Research Article
BibTex RIS Cite

The Agreement of Iridocorneal Angle Parameters between Pentacam and Two Different Optical Coherence Tomography Devices in a Healthy Population

Year 2022, Volume: 9 Issue: 2, 153 - 157, 24.08.2022
https://doi.org/10.47572/muskutd.888556

Abstract

To evaluate the compatibility and consistency of iridocorneal angle (ICA) measurements detected with Pentacam (Oculus, Inc., Germany), RTVue (Optovue Inc., Freemont, USA) and Spectralis (Heidelberg GmbH, Germany) devices. Twenty-two eyes of 22 healthy participants were evaluated retrospectively. In Pentacam, measurements were taken automatically in each eye at 3 and 9 o'clock (nasal and temporal), and trabecular-iris angle values were recorded. In RTVue and Spectralis anterior segment optical coherence tomographies, the parameters of anterior chamber recess angle (ACA), scleral spur angle (SSA) and angle opening distance from 500 µm distance (AOD500) were recorded. All measurements were taken under similar lighting conditions. Cases under the age of 18 years, history of previous ocular surgery orophthalmic laser, refractive errors that may alter ICA measurements, fixation abilities, insufficient anterior segment image quality or cases with intraocular pressure above 21 mmHg during examinations were excluded from the study. All devices were found to be consistent with each other in terms of ACA-SSA in both nasal and temporal quadrants (for temporal-nasal quadrants respectively ICC; 0.871, 0.837; 0.872, 0.839). According to the Bland-Altman analysis, when Pentacam is taken as the reference device, as the ACA value widens, both RTVue and Spectralis measurements show higher agreement. While ACA degrees were statistically similar in both the nasal and temporal quadrants for Pentacam and RTVue, it was found narrower in Spectralis (for nasal quadrant p=0.003, for temporal quadrant p=0.007). Although there was a good consistency between the AOD500 values between RTVue and Spectralis, (for temporal quadrant ICC: 0.825, for nasal quadrant ICC: 0.882) it was determined that Spectralis showed higher results than RTVue (p˂0.001). Although Pentacam, RTVue and Spectralis measurements are found to be consistent with each other for the evaluation of ICA, considering the differences between the devices of both ACA-SSA and AAU500 values, it may be considered that the relevant devices may not be used inter changeably in patient follow-ups.

Project Number

Yok.

