Research Article
BibTex RIS Cite

Assessment of Nucleic Acid Extraction Kits for SARS-CoV-2 Surveillance in Wastewater Samples

Year 2025, Volume: 15 Issue: 1, 241 - 251
https://doi.org/10.31020/mutftd.1571019

Abstract

Objective: The aim of this study is to evaluate the effectiveness of three commercial nucleic acid extraction kits (kit A, B and C) in isolating SARS-CoV-2 viral RNA from wastewater samples.
Method: In this study, water samples were collected in March 2021 from three wastewater treatment plants located in different parts of Istanbul, and it was confirmed that they were negative for SARS-CoV-2. Different concentrations of the SARS-CoV-2 virus, previously inactivated at the BSL-3 laboratory of the Pendik Veterinary Control Institute, were added to the wastewater samples. RNA extraction and quantification were performed using commercial nucleic acid extraction kits and and RT-qPCR kit specific to SARS-CoV-2.
Results: At the end of the study, it was determined that kit C yielded the highest total RNA and produced more consistent results, significantly outperforming the other two kits in terms of RNA yield and purity. Statistical analysis revealed significant differences in RNA concentrations (p < 0.05) and gene copy numbers (p < 0.01) between the kits, and kit C demonstrated superior linearity and reproducibility.
Conclusion: According to the findings, although all three evaluated kits are suitable for detecting SARS-CoV-2 RNA in wastewater samples, kit C provides the most efficient and reliable performance, especially for high-throughput studies. Additionally, this study highlights the importance of selecting appropriate nucleic acid extraction methods for wastewater surveillance, which serves as an early warning system for outbreaks that threaten public health.

