Research Article
BibTex RIS Cite

Prediction of Hardness Values of Some Wooden Materials Using Computer-Aided Tap Testing

Year 2023, Volume: 5 Issue: 2, 257 - 266, 31.12.2023
https://doi.org/10.47112/neufmbd.2023.23

Abstract

Rapid and non-destructive determination of microhardness values for specific wood materials such as pine, poplar, and MDF laminate, which are widely used in various fields including historic buildings, artifacts, construction, home furniture, children’s playgrounds, and gardens, is crucial for assessing their quality and durability. The hardness of such wood materials is typically assessed using destructive traditional methods. Therefore, this research was conducted to determine the microhardness (HCATT) values of certain wood materials such as pine, poplar, and MDF laminate for the first time non-destructively using the Computer Aided Tap Tester (CATT) system and establishing the relationship between these HCATT values and the Brinell hardness (HB) values obtained from the literature for these materials. The HCATT values of the wood materials used in the study were determined by using the contact time between the tip of the CATT device (CATT) and the surfaces of the wood materials. Empirical equations for each wood material used in this research, representing the relationship between hardness values determined using two different hardness measurement methods, were established, including the constants (c-values). According to the results obtained from the research, the shortest contact time, with an average of 362 μs, was observed in the MDF laminate material, whereas the longest contact time, with 653 μs, was observed in the poplar material. Based on the HCATT values determined using the CATT system, the lowest hardness value was 0.34 MNm-1 in the poplar material, and the highest HCATT value was 1.10 MNm-1 in the MDF laminate material. On the other hand, the high level of correlation observed between the HB and HCATT values of the materials used in this research indicates that the non-destructive CATT system can be used instead of destructive methods for determining the microhardness values of such materials, without causing any harm to the material. CATT is expected to make a significant contribution to the relevant literature because it is both faster and more cost-effective compared to the destructive tests commonly used for microhardness measurement in materials today.

Supporting Institution

The Scientific Research Projects Coordination Office of Necmettin Erbakan University