References

  • 1. Dorairaj S, Liebmann JM, Ritch R. Quantitative evaluation of anterior segment parameters in the era of imaging. Trans Am Ophthalmol Soc. 2007;105:99-108.
  • 2. Dupps WJ Jr. Anterior segment imaging: new milestones, new challenges. J Cataract Refract Surg. 2006;32(11):1779-83.
  • 3. Labiris G, Gkika M, Katsanos A, ve ark. Anterior chamber volume measurements with Visante optical coherence tomography and Pentacam: repeatability and level of agreement. Clin Exp Ophthalmol. 2009;37(8):772-4.
  • 4. Winegarner A, Miki A, Kumoi M, ve ark. Anterior segment Scheimpflug imaging for detecting primary angle closure disease. Graefes Arch Clin Exp Ophthalmol. 2019;257(1):161-7.
  • 5. Wylegala E, Teper S, Nowinska AK, ve ark. Anterior segment imaging: Fourier-domain optical coherence tomography versus time-domain optical coherence tomography. J Cataract Refract Surg. 2009;35(8):1410-4.
  • 6. Cumba RJ, Radhakrishnan S, Bell NP, ve ark. Reproducibility of scleral spur identification and angle measurements using fourier domain anterior segment optical coherence tomography. J Ophthalmol. 2012;2012:487309.
  • 7. Marion KM, Maram J, Pan X, ve ark. Reproducibility and Agreement Between 2 Spectral Domain Optical Coherence Tomography Devices for Anterior Chamber Angle Measurements. J Glaucoma. 2015;24(9):642-6.
  • 8. Li S, Wang H, Mu D, ve ark. Prospective evaluation of changes in anterior segment morphology after laser iridotomy in Chinese eyes by rotating Scheimpflug camera imaging. Clin Exp Ophthalmol. 2010;38(1):10-1.
  • 9. Omura T, Tanito M, Doi R, ve ark. Anterior chamber parameters measured using the Pentacam Scheimpflug imaging device before and after cataract surgery in eyes with primary angle closure. Acta Ophthalmol. 2012;90(8):e654-5.
  • 10. Portney LG, Watkins MP. Foundations of clinical research: applications to practice, 3rd edn. Pearson/Prentice Hall Upper Saddle River, 2009.
  • 11. Tello C, Liebmann J, Potash SD, ve ark. Measurement of ultrasound biomicroscopy images: intraobserver and interobserver reliability. Invest Ophthalmol Vis Sci. 1994;35(9):3549-52.
  • 12. Kurita N, Mayama C, Tomidokoro A, ve ark. Potential of the pentacam in screening for primary angle closure and primary angle closure suspect. J Glaucoma. 2009;18(7):506-12.
  • 13. Cheung CY, Zheng C, Ho CL, ve ark. Novel anterior-chamber angle measurements by high-definition optical coherence tomography using the Schwalbe line as the landmark. Br J Ophthalmol. 2011;95(7):955-9.
  • 14. Fernández-Vigo J, De-Pablo-Gómez-de-Liaño L, Almorín-Fernández-Vigo I, ve ark. Agreement between Pentacam and optical coherence tomography in the assessment of iridocorneal angle width in a large healthy population. J Fr Ophtalmol. 2018;41(1):14-20.
  • 15. Dinc UA, Oncel B, Gorgun E, ve ark. Assessment of anterior chamber angle using Visante OCT, slit-lamp OCT, and Pentacam. Eur J Ophthalmol. 2010;20(3):531-7.
  • 16. Rossi GC, Scudeller L, Delfino A, ve ark. Pentacam sensitivity and specificity in detecting occludable angles. Eur J Ophthalmol. 2012;22(5):701-8.
  • 17. Antoniazzi E, Pezzotta S, Delfino A, ve ark. Anterior chamber measurements taken with Pentacam: an objective tool in laser iridotomy. Eur J Ophthalmol. 2010;20(3):517-22.
  • 18. Alonso RS, Ambrosio Junior R, Paranhos Junior A, ve ark. Glaucoma anterior chamber morphometry based on optical Scheimpflug images. Arq Bras Oftalmol. 2010;73(6):497-500.
  • 19. Radhakrishnan S, Goldsmith J, Huang D, ve ark. Comparison of optical coherence tomography and ultrasound biomicroscopy for detection of narrow anterior chamber angles. Arch Ophthalmol. 2005;123(8):1053-9.
  • 20. Meduri E, Gillmann K, Bravetti GE, ve ark. Iridocorneal Angle Assessment After Laser Iridotomy With Swept-source Optical Coherence Tomography. J Glaucoma. 2020;29(11):1030-5.
  • 21. Romkens HC, Beckers HJ, Frusch M, ve ark. Reproducibility of anterior chamber angle analyses with the swept-source optical coherence tomography in young, healthy Caucasians. Invest Ophthalmol Vis Sci.2014;55(6):3999-4004.

Sağlıklı Popülasyonda İridokorneal Açı Parametrelerinin Pentacam ve İki Farklı Optik Koherens Tomografi Cihazları Arasındaki Uyumluluğu

Year 2022, Volume: 9 Issue: 2, 153 - 157, 24.08.2022
https://doi.org/10.47572/muskutd.888556

Abstract

Pentacam (Oculus, Inc., Almanya), RTVue (OptovueInc., Freemont, ABD) ve Spectralis (Heidelberg GmbH, Almanya) cihazları ile saptanan iridokorneal açı (İKA) ölçümlerinin tutarlılık ve uyumluluğunun değerlendirilmesi amaçlanmıştır. 22 sağlıklı katılımcının 22 gözü retrospektif olarak değerlendirilmiştir. Pentacam cihazında ölçümler her gözde saat 3 ve 9 kadranlarda (nazal ve temporal) otomatik olarak alınmış olup, trabeküler-iris açı değerleri kaydedilmiştir. RTVue ve Spectralis ön segment optik koherens tomografilerinde (ÖS-OKT) ise, ön kamara girintisi açısı (ÖKGA), skleral mahmuz açısı (SMA) ve 500 µm uzaklıktan açı açılış uzaklığı (AAU500) parametreleri kaydedilmiştir. Tüm ölçümler benzer aydınlatma koşulları altında gerçekleştirilmiştir. 18 yaş altı olgular, geçirilmiş oküler cerrahi veya lazer öyküsü, İKA ölçümleri üzerinde farklılık yaratabilecek refraktif kusurlar, fiksasyon bozukluğu ya da yetersiz ön segment görüntü kalitesi, muayene esnasında GİB’si 21 mmHg üzerinde olan olgular çalışma dışında bırakılmıştır. Tüm cihazlar hem nazal hem temporal kadranlarda ÖKGA-SMA yönünden birbirleriyle uyumlu bulunmuştur (sırasıyla temporal-nazal ICC; 0.871, 0.837; 0.872, 0.839). Bland-Altman analizine göre Pentacam referans cihaz olarak alındığında, ÖKGA değeri yükseldikçe hem RTVue hem de Spectralis ölçümleri daha yüksek uyumluluk göstermektedir. ÖKGA, Pentacam ve RTVue için hem nazal hem temporal kadranlarda istatistiksel benzer sonuçlar verirken, Spectralis’te daha dar sonuçlar vermiştir (nazal kadran p=0.003, temporal kadran p=0.007). RTVue ve Spectralis arasında AAU500 değerleri arasında iyi tutarlılık görülse de (temporal kadran ICC: 0.825, nazal kadran ICC: 0.882), Spectralis’in RTVue’ya göre daha yüksek sonuçlar gösterdiği belirlenmiştir (p˂0.001). IKA değerlendirilmesi için Pentacam, RTVue ve Spectralis ölçümlerinin birbirleriyle uyumlu olduğu saptansa da gerek ÖKGA-SMA, gerekse AAU500 değerlerinin cihazlar arası farklılığı göz önüne alındığında, hasta takibinde ilgili cihazların birbirleri yerine kullanılmasının uygun olmayabileceği düşünülebilir. 

