Research Article
BibTex RIS Cite

Titanyum Alaşımlaması ile AlCrMnV Tabanlı Hafif Yüksek Entropili Alaşımın Mikroyapı ve Sertlik Gelişimi

Year 2025, Volume: 7 Issue: 1, 22 - 30

Abstract

Yüksek entropili alaşımlar (YEA'lar), mukavemet-süneklik dengesi gibi benzersiz mekanik özellikler sergiler. Son zamanlarda hafif YEA düşük yoğunlukları ve karakteristik özellikleri nedeniyle dikkat çekmektedir. Bu çalışmada, hafif (AlCrMnV)100-xTix (x=0, 5, 25, 50 at. %) YEA’sı içerisine Ti eklenmiş ve ark ergitme metodu ile üretilerek, Ti ilavesinin yapısal ve mekanik özelliklere etkisi incelenmiştir. Döküm numunelerin faz analizi, mikro yapıları, bileşimsel heterojenliği sırasıyla X-ışını difraktometresi (XRD), taramalı elektron mikroskobu (SEM) ve enerji dağılımlı spektrometre (EDS) ile belirlenmiştir. Döküm numunelerinin sertliği ise Vickers sertlik testiyle tespit edilmiştir. Elde edilen sonuçlara göre AlCrMnV YEAsında V-Cr ve Al-Mn açısından zengin bölgeler görülürken (AlCrMnV)95Ti5 YEAsında herhangi bir segregasyon gözlemlenmemiştir. Artan titanyum içeriği ile yapıya ait kafes parametresi büyüyerek, difraksiyon pikleri sola kaymasına sebep olmuştur. Titanyum içeriği at. % 0'dan at. % 25'e çıkarıldığında ise döküm numunelerinin sertliği 471 HV’den 494 HV değerine artmıştır. %5 ve %50 Ti içeren numunelerde kalıp kenarlarına yakın bölgelerde kolonsal, orta bölgelerde ise dendritik yapılar içeren ingot döküm yapıları gözlemlenmiştir. Titanyum ilavesinin (AlCrMnV)100-xTix'in mikroyapısal ve mekanik özellikleri üzerinde önemli etkisi vardır.