Project Number

211210002

References

  • M. Büyükgöze-Dindar, M. Tekbaş-Atay, The effect of brushing force on the surface properties and color stability of dental enamel, Necmettin Erbakan University Dental Journal. 5(3) (2023), 167-172.
  • A. Kutluk, D. Öngül, Monolitik CAD CAM seramik materyallerinin yapay yaşlandırma sonrası aşınma ve kırılma dayanımlarının araştırılması, Necmettin Erbakan Üniversitesi Diş Hekimliği Dergisi. 5(1) (2023), 1-9.
  • D. Akbay, G. Ekincioglu, R. Altindag, N. Sengun, Investigation of the usability of Shore hardness values determined by different devices and methods to estimate the brittleness values of carbonated rocks, Pamukkale University Journal of Engineering Sciences. 27(3) (2021) 441-448.
  • E. Şahin, SiAlON seramiklerinin statik ve dinamik sertliklerinin analizleri, Mustafa Kemal Üniversitesi Fen Bilimleri Enstitüsü, Fizik Anabilim Dalı, Hatay, 2011.
  • T. Savaskan, Malzeme Bilgisi ve Muayenesi, Derya Kitabevi, Trabzon, 1999.
  • A.A. El-Moneim, S.A. Mazen, N.I. Abu-Elsaad, Evaluating the theoretical elastic properties of Li-Mn ferrites: A new approach, Materials Chemistry and Physics. 291 (2022) 126679.
  • I. Markja, K. Dhoska, D. Elezi, R. Moezzi, M. Petru, Effect of the Grain Sizes on the Ultrasonic Propagation and Attenuation on Different Types of Steels Microstructure During Non-Destructive Testing, Annales de Chimie - Science des Matériaux. 45 (2021) 329-334.
  • I. Oral, U. Soydal, M. Bentahar, Ultrasonic characterization of andesite waste-reinforced composites, Polymer Bulletin. 74(5) (2017) 1899-1914.
  • M. Bektes, Fe-Mn Alaşımlarının Mikrosertlik Ölçümleri, Süleyman Demirel Üniversitesi Fen Bilimleri Enstitüsü, Fizik Anabilim Dalı, Isparta, 2004.
  • T. Dağ, N. Yıldırım, Y. Kepir, M. Uyaner, Numerical simulation of low velocity impact behavior applied on e/glass epoxy laminates, Aerospace Research Letters (ASREL). 1(1) (2022) 1-10.
  • M. Uyaner, A. Yar, Nano elyaf takviyeli nanokompozit üretimi ve karakterizasyonu, Necmettin Erbakan Üniversitesi Fen ve Mühendislik Bilimleri Dergisi. 1(1) (2019) 10-19.
  • B.J. Briscoe, K.S. Sebastian, S.K. Sinha, Application of the compliance method to microhardness measurements of organic polymers, Philosophical Magazine A. 74(5) (1996) 1159-1169.
  • S.C. Krishna, N.K. Gangwar, A.K. Jha, B. Pant, On the prediction of strength from hardness for copper alloys, Journal of Materials. 2013 (2013) 1-6.
  • D.K. Hsu, D.J. Barnard, J.J. Peters, V. Dayal, Physical basis of tap test as a quantitative imaging tool for composite structures on aircraft, AIP Conference Proceedings. American Institute of Physic. 509 (2000) 1857-1864.
  • A. Klüppel, Instrumented macrohardness testing of wood, International Wood Products Journal. 7(1) (2016) 46-53.
  • M. Riggio, M. Piazza, Hardness Test, in: B. Kasal, T. Tannert (Eds.), In Situ Assessment of Structural Timber: State of the Art Report of the RILEM Technical Committee 215-AST, Springer Netherlands, Dordrecht, 2011, pp. 87-97.
  • E. Schwab, Die Härte von Laubhölzern für die Parkettherstellung, Holz als Roh- und Werkstoff. 48(2) (1990) 47-51.
  • H. Pelit, R. Yorulmaz, Influence of densification on mechanical properties of thermally pretreated spruce and poplar wood, BioResources. 14(4) (2019) 9739-9754.
  • Web20, Hardness-brinell-scale. <https://www.floor-experts.com/hardness-brinell-scale/>, 2022 (accessed 10/09/2022.2022).
  • N. Döngel, Ahşap ve ahşap esaslı döşeme kaplama malzemelerinin (parke) teknik özellikleri, Gazi Üniversitesi Fen Bilimleri Enstitüsü, Mobilya ve Dekorasyon Eğitimi Ana Bilim Dalı, Ankara, 2005.
  • Web2, Quality-12175278-acp-5080-aluminium-sheets-high-flatness-surface-cast-aluminium-plate. <http://turkish.aerospacealuminium.com/quality-12175278-acp-5080-aluminium-sheets-high-flatness-surface-cast-aluminium-plate.html>, 2022 (accessed 5 August.2022).
  • R. Zanuttini, F. Negro, C. Cremonini, Hardness and contact angle of thermo-treated poplar plywood for bio-building, iForest-Biogeosciences and Forestry. 14(3) (2021), 274.
  • M. Sydor, G. Pinkowski, A. Jasińska, The Brinell method for determining hardness of wood flooring materials, Forests. 11(8) (2020), 878.
  • J.R. Cahoon, W.H. Broughton, A.R. Kutzak, The determination of yield strength from hardness measurements, Metallurgical Transactions. 2(7) (1971),1979-1983.
  • A. Kaymakci, N. Ayrilmis, Investigation of correlation between Brinell hardness and tensile strength of wood plastic composites, Composites Part B: Engineering. 58 (2014), 582-585.
  • M. Klisz, J. Ukalska, A. Noskowiak, T. Wojda, S. Jastrzębowski, M. Mionskowski, I. Szyp-Borowska, Correlations between Brinell hardness and basic density in black locust - differences along the stem, Forestry and Wood Technology. 91 (2015), 81-86.
  • B.J. Briscoe, S.K. Sinha, Hardness and Normal Indentation of Polymers, in: G.M. Swallowe (Ed.), Mechanical Properties and Testing of Polymers, Springer Netherlands, Dordrecht, 1999, pp. 113-122.
  • Y.-T. Cheng, C.-M. Cheng, Relationships between hardness, elastic modulus, and the work of indentation, Applied Physics Letters. 73 (1998), 614-616.
  • V. Lorenzo, J.M. Pereña, J.G. Fatou, Vickers microhardness related to mechanical properties of polypropylene, Journal of Materials Science Letters. 8(12) (1989), 1455-1457.
  • R. Altindag, A. Guney, Predicting the relationships between brittleness and mechanical properties (UCS, TS and SH) of rocks, Scientific Research and Essays. 5 (2010), 2107-2118.
  • S. Kantur, G. İrsel, B.N. Güzey, Investigation of combining the 304L and S355J2C+N materials with TIG welding in terms of microstructure and mechanical properties, International Journal of Pressure Vessels and Piping. 206 (2023), 104999.
  • N. Li, T. Wang, L. Zhang, L. Zhang, Microstructure evolution and mechanical properties strengthening in laser powder bed fusion of high-strength SiC and TiB2 co-reinforced Al-Zn-Mg-Cu composites, Journal of Alloys and Compounds. 965 (2023), 171463.
  • S. Swirad, A. Gradzik, K. Ochał, P. Pawlus, Effects of the surface layer of steel samples after ball burnishing on friction and wear in dry reciprocating sliding, Scientific Reports. 13(1) (2023), 11315.
  • I. Volokitina, B. Sapargaliyeva, A. Agabekova, S. Syrlybekkyzy, A. Volokitin, L. Nurshakhanova, F. Nurbaeva, A. Kolesnikov, G. Sabyrbayeva, A. Izbassar, O. Kolesnikova, Y. Liseitsev, S. Vavrenyuk, Increasing strength and performance properties of bimetallic rods during severe plastic deformation, Case Studies in Construction Materials. 19 (2023), e02256.
  • M. Wu, J. Zhang, C. Ma, Y. Zhang, Y. Cheng, Experimental Research on the Surface Quality of Milling Contour Bevel Gears, Chinese Journal of Mechanical Engineering. 36(1) (2023).
  • A. Namalan, Investigation of the effect of nano graphene additive to aluminum matrix ceramic particle reinforced composite-hybrid materials on microstructure-hardness and abrasion behavior, Necmettin Erbakan University the Graduate School of Natural and Applied Science, Konya, Türkiye, 2022.
  • Y. Yıldız, The effect of heat treatment parameters on the mechanical properties of steel in the production of 5140 alloy bolts, Necmettin Erbakan University the Graduate School of Natural and Applied Science, Konya, Türkiye, 2022.