Supporting Institution

Yok.

Project Number

Yok.

Thanks

Yok.

References

  • 1. Dorairaj S, Liebmann JM, Ritch R. Quantitative evaluation of anterior segment parameters in the era of imaging. Trans Am Ophthalmol Soc. 2007;105:99-108.
  • 2. Dupps WJ Jr. Anterior segment imaging: new milestones, new challenges. J Cataract Refract Surg. 2006;32(11):1779-83.
  • 3. Labiris G, Gkika M, Katsanos A, ve ark. Anterior chamber volume measurements with Visante optical coherence tomography and Pentacam: repeatability and level of agreement. Clin Exp Ophthalmol. 2009;37(8):772-4.
  • 4. Winegarner A, Miki A, Kumoi M, ve ark. Anterior segment Scheimpflug imaging for detecting primary angle closure disease. Graefes Arch Clin Exp Ophthalmol. 2019;257(1):161-7.
  • 5. Wylegala E, Teper S, Nowinska AK, ve ark. Anterior segment imaging: Fourier-domain optical coherence tomography versus time-domain optical coherence tomography. J Cataract Refract Surg. 2009;35(8):1410-4.
  • 6. Cumba RJ, Radhakrishnan S, Bell NP, ve ark. Reproducibility of scleral spur identification and angle measurements using fourier domain anterior segment optical coherence tomography. J Ophthalmol. 2012;2012:487309.
  • 7. Marion KM, Maram J, Pan X, ve ark. Reproducibility and Agreement Between 2 Spectral Domain Optical Coherence Tomography Devices for Anterior Chamber Angle Measurements. J Glaucoma. 2015;24(9):642-6.
  • 8. Li S, Wang H, Mu D, ve ark. Prospective evaluation of changes in anterior segment morphology after laser iridotomy in Chinese eyes by rotating Scheimpflug camera imaging. Clin Exp Ophthalmol. 2010;38(1):10-1.
  • 9. Omura T, Tanito M, Doi R, ve ark. Anterior chamber parameters measured using the Pentacam Scheimpflug imaging device before and after cataract surgery in eyes with primary angle closure. Acta Ophthalmol. 2012;90(8):e654-5.
  • 10. Portney LG, Watkins MP. Foundations of clinical research: applications to practice, 3rd edn. Pearson/Prentice Hall Upper Saddle River, 2009.
  • 11. Tello C, Liebmann J, Potash SD, ve ark. Measurement of ultrasound biomicroscopy images: intraobserver and interobserver reliability. Invest Ophthalmol Vis Sci. 1994;35(9):3549-52.
  • 12. Kurita N, Mayama C, Tomidokoro A, ve ark. Potential of the pentacam in screening for primary angle closure and primary angle closure suspect. J Glaucoma. 2009;18(7):506-12.
  • 13. Cheung CY, Zheng C, Ho CL, ve ark. Novel anterior-chamber angle measurements by high-definition optical coherence tomography using the Schwalbe line as the landmark. Br J Ophthalmol. 2011;95(7):955-9.
  • 14. Fernández-Vigo J, De-Pablo-Gómez-de-Liaño L, Almorín-Fernández-Vigo I, ve ark. Agreement between Pentacam and optical coherence tomography in the assessment of iridocorneal angle width in a large healthy population. J Fr Ophtalmol. 2018;41(1):14-20.
  • 15. Dinc UA, Oncel B, Gorgun E, ve ark. Assessment of anterior chamber angle using Visante OCT, slit-lamp OCT, and Pentacam. Eur J Ophthalmol. 2010;20(3):531-7.
  • 16. Rossi GC, Scudeller L, Delfino A, ve ark. Pentacam sensitivity and specificity in detecting occludable angles. Eur J Ophthalmol. 2012;22(5):701-8.
  • 17. Antoniazzi E, Pezzotta S, Delfino A, ve ark. Anterior chamber measurements taken with Pentacam: an objective tool in laser iridotomy. Eur J Ophthalmol. 2010;20(3):517-22.
  • 18. Alonso RS, Ambrosio Junior R, Paranhos Junior A, ve ark. Glaucoma anterior chamber morphometry based on optical Scheimpflug images. Arq Bras Oftalmol. 2010;73(6):497-500.
  • 19. Radhakrishnan S, Goldsmith J, Huang D, ve ark. Comparison of optical coherence tomography and ultrasound biomicroscopy for detection of narrow anterior chamber angles. Arch Ophthalmol. 2005;123(8):1053-9.
  • 20. Meduri E, Gillmann K, Bravetti GE, ve ark. Iridocorneal Angle Assessment After Laser Iridotomy With Swept-source Optical Coherence Tomography. J Glaucoma. 2020;29(11):1030-5.
  • 21. Romkens HC, Beckers HJ, Frusch M, ve ark. Reproducibility of anterior chamber angle analyses with the swept-source optical coherence tomography in young, healthy Caucasians. Invest Ophthalmol Vis Sci.2014;55(6):3999-4004.
There are 21 citations in total.