References

  • B. Cantor, I.T.H. Chang, P. Knight, A.J.B. Vincent, Microstructural development in equiatomic multicomponent alloys, Materials Science and Engineering: A. 375–377 (2004), 213–218. doi:10.1016/J.MSEA.2003.10.257
  • J.-W. Yeh, S.-K. Chen, S.-J. Lin, J.-Y. Gan, T.-S. Chin, T.-T. Shun, C.-H. Tsau, S.-Y. Chang, Nanostructured high-entropy alloys with multiple principal elements: novel alloy design concepts and outcomes, Advanced Engineering Materials. 6 (2004), 299–303. doi: 10.1002/adem.200300567
  • Y. Zhang, T.T. Zuo, Z. Tang, M.C. Gao, K.A. Dahmen, P.K. Liaw, Z.P. Lu, Microstructures and properties of high-entropy alloys, Progress in Materials Science. 61 (2014), 1–93. doi: 10.1016/j.pmatsci.2013.10.001
  • D.B. Miracle, O.N. Senkov, A critical review of high entropy alloys and related concepts, Acta Materialia. 122 (2017), 448–511. doi:10.1016/j.actamat.2016.08.081
  • F. Otto, Y. Yang, H. Bei, E.P. George, Relative effects of enthalpy and entropy on the phase stability of equiatomic high-entropy alloys, Acta Materialia. 61 (2013), 2628–2638. doi: 10.1016/j.actamat.2013.01.042
  • J.W. Yeh, Recent progress in high-entropy alloys, Annales de Chimie Science Des Materiaux (Paris). 31 (2006), 633–648
  • D. Ma, M. Yao, K.G. Pradeep, C.C. Tasan, H. Springer, D. Raabe, Phase stability of non-equiatomic CoCrFeMnNi high entropy alloys, Acta Materialia. 98 (2015), 288–296. doi: 10.1016/j.actamat.2015.07.030
  • B.S. Murty, J.W. Yeh, S. Ranganathan, Chapter 2 - High-Entropy Alloys: Basic Concepts, in: B.S. Murty, J.W. Yeh, S.B.T.-H.E.A. Ranganathan (Eds.), Butterworth-Heinemann, Boston, 2014: pp. 13–35. doi: 10.1016/B978-0-12-800251-3.00002-X
  • N. Nayan, G. Singh, S.V.S.N. Murty, A.K. Jha, B. Pant, K.M. George, U. Ramamurty, Hot deformation behaviour and microstructure control in AlCrCuNiFeCo high entropy alloy, Intermetallics. 55 (2014), 145–153. doi: 10.1016/j.intermet.2014.07.019
  • Y.J. Zhou, Y. Zhang, Y.L. Wang, G.L. Chen, Solid solution alloys of AlCoCrFeNiTix with excellent room-temperature mechanical properties, Applied Physics Letters. 90 (2007), 181904. doi:10.1063/1.2734517
  • E. Madenci, Fonksiyonel derecelendirilmiş malzeme plakların statik analizinde mikro-mekanik modellerin katkısı, Necmettin Erbakan Üniversitesi Fen ve Mühendislik Bilimleri Dergisi. 5 (2023), 23–37. doi:10.47112/neufmbd.2023.7
  • L. Gemi, M. Azeem, Ş. Yazman, M. Kayrıcı, O. Gök, Investigation of mechanical properties and damage development of filament wound GFRP composite pipes by ring tensile test, Necmettin Erbakan Üniversitesi Fen ve Mühendislik Bilimleri Dergisi. 6 (2024), 93–104. doi:10.47112/neufmbd.2024.34
  • E.P. George, W.A. Curtin, C.C. Tasan, High entropy alloys: A focused review of mechanical properties and deformation mechanisms, Acta Materialia. 188 (2020), 435–474. doi: 10.1016/j.actamat.2019.12.015
  • Y.-C. Liao, P.-S. Chen, C.-H. Li, P.-H. Tsai, J.S.C. Jang, K.-C. Hsieh, C.-Y. Chen, P.-H. Lin, J.C. Huang, H.-J. Wu, Y.-C. Lo, C.-W. Huang, I.-Y. Tsao, Development of novel lightweight dual-phase Al-Ti-Cr-Mn-V medium-entropy alloys with high strength and ductility, Entropy. 22 (2020). doi:10.3390/e22010074
  • O. Maulik, D. Kumar, S. Kumar, S.K. Dewangan, V. Kumar, Structure and properties of lightweight high entropy alloys: a brief review, Materials Research Express. 5 (2018), 52001. doi:10.1088/2053-1591/aabbca
  • M.J. Chae, A. Sharma, M.C. Oh, B. Ahn, Lightweight AlCuFeMnMgTi high entropy alloy with high strength-to-density ratio processed by powder metallurgy, Metals and Materials International. 27 (2021), 629–638. doi:10.1007/s12540-020-00823-5
  • X. Huang, J. Miao, A.A. Luo, Order-disorder transition and its mechanical effects in lightweight AlCrTiV high entropy alloys, Scripta Materialia. 210 (2022), 114462. doi: 10.1016/j.scriptamat.2021.114462
  • K.M. Youssef, A.J. Zaddach, C. Niu, D.L. Irving, C.C. Koch, A Novel Low-Density, High-Hardness, High-entropy Alloy with Close-packed Single-phase Nanocrystalline Structures, Materials Research Letters. 3 (2015), 95–99. doi:10.1080/21663831.2014.985855
  • İ. Oral, Prediction of hardness values of some wooden materials using computer-aided tap testing, Necmettin Erbakan Üniversitesi Fen ve Mühendislik Bilimleri Dergisi. 5 (2023), 257–266. doi:10.47112/neufmbd.2023.23
  • [Y. Qiu, Y.J. Hu, A. Taylor, M.J. Styles, R.K.W. Marceau, A. V. Ceguerra, M.A. Gibson, Z.K. Liu, H.L. Fraser, N. Birbilis, A lightweight single-phase AlTiVCr compositionally complex alloy, Acta Materialia. 123 (2017), 115–124. doi:10.1016/J.ACTAMAT.2016.10.037
  • S. Son, P. Asghari-Rad, J. Choi, A. Kim, J.-H. Jeong, S. Cho, H.S. Kim, Design and mechanical properties of body-centered cubic AlVCr medium-entropy aluminum alloys, Journal of Materials Research and Technology. 24 (2023), 7302–7312. doi: 10.1016/j.jmrt.2023.05.021
  • K. Knipling, P. Narayana, L. Nguyen, D. Beaudry, Microstructures and properties of as-cast AlCrFeMnV, AlCrFeTiV, and AlCrMnTiV multi-principal element alloys, Journal of Applied Physics. 133 (2023), 104901. doi:10.1063/5.0135276
  • G. Polat, Z.A. Erdal, Y.E. Kalay, Design of Novel Non-equiatomic Cu-Ni-Al-Ti Composite Medium-Entropy Alloys, Journal of Materials Engineering and Performance. 29 (2020), 2898–2908. doi:10.1007/s11665-020-04830-w
  • K.E. Knipling, P.U. Narayana, L.T. Nguyen, Microstructures and properties of As-Cast AlCrFeMnV, AlCrFeTiV, and AlCrMnTiV high entropy alloys, Microscopy and Microanalysis. 23 (2017), 702–703. doi:10.1017/S1431927617004172
  • S. Guo, C.T. Liu, Phase stability in high entropy alloys : Formation of solid-solution phase or amorphous phase, Progress in Natural Science: Materials International. 21 (2011), 433–446. doi:10.1016/S1002-0071(12)60080-X
  • G. Polat, T.S. Atalay Kalsen, Al içeriğinin (CoCrFe)60AlxNi(40-x) Yüksek entropili alaşımının yapısal ve mekanik özellikleri üzerindeki etkisi, Kahramanmaraş Sütçü İmam Üniversitesi Mühendislik Bilimleri Dergisi. 26 (2023), 812–822. doi:10.17780/ksujes.1279081
  • C. Li, Y. Yuan, F. Li, Q. Wei, Y. Huang, Modification and verification of Miedema model for predicating thermodynamic properties of binary precipitates in multi-element alloys, Physica B: Condensed Matter. 627 (2022), 413540. doi:10.1016/j.physb.2021.413540
  • A. Takeuchi, A. Inoue, Classification of bulk metallic glasses by atomic size difference, heat of mixing and period of constituent elements and ıts application to characterization of the main alloying element, Materials Transactions. 46 (2005), 2817–2829. doi:10.2320/matertrans.46.2817
  • X. Huang, J. Miao, A.A. Luo, Lightweight AlCrTiV high-entropy alloys with dual-phase microstructure via microalloying, Journal of Materials Science. 54 (2019) 2271–2277. doi:10.1007/s10853-018-2970-4
  • L. Cao, L. Zhu, H. Shi, Z. Wang, Y. Yang, Y. Meng, L. Zhang, Y. Cui, microstructural evolution from dendrites to core-shell equiaxed grain morphology for CoCrFeNiVx high-entropy alloys in metallic casting mold, Metals, 9 (2019), 1172. doi:10.3390/MET9111172