Bazı Tahta Malzemelerin Sertlik Değerlerinin Bilgisayar Destekli Vurma Testi ile Tahmini

Year 2023, Volume: 5 Issue: 2, 257 - 266, 31.12.2023
https://doi.org/10.47112/neufmbd.2023.23

Abstract

Tarihi binalarda, tarihi eserlerde, inşaatlarda, ev mobilyalarında, çocuklara yönelik oyun parkları ve bahçeleri gibi daha birçok alanda kullanılan çam, kavak ve MDF laminant gibi belirli ahşap malzemelerin mikrosertlik değerlerinin tahribatsız bir yöntemle kısa sürede belirlenmesi, bu malzemelerin kalite kontrolleri ve dayanıklılıklarının belirlenmesi için önemlidir. Bu tür ahşap malzemelerin sertlikleri genellikle tahribatlı geleneksel yöntemler ile gerçekleştirilmektedir. Bu nedenle bu araştırma çam, kavak ve MDF laminant gibi bazı ahşap malzemelerin mikrosertlik (HCATT) değerlerinin ilk kez tahribatsız olarak Bilgisayar Destekli Vurma Testi (BDVT) sistemi ile belirlenmesi ve bu HCATT değerleri ile bu malzemelerin literatürden alınan Brinell sertlik (HB) değerleri arasındaki ilişkinin belirlenmesi amacıyla gerçekleştirilmiştir. Araştırmada kullanılan tahta malzemelerin HCATT değerleri, BDVT cihazının (BDVTC) vurucu ucu ile tahta malzemelerin yüzeyleri arasında geçen temas süresinden yararlanılarak belirlendi. Bu araştırmada kullanılan her bir tahta malzeme için iki farklı sertlik ölçüm yöntemi ile belirlenen sertlik değerleri arasındaki ampirik eşitlikler ve bu ampirik eşitliklerin c sabiti değerleri belirlenmiştir. Araştırmadan elde edilen sonuçlara göre en kısa temas süresi ortalaması 362 μs ile MDF Laminant malzemede, en uzun temas süresi ise 653 μs ile kavak malzemede tespit edilmiştir. BDVT sistemi ile elde edilen temas süreleri kullanılarak belirlenen HCATT değerlerine göre en düşük sertlik değeri 0.34 MNm-1 ile kavak malzemede elde edilirken en yüksek HCATT değeri ise 1.10 MNm-1 ile MDF Laminant malzemede elde edilmiştir. Diğer yandan bu araştırmada kullanılan malzemelerin HB ile HCATT değerleri arasında görülen yüksek düzeydeki ilişki, bu tür malzemelerin mikrosertlik değerlerinin tespit edilmesinde malzemeye zarar vermeyen BDVT sisteminin tahribatlı yöntemlerin yerine kullanılabileceğini göstermiştir. BDVT, günümüzde yaygın bir şekilde malzemelerin mikrosertlik ölçümü için kullanılan tahribatlı testlere kıyasla hem daha hızlı hem de daha ekonomik olduğundan BDVT’nin ilgili literatüre önemli bir katkı sağlaması beklenmektedir.