Details

Primary Language Turkish
Subjects Surgery
Journal Section Original Article
Authors

Ahmet Kaderli 0000-0002-4725-1515

Aylin Karalezli 0000-0003-1316-4656

Project Number Yok.
Publication Date August 24, 2022
Submission Date March 1, 2021
Published in Issue Year 2022 Volume: 9 Issue: 2

Cite

APA Kaderli, A., & Karalezli, A. (2022). Sağlıklı Popülasyonda İridokorneal Açı Parametrelerinin Pentacam ve İki Farklı Optik Koherens Tomografi Cihazları Arasındaki Uyumluluğu. Muğla Sıtkı Koçman Üniversitesi Tıp Dergisi, 9(2), 153-157. https://doi.org/10.47572/muskutd.888556
AMA Kaderli A, Karalezli A. Sağlıklı Popülasyonda İridokorneal Açı Parametrelerinin Pentacam ve İki Farklı Optik Koherens Tomografi Cihazları Arasındaki Uyumluluğu. MMJ. August 2022;9(2):153-157. doi:10.47572/muskutd.888556
Chicago Kaderli, Ahmet, and Aylin Karalezli. “Sağlıklı Popülasyonda İridokorneal Açı Parametrelerinin Pentacam Ve İki Farklı Optik Koherens Tomografi Cihazları Arasındaki Uyumluluğu”. Muğla Sıtkı Koçman Üniversitesi Tıp Dergisi 9, no. 2 (August 2022): 153-57. https://doi.org/10.47572/muskutd.888556.
EndNote Kaderli A, Karalezli A (August 1, 2022) Sağlıklı Popülasyonda İridokorneal Açı Parametrelerinin Pentacam ve İki Farklı Optik Koherens Tomografi Cihazları Arasındaki Uyumluluğu. Muğla Sıtkı Koçman Üniversitesi Tıp Dergisi 9 2 153–157.
IEEE A. Kaderli and A. Karalezli, “Sağlıklı Popülasyonda İridokorneal Açı Parametrelerinin Pentacam ve İki Farklı Optik Koherens Tomografi Cihazları Arasındaki Uyumluluğu”, MMJ, vol. 9, no. 2, pp. 153–157, 2022, doi: 10.47572/muskutd.888556.
ISNAD Kaderli, Ahmet - Karalezli, Aylin. “Sağlıklı Popülasyonda İridokorneal Açı Parametrelerinin Pentacam Ve İki Farklı Optik Koherens Tomografi Cihazları Arasındaki Uyumluluğu”. Muğla Sıtkı Koçman Üniversitesi Tıp Dergisi 9/2 (August 2022), 153-157. https://doi.org/10.47572/muskutd.888556.
JAMA Kaderli A, Karalezli A. Sağlıklı Popülasyonda İridokorneal Açı Parametrelerinin Pentacam ve İki Farklı Optik Koherens Tomografi Cihazları Arasındaki Uyumluluğu. MMJ. 2022;9:153–157.
MLA Kaderli, Ahmet and Aylin Karalezli. “Sağlıklı Popülasyonda İridokorneal Açı Parametrelerinin Pentacam Ve İki Farklı Optik Koherens Tomografi Cihazları Arasındaki Uyumluluğu”. Muğla Sıtkı Koçman Üniversitesi Tıp Dergisi, vol. 9, no. 2, 2022, pp. 153-7, doi:10.47572/muskutd.888556.
Vancouver Kaderli A, Karalezli A. Sağlıklı Popülasyonda İridokorneal Açı Parametrelerinin Pentacam ve İki Farklı Optik Koherens Tomografi Cihazları Arasındaki Uyumluluğu. MMJ. 2022;9(2):153-7.