References

  • 1. Gandhi M, Yokoe DS, Havlir DV. Asymptomatic Transmission, the Achilles' Heel of Current Strategies to Control Covid-19. N Engl J Med 2020;382(22):2158-2160. doi:10.1056/NEJMe2009758.
  • 2. Jee Y. WHO International Health Regulations Emergency Committee for the COVID-19 outbreak. Epidemiol Health 2020;42:e2020013. doi:10.4178/epih.e2020013.
  • 3. Moghadas SM, et al. The implications of silent transmission for the control of COVID-19 outbreaks. Proc Natl Acad Sci U S A 2020;117(30):17513-17515. doi:10.1073/pnas.2008373117
  • 4. Deng MY, et al. Comparison of six RNA extraction methods for the detection of classical swine fever virus by real-time and conventional reverse transcription-PCR. J Vet Diagn Invest 2005;17(6):574-578. doi:10.1177/104063870501700609
  • 5. Paton DJ, et al. Classical swine fever virus: a ring test to evaluate RT-PCR detection methods. Vet Microbiol 2000;73(2-3):159-174. doi:10.1016/s0378-1135(00)00142-5.
  • 6. Paton DJ, et al. Classical swine fever virus: a second ring test to evaluate RT-PCR detection methods. Vet Microbiol 2000;77(1-2):71-81. doi:10.1016/s0378-1135(00)00264-9.
  • 7. Risatti GR, et al. Rapid detection of classical swine fever virus by a portable real-time reverse transcriptase PCR assay. J Clin Microbiol 2003;41(1):500-505. doi:10.1128/JCM.41.1.500-505.2003.
  • 8. van Rijn PA, et al. Detection of economically important viruses in boar semen by quantitative RealTime PCR technology. J Virol Methods 2004;120(2):151-160. doi:10.1016/j.jviromet.2004.04.014
  • 9. Tan SC, Yiap BC. DNA, RNA, and protein extraction: the past and the present [published correction appears in J Biomed Biotechnol 2013;2013:628968]. J Biomed Biotechnol. 2009;2009:574398. doi:10.1155/2009/574398
  • 10. Tavares L, Alves PM, Ferreira RB, Santos CN. Comparison of different methods for DNA-free RNA isolation from SK-N-MC neuroblastoma. BMC Res Notes 2011;4.
  • 11. Imbeaud S, et al. Towards standardization of RNA quality assessment using user-independent classifiers of microcapillary electrophoresis traces. Nucleic Acids Res 2005;33(6):e56. doi:10.1093/nar/gni054
  • 12. Kurar E, et al. Comparison of Five Different RNA Isolation Methods from Equine Endometrium for Gene Transcription Analysis. Kafkas Univ Vet Fak Derg 2010;16 (5): 851-855. doi:10.9775/kvfd.2010.1829
  • 13. Raeymaekers L. Quantitative PCR: theoretical considerations with practical implications. Anal Biochem 1993;214(2):582-585. doi:10.1006/abio.1993.1542.
  • 14. Bélec L, Brogan TV. Real-time PCR-based testing of saliva for cytomegalovirus at birth. Expert Rev Anti Infect Ther 2011;9(12):1119-1124. doi:10.1586/eri.11.130.
  • 15. Maron JL, Johnson KL. Comparative performance analyses of commercially available products for salivary collection and nucleic acid processing in the newborn. Biotech Histochem 2015;90(8):581-586. doi:10.3109/10520295.2015.1048289.
  • 16. Parisi MR, et al. Cross-sectional study of community serostatus to highlight undiagnosed HIV infections with oral fluid HIV-1/2 rapid test in non-conventional settings. New Microbiol 2013;36(2):121-132.
  • 17. O'Brien M, et al. A comparison of four commercially available RNA extraction kits for wastewater surveillance of SARS-CoV-2 in a college population. Sci Total Environ 2021;801:149595. doi:10.1016/j.scitotenv.2021.149595.
  • 18. Bustin SA, Nolan T. Pitfalls of quantitative real-time reverse-transcription polymerase chain reaction. J Biomol Tech 2004;15(3):155-166.
  • 19. Rossen L, et al. Inhibition of PCR by components of food samples, microbial diagnostic assays and DNA-extraction solutions. Int J Food Microbiol 1992;17(1):37-45. doi:10.1016/0168-1605(92)90017-w
  • 20. Wilson IG. Inhibition and facilitation of nucleic acid amplification. Appl Environ Microbiol 1997;63(10):3741-3751. doi:10.1128/aem.63.10.3741-3751.1997.
  • 21. Esser, K, et al. Nucleic Acid-free Matrix: Regeneration of DNA Binding Columns. BioTechniques 2005;39(2):270–271. doi.org/10.2144/05392AF01
  • 22. Lucansky V, et al. Comparison of the methods for isolation and detection of SARS-CoV-2 RNA in municipal wastewater. Front Public Health 2023;11:1116636. doi:10.3389/fpubh.2023.1116636.
  • 23. Mazumder P, et al. Sewage surveillance for SARS-CoV-2: Molecular detection, quantification, and normalization factors. Curr Opin Environ Sci Health 2022;28:100363. doi:10.1016/j.coesh.2022.100363.
  • 24. Sait A, et al. Investigation of the recovery efficiency of CeUF method through RT-qPCR quantification of inactivated SARS-CoV-2 in untreated wastewater. Desalin Water Treat 2022;262:54-59.
  • 25. Chirgwin JM, et al. Isolation of biologically active ribonucleic acid from sources enriched in ribonuclease. Biochemistry 1979;18(24):5294-5299. doi:10.1021/bi00591a005.
  • 26. Glisin V, Crkvenjakov R, Byus C. Ribonucleic acid isolated by cesium chloride centrifugation. Biochemistry 1974;13(12):2633-2637. doi:10.1021/bi00709a025.
  • 27. Medema G, et al. Presence of SARS-Coronavirus-2 RNA in Sewage and Correlation with Reported COVID-19 Prevalence in the Early Stage of the Epidemic in The Netherlands. Environ Sci Technol Lett 2020;7(7):511-516. doi:10.1021/acs.estlett.0c00357.
  • 28. Heijnen L, et al. Droplet digital RT-PCR to detect SARS-CoV-2 signature mutations of variants of concern in wastewater. Sci Total Environ 2021;799:149456. doi:10.1016/j.scitotenv.2021.149456.
  • 29. de Freitas Bueno R, et al. Wastewater-based epidemiology: A Brazilian SARS-COV-2 surveillance experience. J Environ Chem Eng 2022;10(5):108298. doi:10.1016/j.jece.2022.108298.
  • 30. Hillary LS, et al. Wastewater and public health: the potential of wastewater surveillance for monitoring COVID-19. Curr Opin Environ Sci Health 2020;17:14-20.
  • 31. Kocamemi BA, et al. Nationwide SARS-CoV-2 surveillance study for sewage and sludges of wastewater treatment plants in Turkey. medRxiv 2020:2020-11.
  • 32. Kocamemi BA, et al. Routine SARS-CoV-2 wastewater surveillance results in Turkey to follow Covid-19 outbreak. medRxiv 2020:2020-12.
  • 33. Kocamemi BA, et al. SARS-CoV-2 detection in Istanbul wastewater treatment plant sludges. MedRxiv 2020:2020-05.
  • 34. Randazzo W, et al. SARS-CoV-2 RNA in wastewater anticipated COVID-19 occurrence in a low prevalence area. Water Res 2020;181:115942. doi:10.1016/j.watres.2020.115942.
  • 35. Mannhalter C, Koizar D, Mitterbauer G. Evaluation of RNA isolation methods and reference genes for RT-PCR analyses of rare target RNA. Clin Chem Lab Med 2000;38(2):171-177. doi:10.1515/CCLM.2000.026.
  • 36. O'Connell J. The basics of RT-PCR. Some practical considerations. Methods Mol Biol 2002;193:19-25. doi:10.1385/1-59259-283-X:019.
  • 37. Phongsisay V, Perera VN, Fry BN. Evaluation of eight RNA isolation methods for transcriptional analysis in Campylobacter jejuni. J Microbiol Methods 2007;68(2):427-429. doi:10.1016/j.mimet.2006.09.002.
  • 38. Farrell RE. RNA Methodologies (Third Edition) A Laboratory Guide for Isolation and Characterization. Farrell RE Editor(s). RNA Isolation Strategies. Academic Press; 2005. pp:67-113.
  • 39. Madabusi LV, Latham GJ, Andruss BF. RNA extraction for arrays. Methods Enzymol 2006;411:1-14. doi:10.1016/S0076-6879(06)11001-0.
  • 40. Schroeder A, et al. The RIN: an RNA integrity number for assigning integrity values to RNA measurements. BMC Mol Biol 2006;7:3. doi:10.1186/1471-2199-7-3

