Review Article
BibTex RIS Cite

Photoelectrochemical degradation of methyl orange on CdS–decorated Cr2O3/electroreduced graphene oxide nanocomposites

Year 2022, Volume: 2 Issue: 2, 41 - 44, 06.12.2022

Abstract

Chromium(III) oxide (Cr2O3) and electroreduced graphene oxide (ERGO) nanostructures were synthesized for the first time using a one-pot electrochemical technique on a tin oxide-coated glass (ITO) electrode surface. The surface of the synthesized Cr2O3/ERGO nanostructures was decorated with CdS nanoparticles by a simple successive ionic layer adsorption and reaction (SILAR) technique. The characterization of synthesized nanocomposites has been carried out using XRD, FESEM, and EDS techniques. The photodegradation of methyl orange (MO) was investigated in an aqueous suspension containing CdS/Cr2O3/ERGO catalyst under artificial sunlight irradiation. The results indicated that the modification of Cr2O3/ERGO with CdS nanoparticles exhibits a high performance for the removal of azodyes.

Thanks

We appreciate Atatürk University Eastern Anatolia High Technology Research Center (DAYTAM) for their support in the characterization of the synthesized electrodes.

References

  • [1] C. Jayakrishnan, S.R. Sheeja, J. Duraimurugan, S. Prabhu, R. Ramesh, G.S. Kumar, P. Maadeswaran, Mohd. Shkir, Photoelectrochemical properties and photocatalytic degradation of methyl orange dye by different ZnO nanostructures, J. Mater. Sci. Mater. Electron. 33 (2022) 9732–9742. https://doi.org/10.1007/s10854-022-07801-0.
  • [2] M.A. Ashraf, Y. Yang, A. Fakhri, Synthesis of NiS–MoO3 nanocomposites and decorated on graphene oxides for heterogeneous photocatalysis, antibacterial and antioxidant activities, Ceram. Int. 46 (2020) 8379–8384. https://doi.org/10.1016/j.ceramint.2019.12.070.
  • [3] S.M. Mousavi, A.R. Mahjoub, R. Abazari, Facile green fabrication of nanostructural Ni-doped ZnO hollow sphere as an advanced photocatalytic material for dye degradation, J. Mol. Liq. 242 (2017) 512–519. https://doi.org/10.1016/j.molliq.2017.07.050.
  • [4] J. Wang, H. Li, S. Meng, L. Zhang, X. Fu, S. Chen, One-pot hydrothermal synthesis of highly efficient SnOx/Zn2SnO4 composite photocatalyst for the degradation of methyl orange and gaseous benzene, Appl. Catal. B Environ. 200 (2017) 19–30. https://doi.org/10.1016/j.apcatb.2016.06.070.
  • [5] W. Liu, W. Hu, J. Liu, Study on the photoreductive decolorization of azo dyes by sulfite aqua, AIP Conf. Proc. 1794 (2017) 050006. https://doi.org/10.1063/1.4971952.
  • [6] L. Mais, A. Vacca, M. Mascia, E.M. Usai, S. Tronci, S. Palmas, Experimental study on the optimisation of azo-dyes removal by photo-electrochemical oxidation with TiO2 nanotubes, Chemosphere. 248 (2020) 125938. https://doi.org/10.1016/j.chemosphere.2020.125938.
  • [7] A. Maroudas, P.K. Pandis, A. Chatzopoulou, L.-R. Davellas, G. Sourkouni, C. Argirusis, Synergetic decolorization of azo dyes using ultrasounds, photocatalysis and photo-fenton reaction, Ultrason. Sonochem. 71 (2021) 105367. https://doi.org/10.1016/j.ultsonch.2020.105367.
  • [8] R.G. Saratale, G.D. Saratale, J.S. Chang, S.P. Govindwar, Bacterial decolorization and degradation of azo dyes: A review, J. Taiwan Inst. Chem. Eng. 42 (2011) 138–157. https://doi.org/10.1016/j.jtice.2010.06.006.
