiC ceramics. Ceramics International, 31(1), 33–38. doi: https://doi.org/10.1016/j.ceramint.2004.02.009
  • Zygmuntowicz, J., Tomaszewska, J., Wieczorek, M., Żurowski, R., Piotrkiewicz, P., Wachowski, M. ve Wieciński, P. (2022). Properties of Al2O3/Ti/Ni composites fabricated via centrifugal slip casting under environmentally assessed conditions as a step toward climate-neutral society. Ceramics International, 48(15), 21920–21933. doi: https://doi.org/10.1016/j.ceramint.2022.04.174

MATRİS MALZEMESİ OLARAK ALÜMİNAYA TİTANYUM VE GRAFEN İLAVELERİNİN ETKİLERİNİN BELİRLENMESİ

Year 2024, Issue: 716, 487 - 520, 03.10.2024

Abstract

Bu derlemede, matris malzemesi olarak alüminaya titanyum ve grafen ilavelileri ile yapılan kompozit çalışmaları özetlenmiştir. Son yıllarda yapılan çalışmaların ışığında grafen takviyesinin önemi ve aynı zamanda titanyum takviyelerinin de seramik matrisli kompozitlerin özelliklerine etkileri belirtilmiştir. Seramik matrisli kompozitlerden en yaygın kullanım alanı bulan alümina matrisli kompozitler düşük yoğunluk, yüksek sertlik ve kimyasal kararlılık gibi özelliklerinden dolayı geçmişten günümüze dek endüstride kullanılmaktadır. Ancak alüminanın düşük kırılma tokluğu (3,5 MPa.m1/2) kullanım alanını kısıtlamakta bu sebeple ikinci faz ilaveleri ile mevcut olan mekanik özellikler iyileştirilmekte, bununla birlikte yapılan takviyelerle daha yüksek sertlik ve kırılma tokluğu elde edilmektedir. İncelenen çalışmalarda, alümina matrise titanyum takviyesinin genel olarak sertlik, kırılma tokluğu ve eğme dayanımlarında monolitik alüminaya kıyasla düşük sonuçlar elde edildiği ve titanyum takviyesinin kırılma tokluğu düşük olan alüminanın özelliklerinin geliştirilmesi açısından önemli bir aşama olduğu ifade edilse de yapılan bazı çalışmalarda titanyum ilavesinin kırılma tokluğu (4,32 MPa.m1/2) ve eğme dayanımını artırdığı bildirilmiştir. Yapılan çalışmalar titanyumun alümina matrise takviyesi ile elde edilen mekanik özelliklerin geliştirilmesi amacıyla Al2O3-Ti kompozitine ikinci takviye malzemesinin ilave edildiğini göstermiştir. Grafenin, Al2O3-Ti yapısına ilavesi konusunda yapılan literatür çalışmaların kısıtlı olduğu görülmüştür. Sınırlı çalışmada grafen takviyesi ile monolitik alümina ve diğer takviyelere göre porozitenin azaldığı, iletkenlik, aşınma dayanımı, sertlik ve kırılma tokluğu arttırdığı (8,7 MPa.m1/2) yönde sonuçlar elde edilmiştir. Bu veriler de grafen takviyelerinin kullanımının artarak devam edeceğini göstermektedir. Yapılan bu derleme ile alümina matrise titanyum ve grafen tozlarının ilavesi, toz metalurjisi metoduyla üretim yöntemleri, yapılan takviyelerin mikroyapı ve mekanik özelliklere etkileri incelenmiştir.