Atıksu Örneklerinde SARS-CoV-2 Sürveyansı için Nükleik Asit Ekstraksiyon Kitlerinin Değerlendirilmesi

Year 2025, Volume: 15 Issue: 1, 241 - 251
https://doi.org/10.31020/mutftd.1571019

Abstract

Amaç: Çalışmanın amacı, atık su numunelerinden SARS-CoV-2 virus RNA'sını izole etmek amacıyla üç ticari nükleik asit ekstraksiyon kitinin (kit A, B ve C) etkinliğini değerlendirmektir.
Yöntem: Çalışmada, 2021 yılı Mart ayında İstanbul ilinde farklı lokasyonlardaki üç atık su arıtma tesisinden su numuneleri toplandı ve SARS-CoV-2 virusu yönünden negatif olduğu teyit edildi. Pendik Veteriner Kontrol Enstitüsü'ndeki BSL-3 laboratuvarında daha önce inaktive edilmiş olan SARS-CoV-2 virusunun farklı konsantrasyonları atık su numunelerine eklendi. Ticari nükleik asit ekstraksiyon kitleri ve SARS-CoV-2 RT-qPCR kiti kullanılarak sırasıyla RNA ekstraksiyonu ve kantitasyonu gerçekleştirildi.
Bulgular: Çalışma sonunda, kit C’nin en yüksek toplam RNA'yı verdiği ve daha tutarlı sonuçlar ürettiği, RNA verimi ve saflığı açısından diğer iki kitten önemli ölçüde daha iyi performans gösterdiği belirlendi. İstatistiksel analiz, kitler arasında RNA konsantrasyonlarında (p < 0,05) ve gen kopya sayılarında (p < 0,01) önemli farklılıklar olduğunu ortaya koydu. Kit C’nin üstün doğrusallık ve tekrarlanabilirliğe sahip olduğunu gösterdi.
Sonuç: Elde edilen bulgular, değerlendirilen üç ticari kitin de atık su numunelerinde SARS-CoV-2 RNA'sını tespit etmek için uygun olduğunu göstermektedir. Ancak özellikle kit C, yüksek verimli çalışmalar için en etkili ve güvenilir performansı sunmaktadır. Ayrıca bu çalışma, halk sağlığını tehdit eden salgınlar için erken uyarı sistemi işlevi gören atık su gözetiminde, uygun nükleik asit ekstraksiyon yöntemlerinin seçilmesinin önemini vurgulamaktadır.