Project Number

211210002

References

  • M. Büyükgöze-Dindar, M. Tekbaş-Atay, The effect of brushing force on the surface properties and color stability of dental enamel, Necmettin Erbakan University Dental Journal. 5(3) (2023), 167-172.
  • A. Kutluk, D. Öngül, Monolitik CAD CAM seramik materyallerinin yapay yaşlandırma sonrası aşınma ve kırılma dayanımlarının araştırılması, Necmettin Erbakan Üniversitesi Diş Hekimliği Dergisi. 5(1) (2023), 1-9.
  • D. Akbay, G. Ekincioglu, R. Altindag, N. Sengun, Investigation of the usability of Shore hardness values determined by different devices and methods to estimate the brittleness values of carbonated rocks, Pamukkale University Journal of Engineering Sciences. 27(3) (2021) 441-448.
  • E. Şahin, SiAlON seramiklerinin statik ve dinamik sertliklerinin analizleri, Mustafa Kemal Üniversitesi Fen Bilimleri Enstitüsü, Fizik Anabilim Dalı, Hatay, 2011.
  • T. Savaskan, Malzeme Bilgisi ve Muayenesi, Derya Kitabevi, Trabzon, 1999.
  • A.A. El-Moneim, S.A. Mazen, N.I. Abu-Elsaad, Evaluating the theoretical elastic properties of Li-Mn ferrites: A new approach, Materials Chemistry and Physics. 291 (2022) 126679.
  • I. Markja, K. Dhoska, D. Elezi, R. Moezzi, M. Petru, Effect of the Grain Sizes on the Ultrasonic Propagation and Attenuation on Different Types of Steels Microstructure During Non-Destructive Testing, Annales de Chimie - Science des Matériaux. 45 (2021) 329-334.
  • I. Oral, U. Soydal, M. Bentahar, Ultrasonic characterization of andesite waste-reinforced composites, Polymer Bulletin. 74(5) (2017) 1899-1914.
  • M. Bektes, Fe-Mn Alaşımlarının Mikrosertlik Ölçümleri, Süleyman Demirel Üniversitesi Fen Bilimleri Enstitüsü, Fizik Anabilim Dalı, Isparta, 2004.
  • T. Dağ, N. Yıldırım, Y. Kepir, M. Uyaner, Numerical simulation of low velocity impact behavior applied on e/glass epoxy laminates, Aerospace Research Letters (ASREL). 1(1) (2022) 1-10.
  • M. Uyaner, A. Yar, Nano elyaf takviyeli nanokompozit üretimi ve karakterizasyonu, Necmettin Erbakan Üniversitesi Fen ve Mühendislik Bilimleri Dergisi. 1(1) (2019) 10-19.
  • B.J. Briscoe, K.S. Sebastian, S.K. Sinha, Application of the compliance method to microhardness measurements of organic polymers, Philosophical Magazine A. 74(5) (1996) 1159-1169.
  • S.C. Krishna, N.K. Gangwar, A.K. Jha, B. Pant, On the prediction of strength from hardness for copper alloys, Journal of Materials. 2013 (2013) 1-6.
  • D.K. Hsu, D.J. Barnard, J.J. Peters, V. Dayal, Physical basis of tap test as a quantitative imaging tool for composite structures on aircraft, AIP Conference Proceedings. American Institute of Physic. 509 (2000) 1857-1864.
  • A. Klüppel, Instrumented macrohardness testing of wood, International Wood Products Journal. 7(1) (2016) 46-53.
  • M. Riggio, M. Piazza, Hardness Test, in: B. Kasal, T. Tannert (Eds.), In Situ Assessment of Structural Timber: State of the Art Report of the RILEM Technical Committee 215-AST, Springer Netherlands, Dordrecht, 2011, pp. 87-97.
  • E. Schwab, Die Härte von Laubhölzern für die Parkettherstellung, Holz als Roh- und Werkstoff. 48(2) (1990) 47-51.
  • H. Pelit, R. Yorulmaz, Influence of densification on mechanical properties of thermally pretreated spruce and poplar wood, BioResources. 14(4) (2019) 9739-9754.
  • Web20, Hardness-brinell-scale. <https://www.floor-experts.com/hardness-brinell-scale/>, 2022 (accessed 10/09/2022.2022).
  • N. Döngel, Ahşap ve ahşap esaslı döşeme kaplama malzemelerinin (parke) teknik özellikleri, Gazi Üniversitesi Fen Bilimleri Enstitüsü, Mobilya ve Dekorasyon Eğitimi Ana Bilim Dalı, Ankara, 2005.