References

  • Ayaş, E. (2003). Al2O3-TiC/TiCN Kompozit Malzemelerin Üretim Yöntemleri. Anadolu Üniversitesi.
  • Bahraminasab, M., Ghaffari, S. ve Eslami-Shahed, H. (2017). Al2O3-Ti functionally graded material prepared by spark plasma sintering for orthopaedic applications. Journal of the Mechanical Behavior of Biomedical Materials, 72 (February), 82–89. doi: https://doi.org/10.1016/j.jmbbm.2017.04.024
  • Bedeloğlu, A. ve Taş, M. (2016). Graphene And Its Production Methods. Afyon Kocatepe University Journal of Sciences and Engineering, 16 (3), 544–554. doi: https://doi.org/10.5578/fmbd.32173
  • Çerezci, T. (2008). Nikel Partikül Takviyeli Alumina Seramik Kompozitlerin Sentezi ve Karakterizasyonu. Sakarya Üniversitesi.
  • Cheng, M., Liu, H., Zhao, B., Huang, C., Yao, P. ve Wang, B. (2017). Mechanical properties of two types of Al2O3/TiC ceramic cutting tool material at room and elevated temperatures. Ceramics International, 43 (16), 13869–13874. doi: https://doi.org/10.1016/j.ceramint.2017.07.110
  • Çivi, C. (2016). Toz Metal Parçaların Orta ve Düşük Frekanslı İndüksiyon ile Sinterlenmesinde Sinterleme Parametrelerinin Mekanik Özelliklere Etkisinin İncelenmesi. Celal Bayar Üniversitesi.
  • Cui, E., Zhao, J. ve Wang, X. (2019). Determination of microstructure and mechanical properties of graphene reinforced Al2O3-Ti(C, N) ceramic composites. Ceramics International, 45(16), 20593–20599. doi: https://doi.org/10.1016/j.ceramint.2019.07.041
  • Cui, E., Zhao, J., Wang, X., Sun, J., Huang, X. ve Wang, C. (2018). Microstructure and toughening mechanisms of Al2O3/(W, Ti)C/graphene composite ceramic tool material. Ceramics International, 44(12), 13538–13543. doi: https://doi.org/10.1016/j.ceramint.2018.04.185
  • Cui, E., Zhao, J., Wang, X. ve Sun, Z. (2022). Improved fracture resistance and toughening mechanisms of GNPs reinforced ceramic composites. Ceramics International, 48(17), 24687–24694. doi: https://doi.org/10.1016/j.ceramint.2022.05.115
  • Dörtoğul, C. (2018). Grafen Oksitin Sentezlenmesi ve Karakterizasyonu. Selçuk Üniversitesi.
  • Ghazanlou, S. I., Ghazanlou, S. I., Ghazanlou, S. I., Hosseinpour, S., Liao, Y. ve Javidani, M. (2023). Improving the properties of an Al matrix composite fabricated by laser powder bed fusion using graphene–TiO2 nanohybrid. Journal of Alloys and Compounds, 938, 168596. doi: https://doi.org/10.1016/j.jallcom.2022.168596
  • Gürbüz, M. ve Mutuk, T. (2019). Karbon Esaslı Malzeme Takviyeli Titanyum Kompozitler ve Grafen Üzerine Yeni Eğilimler. Mühendis ve Makina, 60(695), 101–118.
  • Gürbüz, M., Şenel, M. C. ve Koç, E. (2018). The effect of sintering time, temperature, and graphene addition on the hardness and microstructure of aluminum composites. Journal of Composite Materials, 52(4), 553–563. doi: https://doi.org/10.1177/0021998317740200
  • Gutierrez-Gonzalez, C. F., Smirnov, A., Centeno, A., Fernández, A., Alonso, B., Rocha, V. G., … Bartolome, J. F. (2015). Wear behavior of graphene/alumina composite. Ceramics International, 41(6), 7434–7438. doi: https://doi.org/10.1016/j.ceramint.2015.02.061
  • Hrubovčáková, M., Múdra, E., Bureš, R., Kovalčíková, A., Sedlák, R., Girman, V. ve Hvizdoš, P. (2020). Microstructure, fracture behaviour and mechanical properties of conductive alumina based composites manufactured by SPS from graphenated Al2O3 powders. Journal of the European Ceramic Society, 40(14), 4818–4824. doi: https://doi.org/10.1016/j.jeurceramsoc.2020.03.072