References

  • 1. Gandhi M, Yokoe DS, Havlir DV. Asymptomatic Transmission, the Achilles' Heel of Current Strategies to Control Covid-19. N Engl J Med 2020;382(22):2158-2160. doi:10.1056/NEJMe2009758.
  • 2. Jee Y. WHO International Health Regulations Emergency Committee for the COVID-19 outbreak. Epidemiol Health 2020;42:e2020013. doi:10.4178/epih.e2020013.
  • 3. Moghadas SM, et al. The implications of silent transmission for the control of COVID-19 outbreaks. Proc Natl Acad Sci U S A 2020;117(30):17513-17515. doi:10.1073/pnas.2008373117
  • 4. Deng MY, et al. Comparison of six RNA extraction methods for the detection of classical swine fever virus by real-time and conventional reverse transcription-PCR. J Vet Diagn Invest 2005;17(6):574-578. doi:10.1177/104063870501700609
  • 5. Paton DJ, et al. Classical swine fever virus: a ring test to evaluate RT-PCR detection methods. Vet Microbiol 2000;73(2-3):159-174. doi:10.1016/s0378-1135(00)00142-5.
  • 6. Paton DJ, et al. Classical swine fever virus: a second ring test to evaluate RT-PCR detection methods. Vet Microbiol 2000;77(1-2):71-81. doi:10.1016/s0378-1135(00)00264-9.
  • 7. Risatti GR, et al. Rapid detection of classical swine fever virus by a portable real-time reverse transcriptase PCR assay. J Clin Microbiol 2003;41(1):500-505. doi:10.1128/JCM.41.1.500-505.2003.
  • 8. van Rijn PA, et al. Detection of economically important viruses in boar semen by quantitative RealTime PCR technology. J Virol Methods 2004;120(2):151-160. doi:10.1016/j.jviromet.2004.04.014
  • 9. Tan SC, Yiap BC. DNA, RNA, and protein extraction: the past and the present [published correction appears in J Biomed Biotechnol 2013;2013:628968]. J Biomed Biotechnol. 2009;2009:574398. doi:10.1155/2009/574398
  • 10. Tavares L, Alves PM, Ferreira RB, Santos CN. Comparison of different methods for DNA-free RNA isolation from SK-N-MC neuroblastoma. BMC Res Notes 2011;4.
  • 11. Imbeaud S, et al. Towards standardization of RNA quality assessment using user-independent classifiers of microcapillary electrophoresis traces. Nucleic Acids Res 2005;33(6):e56. doi:10.1093/nar/gni054
  • 12. Kurar E, et al. Comparison of Five Different RNA Isolation Methods from Equine Endometrium for Gene Transcription Analysis. Kafkas Univ Vet Fak Derg 2010;16 (5): 851-855. doi:10.9775/kvfd.2010.1829
  • 13. Raeymaekers L. Quantitative PCR: theoretical considerations with practical implications. Anal Biochem 1993;214(2):582-585. doi:10.1006/abio.1993.1542.
  • 14. Bélec L, Brogan TV. Real-time PCR-based testing of saliva for cytomegalovirus at birth. Expert Rev Anti Infect Ther 2011;9(12):1119-1124. doi:10.1586/eri.11.130.
  • 15. Maron JL, Johnson KL. Comparative performance analyses of commercially available products for salivary collection and nucleic acid processing in the newborn. Biotech Histochem 2015;90(8):581-586. doi:10.3109/10520295.2015.1048289.
  • 16. Parisi MR, et al. Cross-sectional study of community serostatus to highlight undiagnosed HIV infections with oral fluid HIV-1/2 rapid test in non-conventional settings. New Microbiol 2013;36(2):121-132.
  • 17. O'Brien M, et al. A comparison of four commercially available RNA extraction kits for wastewater surveillance of SARS-CoV-2 in a college population. Sci Total Environ 2021;801:149595. doi:10.1016/j.scitotenv.2021.149595.
  • 18. Bustin SA, Nolan T. Pitfalls of quantitative real-time reverse-transcription polymerase chain reaction. J Biomol Tech 2004;15(3):155-166.
  • 19. Rossen L, et al. Inhibition of PCR by components of food samples, microbial diagnostic assays and DNA-extraction solutions. Int J Food Microbiol 1992;17(1):37-45. doi:10.1016/0168-1605(92)90017-w