  • Web2, Quality-12175278-acp-5080-aluminium-sheets-high-flatness-surface-cast-aluminium-plate. <http://turkish.aerospacealuminium.com/quality-12175278-acp-5080-aluminium-sheets-high-flatness-surface-cast-aluminium-plate.html>, 2022 (accessed 5 August.2022).
  • R. Zanuttini, F. Negro, C. Cremonini, Hardness and contact angle of thermo-treated poplar plywood for bio-building, iForest-Biogeosciences and Forestry. 14(3) (2021), 274.
  • M. Sydor, G. Pinkowski, A. Jasińska, The Brinell method for determining hardness of wood flooring materials, Forests. 11(8) (2020), 878.
  • J.R. Cahoon, W.H. Broughton, A.R. Kutzak, The determination of yield strength from hardness measurements, Metallurgical Transactions. 2(7) (1971),1979-1983.
  • A. Kaymakci, N. Ayrilmis, Investigation of correlation between Brinell hardness and tensile strength of wood plastic composites, Composites Part B: Engineering. 58 (2014), 582-585.
  • M. Klisz, J. Ukalska, A. Noskowiak, T. Wojda, S. Jastrzębowski, M. Mionskowski, I. Szyp-Borowska, Correlations between Brinell hardness and basic density in black locust - differences along the stem, Forestry and Wood Technology. 91 (2015), 81-86.
  • B.J. Briscoe, S.K. Sinha, Hardness and Normal Indentation of Polymers, in: G.M. Swallowe (Ed.), Mechanical Properties and Testing of Polymers, Springer Netherlands, Dordrecht, 1999, pp. 113-122.
  • Y.-T. Cheng, C.-M. Cheng, Relationships between hardness, elastic modulus, and the work of indentation, Applied Physics Letters. 73 (1998), 614-616.
  • V. Lorenzo, J.M. Pereña, J.G. Fatou, Vickers microhardness related to mechanical properties of polypropylene, Journal of Materials Science Letters. 8(12) (1989), 1455-1457.
  • R. Altindag, A. Guney, Predicting the relationships between brittleness and mechanical properties (UCS, TS and SH) of rocks, Scientific Research and Essays. 5 (2010), 2107-2118.
  • S. Kantur, G. İrsel, B.N. Güzey, Investigation of combining the 304L and S355J2C+N materials with TIG welding in terms of microstructure and mechanical properties, International Journal of Pressure Vessels and Piping. 206 (2023), 104999.
  • N. Li, T. Wang, L. Zhang, L. Zhang, Microstructure evolution and mechanical properties strengthening in laser powder bed fusion of high-strength SiC and TiB2 co-reinforced Al-Zn-Mg-Cu composites, Journal of Alloys and Compounds. 965 (2023), 171463.
  • S. Swirad, A. Gradzik, K. Ochał, P. Pawlus, Effects of the surface layer of steel samples after ball burnishing on friction and wear in dry reciprocating sliding, Scientific Reports. 13(1) (2023), 11315.
  • I. Volokitina, B. Sapargaliyeva, A. Agabekova, S. Syrlybekkyzy, A. Volokitin, L. Nurshakhanova, F. Nurbaeva, A. Kolesnikov, G. Sabyrbayeva, A. Izbassar, O. Kolesnikova, Y. Liseitsev, S. Vavrenyuk, Increasing strength and performance properties of bimetallic rods during severe plastic deformation, Case Studies in Construction Materials. 19 (2023), e02256.
  • M. Wu, J. Zhang, C. Ma, Y. Zhang, Y. Cheng, Experimental Research on the Surface Quality of Milling Contour Bevel Gears, Chinese Journal of Mechanical Engineering. 36(1) (2023).
  • A. Namalan, Investigation of the effect of nano graphene additive to aluminum matrix ceramic particle reinforced composite-hybrid materials on microstructure-hardness and abrasion behavior, Necmettin Erbakan University the Graduate School of Natural and Applied Science, Konya, Türkiye, 2022.
  • Y. Yıldız, The effect of heat treatment parameters on the mechanical properties of steel in the production of 5140 alloy bolts, Necmettin Erbakan University the Graduate School of Natural and Applied Science, Konya, Türkiye, 2022.
There are 37 citations in total.