  • Koruyucu, S. ve Soy, G. (2019). Alüminyum Matrisli Kompozitlerde Tungsten Karbür ve Grafen Takviyelerinin Mekanik Özelliklere Etkileri Üzerine Bir Araştırma. Düzce Üniversitesi Bilim ve Teknoloji Dergisi, 7(3), 1466–1487. doi: https://doi.org/10.29130/dubited.536359
  • Kurt, A. O. (2004). Toz Üretim Yöntemleri ve Sinterleme. Sakarya.
  • Liu, M., Wang, Z., Li, Q., Shi, G., Wu, C. ve Li, Y. (2015). Effects of Y2O3 on the mechanical properties of Ti/Al2O3 composites of hot pressing sintering. Materials Science and Engineering: A, 624(1), 181–185. doi: https://doi.org/10.1016/j.msea.2014.11.058
  • Lu, Y., Zhu, M., Zhang, Q., Hu, T., Wang, J. ve Zheng, K. (2020). Microstructure evolution and bonding strength of the Al2O3/Al2O3 interface brazed via Ni-Ti intermetallic phases. Journal of the European Ceramic Society, 40(4), 1496–1504. doi: https://doi.org/10.1016/j.jeurceramsoc.2019.11.066
  • Manes, A. ve Giglio, M. (2018). Microstructural numerical modeling of Al2O3/Ti composite. Procedia Structural Integrity, 8(2018), 24–32. doi: https://doi.org/10.1016/j.prostr.2017.12.004
  • Meir, S., Kalabukhov, S., Frage, N. ve Hayun, S. (2015). Mechanical properties of Al2O3\Ti composites fabricated by spark plasma sintering. Ceramics International, 41(3), 4637–4643. doi: https://doi.org/10.1016/j.ceramint.2014.12.008
  • Meir, S., Kalabukhov, S. ve Hayun, S. (2014). Low temperature spark plasma sintering of Al2O3-TiC composites. Ceramics International, 40, 12187–12192. doi: https://doi.org/10.1016/j.ceramint.2014.04.059
  • Özdemir, A. (2006). Seramik Malzemelerin Kırılma Tokluğu Değerlerinin Üç Boyutlu Sonlu Elemanlar Yöntemi İle Teorik Olarak Belirlenmesi. Dokuz Eylül Üniversitesi.
  • Öztürk, M. (2007). SiC İlaveli Alümina Seramik Kompozitler. Sakarya Üniversitesi.
  • Petrus, M., Wozniak, J., Cygan, T., Kostecki, M., Cygan, S., Jaworska, L., … Olszyna, A. (2019). Comprehensive study on graphene-based reinforcements in Al2O3–ZrO2 and Al2O3–Ti(C,N) systems and their effect on mechanical and tribological properties. Ceramics International, 45(17), 21742–21750. doi: https://doi.org/10.1016/j.ceramint.2019.07.175
  • Rende, H. ve Hanyaloğlu, C. (2012). Rulmanlarda ve Kaymalı Yataklarda Serami̇kleri̇n Kullanımı. TMMOB MMO Mühendis ve Makina Dergisi, 53(633), 28–35. Erişim Adresi: http://www1.mmo.org.tr/resimler/dosya_ekler/f998a325e36f5e7_ek.pdf
  • Sabuan, N. A., Asmelash, M., Azhari, A., Mulubrhan, F. ve Alemu, T. (2021). Investigation on the electrical conductivity of Al2O3-Ti ceramic composites using a pressureless sintering process. Materials Today: Proceedings, 46, 1718–1723. doi: https://doi.org/10.1016/j.matpr.2020.07.520
  • Santra, S., Bose, A., Mitra, K. ve Adalder, A. (2024). Exploring two decades of graphene: The jack of all trades. Applied Materials Today, 36(January). doi: https://doi.org/10.1016/j.apmt.2024.102066
  • Şenel, M. C., Gürbüz, M. ve Koç, E. (2015). Grafen Takvi̇yeli̇ Alümi̇nyum Matri̇sli̇ Yeni̇ Nesi̇l Kompozi̇tler. Mühendis ve Makina, 56(669), 36–47.
  • Şenel, M. C., Gürbüz, M. ve Koç, E. (2017). Grafen Takviyeli Alüminyum Esaslı Kompozitlerin Üretimi ve Karakterizasyonu. Pamukkale University Journal of Engineering Sciences, 23(8), 974–978. doi: https://doi.org/10.5505/pajes.2017.65902
  • Şenel, M. C., Gürbüz, M. ve Koç, E. (2018). Toz Metalürjisi Metoduyla Üretilen Al-Si3N4 Metal Matrisli Kompozitlerin Mekanik Özelliklerinin İncelenmesi. Mühendis ve Makina, 59(693), 33–46.