  • 20. Wilson IG. Inhibition and facilitation of nucleic acid amplification. Appl Environ Microbiol 1997;63(10):3741-3751. doi:10.1128/aem.63.10.3741-3751.1997.
  • 21. Esser, K, et al. Nucleic Acid-free Matrix: Regeneration of DNA Binding Columns. BioTechniques 2005;39(2):270–271. doi.org/10.2144/05392AF01
  • 22. Lucansky V, et al. Comparison of the methods for isolation and detection of SARS-CoV-2 RNA in municipal wastewater. Front Public Health 2023;11:1116636. doi:10.3389/fpubh.2023.1116636.
  • 23. Mazumder P, et al. Sewage surveillance for SARS-CoV-2: Molecular detection, quantification, and normalization factors. Curr Opin Environ Sci Health 2022;28:100363. doi:10.1016/j.coesh.2022.100363.
  • 24. Sait A, et al. Investigation of the recovery efficiency of CeUF method through RT-qPCR quantification of inactivated SARS-CoV-2 in untreated wastewater. Desalin Water Treat 2022;262:54-59.
  • 25. Chirgwin JM, et al. Isolation of biologically active ribonucleic acid from sources enriched in ribonuclease. Biochemistry 1979;18(24):5294-5299. doi:10.1021/bi00591a005.
  • 26. Glisin V, Crkvenjakov R, Byus C. Ribonucleic acid isolated by cesium chloride centrifugation. Biochemistry 1974;13(12):2633-2637. doi:10.1021/bi00709a025.
  • 27. Medema G, et al. Presence of SARS-Coronavirus-2 RNA in Sewage and Correlation with Reported COVID-19 Prevalence in the Early Stage of the Epidemic in The Netherlands. Environ Sci Technol Lett 2020;7(7):511-516. doi:10.1021/acs.estlett.0c00357.
  • 28. Heijnen L, et al. Droplet digital RT-PCR to detect SARS-CoV-2 signature mutations of variants of concern in wastewater. Sci Total Environ 2021;799:149456. doi:10.1016/j.scitotenv.2021.149456.
  • 29. de Freitas Bueno R, et al. Wastewater-based epidemiology: A Brazilian SARS-COV-2 surveillance experience. J Environ Chem Eng 2022;10(5):108298. doi:10.1016/j.jece.2022.108298.
  • 30. Hillary LS, et al. Wastewater and public health: the potential of wastewater surveillance for monitoring COVID-19. Curr Opin Environ Sci Health 2020;17:14-20.
  • 31. Kocamemi BA, et al. Nationwide SARS-CoV-2 surveillance study for sewage and sludges of wastewater treatment plants in Turkey. medRxiv 2020:2020-11.
  • 32. Kocamemi BA, et al. Routine SARS-CoV-2 wastewater surveillance results in Turkey to follow Covid-19 outbreak. medRxiv 2020:2020-12.
  • 33. Kocamemi BA, et al. SARS-CoV-2 detection in Istanbul wastewater treatment plant sludges. MedRxiv 2020:2020-05.
  • 34. Randazzo W, et al. SARS-CoV-2 RNA in wastewater anticipated COVID-19 occurrence in a low prevalence area. Water Res 2020;181:115942. doi:10.1016/j.watres.2020.115942.
  • 35. Mannhalter C, Koizar D, Mitterbauer G. Evaluation of RNA isolation methods and reference genes for RT-PCR analyses of rare target RNA. Clin Chem Lab Med 2000;38(2):171-177. doi:10.1515/CCLM.2000.026.
  • 36. O'Connell J. The basics of RT-PCR. Some practical considerations. Methods Mol Biol 2002;193:19-25. doi:10.1385/1-59259-283-X:019.
  • 37. Phongsisay V, Perera VN, Fry BN. Evaluation of eight RNA isolation methods for transcriptional analysis in Campylobacter jejuni. J Microbiol Methods 2007;68(2):427-429. doi:10.1016/j.mimet.2006.09.002.
  • 38. Farrell RE. RNA Methodologies (Third Edition) A Laboratory Guide for Isolation and Characterization. Farrell RE Editor(s). RNA Isolation Strategies. Academic Press; 2005. pp:67-113.
  • 39. Madabusi LV, Latham GJ, Andruss BF. RNA extraction for arrays. Methods Enzymol 2006;411:1-14. doi:10.1016/S0076-6879(06)11001-0.
  • 40. Schroeder A, et al. The RIN: an RNA integrity number for assigning integrity values to RNA measurements. BMC Mol Biol 2006;7:3. doi:10.1186/1471-2199-7-3
There are 40 citations in total.