Microstructure and Hardness Evolution of AlCrMnV-based Lightweight High Entropy Alloy through Titanium Alloying

Year 2025, Volume: 7 Issue: 1, 22 - 30

Abstract

HHigh-entropy alloys (HEAs) exhibit unique mechanical properties such as strength-ductility balance. Recently, light HEAs have attracted attention due to their low density and characteristic properties. In this study, Ti was gradually added to lightweight (AlCrMnV)100-xTix(x=0, 5, 25, 50 at. %) HEAs and produced by the arc melting method, and the effect of Ti addition on structural and mechanical properties was examined. Phase analysis, microstructures and compositional heterogeneity of the cast samples were determined by X-ray diffractometer (XRD), scanning electron microscope (SEM) and energy dispersive spectrometry (EDS), respectively. The hardness of the casting samples was determined by the Vickers hardness test. The results showed that V-Cr and Al-Mn rich regions were observed in the AlCrMnV sample, while no segregation was observed in the (AlCrMnV)95Ti5 sample. As the titanium content increased, the lattice parameter of the structure increased, causing the diffraction peaks to shift to the left. Accordingly, when the Ti content was increased from 0 at. % to 25 at. %, the hardness of the casting samples increased from 471 HV to 494 HV, respectively. Ingot cast structures, columnar at the edges, and dendritic structures, at the center zones were obtained in samples with 5 at% and 50 at.% Ti. The addition of titanium has a substantial impact on the structural and mechanical properties of (AlCrMnV)100-xTix.