  • [9] T. Ahmadpour, S. Aber, M. Ghasem Hosseini, Visible-light enhanced azo dye degradation and power generation in a microbial photoelectrochemical cell using AgBr/ZnO composite photocathode, Bioelectrochemistry. 146 (2022) 108139. https://doi.org/10.1016/j.bioelechem.2022.108139.
  • [10] Md.M. Islam, S. Basu, Understanding photoelectrochemical degradation of methyl orange using TiO2/Ti mesh as photocathode under visible light, J. Environ. Chem. Eng. 4 (2016) 3554–3561. https://doi.org/10.1016/j.jece.2016.07.014.
  • [11] Q. Zheng, C. Lee, Visible light photoelectrocatalytic degradation of methyl orange using anodized nanoporous WO3, Electrochimica Acta. 115 (2014) 140–145. https://doi.org/10.1016/j.electacta.2013.10.148.
  • [12] A. Gautam, A. Kshirsagar, R. Biswas, S. Banerjee, P.K. Khanna, Photodegradation of organic dyes based on anatase and rutile TiO 2 nanoparticles, RSC Adv. 6 (2016) 2746–2759. https://doi.org/10.1039/C5RA20861K.
  • [13] R.D. Suryavanshi, S.V. Mohite, A.A. Bagade, K.Y. Rajpure, Photoelectrocatalytic activity of spray deposited Fe2O3/ZnO photoelectrode for degradation of salicylic acid and methyl orange dye under solar radiation, Mater. Sci. Eng. B. 248 (2019) 114386. https://doi.org/10.1016/j.mseb.2019.114386.
  • [14] Z. Shao, Y. Wang, Y. Zhang, G. Zhu, X. Yang, M. Zhong, Electrochemical deposition synthesis of ZnO-NA/Cu2O-NPs type-II hierarchical heterojunction for enhanced photoelectrochemical degradation of methyl orange (MO), J. Photochem. Photobiol. Chem. 364 (2018) 657–670. https://doi.org/10.1016/j.jphotochem.2018.07.001.
  • [15] A.R. Korkmaz, E. Çepni̇, H.Ö. Doğan, Cr2O3 Nanoyapılarının Elektrokimyasal Sentezi ve Karakterizasyonu, Bilecik Şeyh Edebali Üniversitesi Fen Bilim. Derg. 7 (2020) 994–1003. https://doi.org/10.35193/bseufbd.723358.
  • [16] A.R. Korkmaz, E. Çepni̇, H. Öztürk Doğan, Electrodeposited Nickel/Chromium(III) Oxide Nanostructure-Modified Pencil Graphite Electrode for Enhanced Electrocatalytic Hydrogen Evolution Reaction Activity, Energy Fuels. 35 (2021) 6298–6304. https://doi.org/10.1021/acs.energyfuels.0c04413.
  • [17] E. Çepni, H. Öztürk Doğan, One-Step Electrochemical Fabrication of Reduced Graphene Oxide/Cuprous Oxide Nanocomposite Thin Films for Enhanced Photoelectrochemical Properties, Phys. Status Solidi A. 217 (2020) 2000323. https://doi.org/10.1002/pssa.202000323.
  • [18] S. Huang, Z. Wei, L. Ma, C. Li, Q. Lu, J. Ma, Hydrothermal synthesis, photo-electrochemical and photocatalytic activity of SnS2/CdS nanocomposites, J. Mater. Sci. Mater. Electron. 32 (2021) 676–686. https://doi.org/10.1007/s10854-020-04848-9.
  • [19] P.Ch. Dey, R. Das, Enhanced photocatalytic degradation of methyl orange dye on interaction with synthesized ligand free CdS nanocrystals under visible light illumination, Spectrochim. Acta. A. Mol. Biomol. Spectrosc. 231 (2020) 118122. https://doi.org/10.1016/j.saa.2020.118122.
  • [20] S. Meng, S. Chang, S. Chen, Synergistic Effect of Photocatalyst CdS and Thermalcatalyst Cr2O3-Al2O3 for Selective Oxidation of Aromatic Alcohols into Corresponding Aldehydes, ACS Appl. Mater. Interfaces. 12 (2020) 2531–2538. https://doi.org/10.1021/acsami.9b19473.
Year 2022, Volume: 2 Issue: 2, 41 - 44, 06.12.2022