Details

Primary Language English
Subjects Material Physics, Metrology, Applied and Industrial Physics, Material Characterization
Journal Section Articles
Authors

İmran Oral 0000-0002-5299-5068

Project Number 211210002
Early Pub Date December 28, 2023
Publication Date December 31, 2023
Acceptance Date October 10, 2023
Published in Issue Year 2023 Volume: 5 Issue: 2

Cite

APA Oral, İ. (2023). Prediction of Hardness Values of Some Wooden Materials Using Computer-Aided Tap Testing. Necmettin Erbakan Üniversitesi Fen Ve Mühendislik Bilimleri Dergisi, 5(2), 257-266. https://doi.org/10.47112/neufmbd.2023.23
AMA Oral İ. Prediction of Hardness Values of Some Wooden Materials Using Computer-Aided Tap Testing. NEJSE. December 2023;5(2):257-266. doi:10.47112/neufmbd.2023.23
Chicago Oral, İmran. “Prediction of Hardness Values of Some Wooden Materials Using Computer-Aided Tap Testing”. Necmettin Erbakan Üniversitesi Fen Ve Mühendislik Bilimleri Dergisi 5, no. 2 (December 2023): 257-66. https://doi.org/10.47112/neufmbd.2023.23.
EndNote Oral İ (December 1, 2023) Prediction of Hardness Values of Some Wooden Materials Using Computer-Aided Tap Testing. Necmettin Erbakan Üniversitesi Fen ve Mühendislik Bilimleri Dergisi 5 2 257–266.
IEEE İ. Oral, “Prediction of Hardness Values of Some Wooden Materials Using Computer-Aided Tap Testing”, NEJSE, vol. 5, no. 2, pp. 257–266, 2023, doi: 10.47112/neufmbd.2023.23.
ISNAD Oral, İmran. “Prediction of Hardness Values of Some Wooden Materials Using Computer-Aided Tap Testing”. Necmettin Erbakan Üniversitesi Fen ve Mühendislik Bilimleri Dergisi 5/2 (December 2023), 257-266. https://doi.org/10.47112/neufmbd.2023.23.
JAMA Oral İ. Prediction of Hardness Values of Some Wooden Materials Using Computer-Aided Tap Testing. NEJSE. 2023;5:257–266.
MLA Oral, İmran. “Prediction of Hardness Values of Some Wooden Materials Using Computer-Aided Tap Testing”. Necmettin Erbakan Üniversitesi Fen Ve Mühendislik Bilimleri Dergisi, vol. 5, no. 2, 2023, pp. 257-66, doi:10.47112/neufmbd.2023.23.
Vancouver Oral İ. Prediction of Hardness Values of Some Wooden Materials Using Computer-Aided Tap Testing. NEJSE. 2023;5(2):257-66.


32206                   17157           17158