  • Shi, G., Wang, Z., Liu, L. ve Wang, C. (2015). Influence of Y2O3 addition on the Ti/Al2O3 cermets by hot pressing sintering. Journal of Alloys and Compounds, 628(6), 413–415. doi: https://doi.org/10.1016/j.jallcom.2014.12.014
  • Shi, S., Cho, S., Goto, T., Kusunose, T. ve Sekino, T. (2018). Combinative effects of Y2O3 and Ti on Al2O3ceramics for optimizing mechanical and electrical properties. Ceramics International, 44(15), 18382–18388. doi: https://doi.org/10.1016/j.ceramint.2018.07.054
  • Shi, S., Cho, S., Goto, T. ve Sekino, T. (2020a). CNT-induced TiC toughened Al2O3/Ti composites: Mechanical, electrical, and room-temperature crack-healing behaviors. Journal of the American Ceramic Society, 103(8), 4573–4585. doi: https://doi.org/10.1111/jace.17152
  • Shi, S., Cho, S., Goto, T. ve Sekino, T. (2020b). Role of CeAl11O18 in reinforcing Al2O3/Ti composites by adding CeO2. International Journal of Applied Ceramic Technology, 18(1), 170–181. doi: https://doi.org/10.1111/ijac.13629
  • Shi, S., Sekino, T., Cho, S. ve Goto, T. (2020). Ti and TiC co-toughened Al2O3composites by in-situ synthesis from reaction of Ti and MWCNT. Materials Science and Engineering A, 777(January), 139066. doi: https://doi.org/10.1016/j.msea.2020.139066
  • Stolyarov, V. V., Frolova, V. ve Sudzhanskaya, I. V. (2020). Dielectric properties of nanocomposite ceramics Al2O3/graphene processed by spark plasma sintering. Ceramics International, 46(5), 6920–6925. doi: https://doi.org/10.1016/j.ceramint.2019.11.188
  • Verma, V. ve Kumar, M. B. V. (2017). Synthesis, Microstructure and Mechanical Properties of Al2O3/ZrO2/CeO2 Composites with Addition of Nickel and Titania Processed by Conventional Sintering. Materials Today: Proceedings, 4(2), 3062–3071. doi: https://doi.org/10.1016/j.matpr.2017.02.189
  • Wan, J., Yang, J., Zhou, X., Chen, B., Shen, J., Kondoh, K. ve Li, J. (2023). Superior tensile properties of graphene/Al composites assisted by in-situ alumina nanoparticles. Carbon, 204(January), 447–455. doi: https://doi.org/10.1016/j.carbon.2022.12.088
  • Wang, X., Zhao, J., Cui, E., Song, S., Liu, H. ve Song, W. (2019). Microstructure, mechanical properties and toughening mechanisms of graphene reinforced Al2O3 -WC-TiC composite ceramic tool material. Ceramics International, 45(8), 10321–10329. doi: https://doi.org/10.1016/j.ceramint.2019.02.087
  • Wang, X., Zhao, J., Gan, Y., Tang, X., Gai, S. ve Sun, X. (2022). Cutting performance and wear mechanisms of the graphene-reinforced Al2O3-WC-TiC composite ceramic tool in turning hardened 40Cr steel. Ceramics International, 48(10), 13695–13705. doi: https://doi.org/10.1016/j.ceramint.2022.01.251 Wu, C., Li, Y. ve Wang, Z. (2016). Evolution and mechanism of crack propagation method of interface in laminated Ti/Al2O3 composite. Journal of Alloys and Compounds, 665, 37–41. doi: https://doi.org/10.1016/j.jallcom.2016.01.041
  • Wu, C., Wang, Z., Li, Q., Shi, G., Liu, M. ve Li, Y. (2014). Mechanical properties and microstructure evolution of Ti/Al 2O3 cermet composite with CeO2 addition. Journal of Alloys and Compounds, 617, 729–733. doi: https://doi.org/10.1016/j.jallcom.2014.08.007
  • Xiu, Z., Laeng, J., Sun, X., Li, Q., Hur, S. K. ve Liu, Y. (2008). Phase formation of Al2O3/Ti(C,N)-NiTi composite. Journal of Alloys and Compounds, 458(1–2), 398–404. doi: https://doi.org/10.1016/j.jallcom.2007.03.116