Abstract

References

  • [1] C. Jayakrishnan, S.R. Sheeja, J. Duraimurugan, S. Prabhu, R. Ramesh, G.S. Kumar, P. Maadeswaran, Mohd. Shkir, Photoelectrochemical properties and photocatalytic degradation of methyl orange dye by different ZnO nanostructures, J. Mater. Sci. Mater. Electron. 33 (2022) 9732–9742. https://doi.org/10.1007/s10854-022-07801-0.
  • [2] M.A. Ashraf, Y. Yang, A. Fakhri, Synthesis of NiS–MoO3 nanocomposites and decorated on graphene oxides for heterogeneous photocatalysis, antibacterial and antioxidant activities, Ceram. Int. 46 (2020) 8379–8384. https://doi.org/10.1016/j.ceramint.2019.12.070.
  • [3] S.M. Mousavi, A.R. Mahjoub, R. Abazari, Facile green fabrication of nanostructural Ni-doped ZnO hollow sphere as an advanced photocatalytic material for dye degradation, J. Mol. Liq. 242 (2017) 512–519. https://doi.org/10.1016/j.molliq.2017.07.050.
  • [4] J. Wang, H. Li, S. Meng, L. Zhang, X. Fu, S. Chen, One-pot hydrothermal synthesis of highly efficient SnOx/Zn2SnO4 composite photocatalyst for the degradation of methyl orange and gaseous benzene, Appl. Catal. B Environ. 200 (2017) 19–30. https://doi.org/10.1016/j.apcatb.2016.06.070.
  • [5] W. Liu, W. Hu, J. Liu, Study on the photoreductive decolorization of azo dyes by sulfite aqua, AIP Conf. Proc. 1794 (2017) 050006. https://doi.org/10.1063/1.4971952.
  • [6] L. Mais, A. Vacca, M. Mascia, E.M. Usai, S. Tronci, S. Palmas, Experimental study on the optimisation of azo-dyes removal by photo-electrochemical oxidation with TiO2 nanotubes, Chemosphere. 248 (2020) 125938. https://doi.org/10.1016/j.chemosphere.2020.125938.
  • [7] A. Maroudas, P.K. Pandis, A. Chatzopoulou, L.-R. Davellas, G. Sourkouni, C. Argirusis, Synergetic decolorization of azo dyes using ultrasounds, photocatalysis and photo-fenton reaction, Ultrason. Sonochem. 71 (2021) 105367. https://doi.org/10.1016/j.ultsonch.2020.105367.
  • [8] R.G. Saratale, G.D. Saratale, J.S. Chang, S.P. Govindwar, Bacterial decolorization and degradation of azo dyes: A review, J. Taiwan Inst. Chem. Eng. 42 (2011) 138–157. https://doi.org/10.1016/j.jtice.2010.06.006.
  • [9] T. Ahmadpour, S. Aber, M. Ghasem Hosseini, Visible-light enhanced azo dye degradation and power generation in a microbial photoelectrochemical cell using AgBr/ZnO composite photocathode, Bioelectrochemistry. 146 (2022) 108139. https://doi.org/10.1016/j.bioelechem.2022.108139.
  • [10] Md.M. Islam, S. Basu, Understanding photoelectrochemical degradation of methyl orange using TiO2/Ti mesh as photocathode under visible light, J. Environ. Chem. Eng. 4 (2016) 3554–3561. https://doi.org/10.1016/j.jece.2016.07.014.
  • [11] Q. Zheng, C. Lee, Visible light photoelectrocatalytic degradation of methyl orange using anodized nanoporous WO3, Electrochimica Acta. 115 (2014) 140–145. https://doi.org/10.1016/j.electacta.2013.10.148.