References

  • B. Cantor, I.T.H. Chang, P. Knight, A.J.B. Vincent, Microstructural development in equiatomic multicomponent alloys, Materials Science and Engineering: A. 375–377 (2004), 213–218. doi:10.1016/J.MSEA.2003.10.257
  • J.-W. Yeh, S.-K. Chen, S.-J. Lin, J.-Y. Gan, T.-S. Chin, T.-T. Shun, C.-H. Tsau, S.-Y. Chang, Nanostructured high-entropy alloys with multiple principal elements: novel alloy design concepts and outcomes, Advanced Engineering Materials. 6 (2004), 299–303. doi: 10.1002/adem.200300567
  • Y. Zhang, T.T. Zuo, Z. Tang, M.C. Gao, K.A. Dahmen, P.K. Liaw, Z.P. Lu, Microstructures and properties of high-entropy alloys, Progress in Materials Science. 61 (2014), 1–93. doi: 10.1016/j.pmatsci.2013.10.001
  • D.B. Miracle, O.N. Senkov, A critical review of high entropy alloys and related concepts, Acta Materialia. 122 (2017), 448–511. doi:10.1016/j.actamat.2016.08.081
  • F. Otto, Y. Yang, H. Bei, E.P. George, Relative effects of enthalpy and entropy on the phase stability of equiatomic high-entropy alloys, Acta Materialia. 61 (2013), 2628–2638. doi: 10.1016/j.actamat.2013.01.042
  • J.W. Yeh, Recent progress in high-entropy alloys, Annales de Chimie Science Des Materiaux (Paris). 31 (2006), 633–648
  • D. Ma, M. Yao, K.G. Pradeep, C.C. Tasan, H. Springer, D. Raabe, Phase stability of non-equiatomic CoCrFeMnNi high entropy alloys, Acta Materialia. 98 (2015), 288–296. doi: 10.1016/j.actamat.2015.07.030
  • B.S. Murty, J.W. Yeh, S. Ranganathan, Chapter 2 - High-Entropy Alloys: Basic Concepts, in: B.S. Murty, J.W. Yeh, S.B.T.-H.E.A. Ranganathan (Eds.), Butterworth-Heinemann, Boston, 2014: pp. 13–35. doi: 10.1016/B978-0-12-800251-3.00002-X
  • N. Nayan, G. Singh, S.V.S.N. Murty, A.K. Jha, B. Pant, K.M. George, U. Ramamurty, Hot deformation behaviour and microstructure control in AlCrCuNiFeCo high entropy alloy, Intermetallics. 55 (2014), 145–153. doi: 10.1016/j.intermet.2014.07.019
  • Y.J. Zhou, Y. Zhang, Y.L. Wang, G.L. Chen, Solid solution alloys of AlCoCrFeNiTix with excellent room-temperature mechanical properties, Applied Physics Letters. 90 (2007), 181904. doi:10.1063/1.2734517
  • E. Madenci, Fonksiyonel derecelendirilmiş malzeme plakların statik analizinde mikro-mekanik modellerin katkısı, Necmettin Erbakan Üniversitesi Fen ve Mühendislik Bilimleri Dergisi. 5 (2023), 23–37. doi:10.47112/neufmbd.2023.7
  • L. Gemi, M. Azeem, Ş. Yazman, M. Kayrıcı, O. Gök, Investigation of mechanical properties and damage development of filament wound GFRP composite pipes by ring tensile test, Necmettin Erbakan Üniversitesi Fen ve Mühendislik Bilimleri Dergisi. 6 (2024), 93–104. doi:10.47112/neufmbd.2024.34
  • E.P. George, W.A. Curtin, C.C. Tasan, High entropy alloys: A focused review of mechanical properties and deformation mechanisms, Acta Materialia. 188 (2020), 435–474. doi: 10.1016/j.actamat.2019.12.015
  • Y.-C. Liao, P.-S. Chen, C.-H. Li, P.-H. Tsai, J.S.C. Jang, K.-C. Hsieh, C.-Y. Chen, P.-H. Lin, J.C. Huang, H.-J. Wu, Y.-C. Lo, C.-W. Huang, I.-Y. Tsao, Development of novel lightweight dual-phase Al-Ti-Cr-Mn-V medium-entropy alloys with high strength and ductility, Entropy. 22 (2020). doi:10.3390/e22010074
  • O. Maulik, D. Kumar, S. Kumar, S.K. Dewangan, V. Kumar, Structure and properties of lightweight high entropy alloys: a brief review, Materials Research Express. 5 (2018), 52001. doi:10.1088/2053-1591/aabbca
  • M.J. Chae, A. Sharma, M.C. Oh, B. Ahn, Lightweight AlCuFeMnMgTi high entropy alloy with high strength-to-density ratio processed by powder metallurgy, Metals and Materials International. 27 (2021), 629–638. doi:10.1007/s12540-020-00823-5