  • Xu, H., Wang, Z., Wu, J., Li, Q., Liu, M. ve Li, Y. (2016). Mechanical properties and microstructure of Ti/Al2O3 composites with Pr6O11 addition by hot pressing sintering. Materials and Design, 101, 1–6. doi: https://doi.org/10.1016/j.matdes.2016.03.127
  • Xu, H., Zhang, L., Wang, Z., Wu, J. ve Yang, F. (2017). Effects of Ta2O5 on mechanical properties and elements diffusion of Ti/Al2O3 composites prepared via hot pressing sintering. Ceramics International, 43(10), 7935–7941. doi: https://doi.org/10.1016/j.ceramint.2017.03.003
  • Yavaş, B. (2014). Monolitik ve Takviyeli Bor Karbür Seramiklerin Spark Plazma Sinterleme (SPS) Yöntemi ile Üretimi ve Karakterizasyonu. İstanbul Teknik Üniversitesi. Erişim Adresi: https://eje.bioscientifica.com/view/journals/eje/171/6/727.xml
  • Yazdani, B., Xia, Y., Ahmad, I. ve Zhu, Y. (2015). Graphene and carbon nanotube (GNT)-reinforced alumina nanocomposites. Journal of the European Ceramic Society, 35(1), 179–186. doi: https://doi.org/10.1016/j.jeurceramsoc.2014.08.043
  • Yin, Z., Huang, C., Zou, B., Liu, H., Zhu, H. ve Wang, J. (2013). Preparation and characterization of Al2O3/TiC micro-nano-composite ceramic tool materials. Ceramics International, 39(4), 4253–4262. doi: https://doi.org/10.1016/j.ceramint.2012.10.277
  • Yin, Z., Yuan, J., Huang, C., Wang, Z., Huang, L. ve Cheng, Y. (2016). Friction and wear behaviors of Al2O3/TiC micro-nano-composite ceramic sliding against metals and hard materials. Ceramics International, 42(1), 1982–1989. doi: https://doi.org/10.1016/j.ceramint.2015.10.001
  • Yin, Z., Yuan, J., Wang, Z., Hu, H., Cheng, Y. ve Hu, X. (2016). Preparation and properties of an Al2O3/Ti(C,N) micro-nano-composite ceramic tool material by microwave sintering. Ceramics International, 42(3), 4099–4106. doi: https://doi.org/10.1016/j.ceramint.2015.11.082
  • Yontar, O. (2021). Grafe-Silisyum Nitrür Partikül Takviyeli Kalsiyum Fosfat Matrisli Hibrit Kompozitlerin Üretimi ve Mekanik Davranışlarının İncelenmesi. Ondokuz Mayıs Üniversiyesi.
  • You, X. Q., Si, T. Z., Liu, N., Ren, P. P., Xu, Y. D. ve Feng, J. P. (2005). Effect of grain size on thermal shock resistance of Al2O3-TiC ceramics. Ceramics International, 31(1), 33–38. doi: https://doi.org/10.1016/j.ceramint.2004.02.009
  • Zygmuntowicz, J., Tomaszewska, J., Wieczorek, M., Żurowski, R., Piotrkiewicz, P., Wachowski, M. ve Wieciński, P. (2022). Properties of Al2O3/Ti/Ni composites fabricated via centrifugal slip casting under environmentally assessed conditions as a step toward climate-neutral society. Ceramics International, 48(15), 21920–21933. doi: https://doi.org/10.1016/j.ceramint.2022.04.174
There are 53 citations in total.

Details

Primary Language Turkish
Subjects Mechanical Engineering (Other)
Journal Section Collection
Authors

Samet Yavuz 0000-0002-6912-279X

Mevlüt Gürbüz 0000-0003-2365-5918

Early Pub Date October 1, 2024
Publication Date October 3, 2024
Submission Date January 16, 2024
Acceptance Date May 2, 2024
Published in Issue Year 2024 Issue: 716

Cite

APA Yavuz, S., & Gürbüz, M. (2024). MATRİS MALZEMESİ OLARAK ALÜMİNAYA TİTANYUM VE GRAFEN İLAVELERİNİN ETKİLERİNİN BELİRLENMESİ. Mühendis Ve Makina(716), 487-520.

Derginin DergiPark'a aktarımı devam ettiğinden arşiv sayılarına https://www.mmo.org.tr/muhendismakina adresinden erişebilirsiniz.

ISSN : 1300-3402

E-ISSN : 2667-7520