  • [12] A. Gautam, A. Kshirsagar, R. Biswas, S. Banerjee, P.K. Khanna, Photodegradation of organic dyes based on anatase and rutile TiO 2 nanoparticles, RSC Adv. 6 (2016) 2746–2759. https://doi.org/10.1039/C5RA20861K.
  • [13] R.D. Suryavanshi, S.V. Mohite, A.A. Bagade, K.Y. Rajpure, Photoelectrocatalytic activity of spray deposited Fe2O3/ZnO photoelectrode for degradation of salicylic acid and methyl orange dye under solar radiation, Mater. Sci. Eng. B. 248 (2019) 114386. https://doi.org/10.1016/j.mseb.2019.114386.
  • [14] Z. Shao, Y. Wang, Y. Zhang, G. Zhu, X. Yang, M. Zhong, Electrochemical deposition synthesis of ZnO-NA/Cu2O-NPs type-II hierarchical heterojunction for enhanced photoelectrochemical degradation of methyl orange (MO), J. Photochem. Photobiol. Chem. 364 (2018) 657–670. https://doi.org/10.1016/j.jphotochem.2018.07.001.
  • [15] A.R. Korkmaz, E. Çepni̇, H.Ö. Doğan, Cr2O3 Nanoyapılarının Elektrokimyasal Sentezi ve Karakterizasyonu, Bilecik Şeyh Edebali Üniversitesi Fen Bilim. Derg. 7 (2020) 994–1003. https://doi.org/10.35193/bseufbd.723358.
  • [16] A.R. Korkmaz, E. Çepni̇, H. Öztürk Doğan, Electrodeposited Nickel/Chromium(III) Oxide Nanostructure-Modified Pencil Graphite Electrode for Enhanced Electrocatalytic Hydrogen Evolution Reaction Activity, Energy Fuels. 35 (2021) 6298–6304. https://doi.org/10.1021/acs.energyfuels.0c04413.
  • [17] E. Çepni, H. Öztürk Doğan, One-Step Electrochemical Fabrication of Reduced Graphene Oxide/Cuprous Oxide Nanocomposite Thin Films for Enhanced Photoelectrochemical Properties, Phys. Status Solidi A. 217 (2020) 2000323. https://doi.org/10.1002/pssa.202000323.
  • [18] S. Huang, Z. Wei, L. Ma, C. Li, Q. Lu, J. Ma, Hydrothermal synthesis, photo-electrochemical and photocatalytic activity of SnS2/CdS nanocomposites, J. Mater. Sci. Mater. Electron. 32 (2021) 676–686. https://doi.org/10.1007/s10854-020-04848-9.
  • [19] P.Ch. Dey, R. Das, Enhanced photocatalytic degradation of methyl orange dye on interaction with synthesized ligand free CdS nanocrystals under visible light illumination, Spectrochim. Acta. A. Mol. Biomol. Spectrosc. 231 (2020) 118122. https://doi.org/10.1016/j.saa.2020.118122.
  • [20] S. Meng, S. Chang, S. Chen, Synergistic Effect of Photocatalyst CdS and Thermalcatalyst Cr2O3-Al2O3 for Selective Oxidation of Aromatic Alcohols into Corresponding Aldehydes, ACS Appl. Mater. Interfaces. 12 (2020) 2531–2538. https://doi.org/10.1021/acsami.9b19473.
There are 20 citations in total.

Details

Primary Language English
Subjects Engineering
Journal Section Research Articles
Authors

Hülya Öztürk Doğan 0000-0002-4072-7744

Muhammet Emin Kaçar 0000-0001-5512-3380

Bingül Kurt Urhan 0000-0002-8742-6789

Publication Date December 6, 2022
Submission Date October 9, 2022
Published in Issue Year 2022 Volume: 2 Issue: 2

Cite