Details

Primary Language English
Subjects Preventative Health Care
Journal Section Research Article
Authors

Ahmet Sait 0000-0001-7658-8793

Serol Korkmaz 0000-0001-8970-6883

Ayşe Parmaksız 0000-0003-1242-7987

Bülent Bayraktar 0000-0002-2335-9089

İsmail Aslan 0000-0001-7075-7103

Early Pub Date January 30, 2025
Publication Date
Submission Date October 22, 2024
Acceptance Date November 21, 2024
Published in Issue Year 2025 Volume: 15 Issue: 1

Cite

APA Sait, A., Korkmaz, S., Parmaksız, A., Bayraktar, B., et al. (2025). Assessment of Nucleic Acid Extraction Kits for SARS-CoV-2 Surveillance in Wastewater Samples. Mersin Üniversitesi Tıp Fakültesi Lokman Hekim Tıp Tarihi Ve Folklorik Tıp Dergisi, 15(1), 241-251. https://doi.org/10.31020/mutftd.1571019
AMA Sait A, Korkmaz S, Parmaksız A, Bayraktar B, Aslan İ. Assessment of Nucleic Acid Extraction Kits for SARS-CoV-2 Surveillance in Wastewater Samples. Mersin Üniversitesi Tıp Fakültesi Lokman Hekim Tıp Tarihi ve Folklorik Tıp Dergisi. January 2025;15(1):241-251. doi:10.31020/mutftd.1571019
Chicago Sait, Ahmet, Serol Korkmaz, Ayşe Parmaksız, Bülent Bayraktar, and İsmail Aslan. “Assessment of Nucleic Acid Extraction Kits for SARS-CoV-2 Surveillance in Wastewater Samples”. Mersin Üniversitesi Tıp Fakültesi Lokman Hekim Tıp Tarihi Ve Folklorik Tıp Dergisi 15, no. 1 (January 2025): 241-51. https://doi.org/10.31020/mutftd.1571019.
EndNote Sait A, Korkmaz S, Parmaksız A, Bayraktar B, Aslan İ (January 1, 2025) Assessment of Nucleic Acid Extraction Kits for SARS-CoV-2 Surveillance in Wastewater Samples. Mersin Üniversitesi Tıp Fakültesi Lokman Hekim Tıp Tarihi ve Folklorik Tıp Dergisi 15 1 241–251.
IEEE A. Sait, S. Korkmaz, A. Parmaksız, B. Bayraktar, and İ. Aslan, “Assessment of Nucleic Acid Extraction Kits for SARS-CoV-2 Surveillance in Wastewater Samples”, Mersin Üniversitesi Tıp Fakültesi Lokman Hekim Tıp Tarihi ve Folklorik Tıp Dergisi, vol. 15, no. 1, pp. 241–251, 2025, doi: 10.31020/mutftd.1571019.
ISNAD Sait, Ahmet et al. “Assessment of Nucleic Acid Extraction Kits for SARS-CoV-2 Surveillance in Wastewater Samples”. Mersin Üniversitesi Tıp Fakültesi Lokman Hekim Tıp Tarihi ve Folklorik Tıp Dergisi 15/1 (January 2025), 241-251. https://doi.org/10.31020/mutftd.1571019.
JAMA Sait A, Korkmaz S, Parmaksız A, Bayraktar B, Aslan İ. Assessment of Nucleic Acid Extraction Kits for SARS-CoV-2 Surveillance in Wastewater Samples. Mersin Üniversitesi Tıp Fakültesi Lokman Hekim Tıp Tarihi ve Folklorik Tıp Dergisi. 2025;15:241–251.
MLA Sait, Ahmet et al. “Assessment of Nucleic Acid Extraction Kits for SARS-CoV-2 Surveillance in Wastewater Samples”. Mersin Üniversitesi Tıp Fakültesi Lokman Hekim Tıp Tarihi Ve Folklorik Tıp Dergisi, vol. 15, no. 1, 2025, pp. 241-5, doi:10.31020/mutftd.1571019.
Vancouver Sait A, Korkmaz S, Parmaksız A, Bayraktar B, Aslan İ. Assessment of Nucleic Acid Extraction Kits for SARS-CoV-2 Surveillance in Wastewater Samples. Mersin Üniversitesi Tıp Fakültesi Lokman Hekim Tıp Tarihi ve Folklorik Tıp Dergisi. 2025;15(1):241-5.

                                                                                                                                  Creative Commons Lisansı                        
                                                                  This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.

  

                                    Periodical scientific publication of Mersin University School of Medicine. Can not be cited without referenceResponsibility of the articles belong to the authors

  Cover

Ayşegül Tuğuz

from composition of İlter Uzel named Dioscorides and his Student

Address

Mersin Üniversitesi Tıp Fakültesi Tıp Tarihi ve Etik Anabilim Dalı Çiftlikköy Kampüsü

Yenişehir / Mersin