  • X. Huang, J. Miao, A.A. Luo, Order-disorder transition and its mechanical effects in lightweight AlCrTiV high entropy alloys, Scripta Materialia. 210 (2022), 114462. doi: 10.1016/j.scriptamat.2021.114462
  • K.M. Youssef, A.J. Zaddach, C. Niu, D.L. Irving, C.C. Koch, A Novel Low-Density, High-Hardness, High-entropy Alloy with Close-packed Single-phase Nanocrystalline Structures, Materials Research Letters. 3 (2015), 95–99. doi:10.1080/21663831.2014.985855
  • İ. Oral, Prediction of hardness values of some wooden materials using computer-aided tap testing, Necmettin Erbakan Üniversitesi Fen ve Mühendislik Bilimleri Dergisi. 5 (2023), 257–266. doi:10.47112/neufmbd.2023.23
  • [Y. Qiu, Y.J. Hu, A. Taylor, M.J. Styles, R.K.W. Marceau, A. V. Ceguerra, M.A. Gibson, Z.K. Liu, H.L. Fraser, N. Birbilis, A lightweight single-phase AlTiVCr compositionally complex alloy, Acta Materialia. 123 (2017), 115–124. doi:10.1016/J.ACTAMAT.2016.10.037
  • S. Son, P. Asghari-Rad, J. Choi, A. Kim, J.-H. Jeong, S. Cho, H.S. Kim, Design and mechanical properties of body-centered cubic AlVCr medium-entropy aluminum alloys, Journal of Materials Research and Technology. 24 (2023), 7302–7312. doi: 10.1016/j.jmrt.2023.05.021
  • K. Knipling, P. Narayana, L. Nguyen, D. Beaudry, Microstructures and properties of as-cast AlCrFeMnV, AlCrFeTiV, and AlCrMnTiV multi-principal element alloys, Journal of Applied Physics. 133 (2023), 104901. doi:10.1063/5.0135276
  • G. Polat, Z.A. Erdal, Y.E. Kalay, Design of Novel Non-equiatomic Cu-Ni-Al-Ti Composite Medium-Entropy Alloys, Journal of Materials Engineering and Performance. 29 (2020), 2898–2908. doi:10.1007/s11665-020-04830-w
  • K.E. Knipling, P.U. Narayana, L.T. Nguyen, Microstructures and properties of As-Cast AlCrFeMnV, AlCrFeTiV, and AlCrMnTiV high entropy alloys, Microscopy and Microanalysis. 23 (2017), 702–703. doi:10.1017/S1431927617004172
  • S. Guo, C.T. Liu, Phase stability in high entropy alloys : Formation of solid-solution phase or amorphous phase, Progress in Natural Science: Materials International. 21 (2011), 433–446. doi:10.1016/S1002-0071(12)60080-X
  • G. Polat, T.S. Atalay Kalsen, Al içeriğinin (CoCrFe)60AlxNi(40-x) Yüksek entropili alaşımının yapısal ve mekanik özellikleri üzerindeki etkisi, Kahramanmaraş Sütçü İmam Üniversitesi Mühendislik Bilimleri Dergisi. 26 (2023), 812–822. doi:10.17780/ksujes.1279081
  • C. Li, Y. Yuan, F. Li, Q. Wei, Y. Huang, Modification and verification of Miedema model for predicating thermodynamic properties of binary precipitates in multi-element alloys, Physica B: Condensed Matter. 627 (2022), 413540. doi:10.1016/j.physb.2021.413540
  • A. Takeuchi, A. Inoue, Classification of bulk metallic glasses by atomic size difference, heat of mixing and period of constituent elements and ıts application to characterization of the main alloying element, Materials Transactions. 46 (2005), 2817–2829. doi:10.2320/matertrans.46.2817
  • X. Huang, J. Miao, A.A. Luo, Lightweight AlCrTiV high-entropy alloys with dual-phase microstructure via microalloying, Journal of Materials Science. 54 (2019) 2271–2277. doi:10.1007/s10853-018-2970-4
  • L. Cao, L. Zhu, H. Shi, Z. Wang, Y. Yang, Y. Meng, L. Zhang, Y. Cui, microstructural evolution from dendrites to core-shell equiaxed grain morphology for CoCrFeNiVx high-entropy alloys in metallic casting mold, Metals, 9 (2019), 1172. doi:10.3390/MET9111172
There are 30 citations in total.

Details

Primary Language English
Subjects Material Characterization, Metals and Alloy Materials
Journal Section Articles
Authors

Tuğba Selcen Atalay Kalsen 0000-0001-5763-9196

Gökhan Polat 0000-0003-0143-900X

Early Pub Date January 9, 2025
Publication Date
Submission Date January 23, 2024
Acceptance Date July 24, 2024
Published in Issue Year 2025 Volume: 7 Issue: 1

Cite

APA Atalay Kalsen, T. S., & Polat, G. (2025). Microstructure and Hardness Evolution of AlCrMnV-based Lightweight High Entropy Alloy through Titanium Alloying. Necmettin Erbakan Üniversitesi Fen Ve Mühendislik Bilimleri Dergisi, 7(1), 22-30.
AMA Atalay Kalsen TS, Polat G. Microstructure and Hardness Evolution of AlCrMnV-based Lightweight High Entropy Alloy through Titanium Alloying. NEJSE. January 2025;7(1):22-30.
Chicago Atalay Kalsen, Tuğba Selcen, and Gökhan Polat. “Microstructure and Hardness Evolution of AlCrMnV-Based Lightweight High Entropy Alloy through Titanium Alloying”. Necmettin Erbakan Üniversitesi Fen Ve Mühendislik Bilimleri Dergisi 7, no. 1 (January 2025): 22-30.
EndNote Atalay Kalsen TS, Polat G (January 1, 2025) Microstructure and Hardness Evolution of AlCrMnV-based Lightweight High Entropy Alloy through Titanium Alloying. Necmettin Erbakan Üniversitesi Fen ve Mühendislik Bilimleri Dergisi 7 1 22–30.
IEEE T. S. Atalay Kalsen and G. Polat, “Microstructure and Hardness Evolution of AlCrMnV-based Lightweight High Entropy Alloy through Titanium Alloying”, NEJSE, vol. 7, no. 1, pp. 22–30, 2025.
ISNAD Atalay Kalsen, Tuğba Selcen - Polat, Gökhan. “Microstructure and Hardness Evolution of AlCrMnV-Based Lightweight High Entropy Alloy through Titanium Alloying”. Necmettin Erbakan Üniversitesi Fen ve Mühendislik Bilimleri Dergisi 7/1 (January 2025), 22-30.
JAMA Atalay Kalsen TS, Polat G. Microstructure and Hardness Evolution of AlCrMnV-based Lightweight High Entropy Alloy through Titanium Alloying. NEJSE. 2025;7:22–30.
MLA Atalay Kalsen, Tuğba Selcen and Gökhan Polat. “Microstructure and Hardness Evolution of AlCrMnV-Based Lightweight High Entropy Alloy through Titanium Alloying”. Necmettin Erbakan Üniversitesi Fen Ve Mühendislik Bilimleri Dergisi, vol. 7, no. 1, 2025, pp. 22-30.
Vancouver Atalay Kalsen TS, Polat G. Microstructure and Hardness Evolution of AlCrMnV-based Lightweight High Entropy Alloy through Titanium Alloying. NEJSE. 2025;7(1):22-30.


32206                   17157           17158