Research Article
BibTex RIS Cite

Molecular Docking Analysis of Thymoquinone and Thymol on Histamine Receptors

Year 2025, Volume: 7 Issue: 1, 1 - 11

Abstract

Black cumin or N. sativa L. is a popular medicinal herb among the valuable plants, native to a wide range of areas around the world. In traditional medicine, it was used to treat diseases related to the respiratory, digestive, and cardiovascular systems. Thymoquinone is a derivative of thymol, a plant-derived compound primarily found in Nigella sativa L., and it is a natural phenolic compound with antioxidant, anti-inflammatory, and antitumor properties. Thymol, on the other hand, is a monoterpene and a volatile oil component naturally occurring in various plants. It possesses antioxidant, antiseptic, antimicrobial, and anti-inflammatory properties. Both thymoquinone and thymol exhibit anti-allergic effects and are known as components used to alleviate or prevent allergic reactions. In this study, the allergy receptors present in the human body, namely H1R, H2R, H3R, and H4R histamine receptors, were specifically targeted. Molecular docking studies revealed that thymoquinone and thymol exhibited significant affinity towards H1R, H2R, H3R, and H4R histamine receptors, indicating their potential as molecules of importance in the context of allergic reactions.

Ethical Statement

We affirm that the presented study adheres to the PUBLICATION ETHICS and accept ethical responsibility for the article.

Thanks

We gratefully acknowledge Necmettin Erbakan University R.A.C. of Science And Technology (BITAM) for their support.

References

  • S. Çakmakçı, Y. Çakır, Çörekotu (Nigella sativa L.): Bileşimi, gıda sanayinde kullanımı ve sağlık üzerine etkileri, Akademik Gıda / Academic Food Journal. 9 (2011), 61-69.
  • K. Hayashi, N. Kato, M. Kato, K. Ishikawa, Impacts of channel direction on bone tissue engineering in 3D-printed carbonate apatite scaffolds, Materials and Design. 204 (2021). doi:10.1016/j.matdes.2021.109686
  • S. Saadat, M.R. Aslani, V. Ghorani, R. Keyhanmanesh, M.H. Boskabady, The effects of Nigella sativa on respiratory, allergic and immunologic disorders, evidence from experimental and clinical studies, a comprehensive and updated review, Phytotherapy Research. 35 (2021), 2968-2996. doi:10.1002/ptr.7003
  • Z. Li, Y. Wang, Q. Xu, J. Ma, X. Li, J. Yan, Y. Tian, Y. Wen, T. Chen, Nigella sativa and health outcomes: An overview of systematic reviews and meta-analyses, Frontiers in Nutrition. 10 (2023). doi:10.3389/fnut.2023.1107750
  • S. Darakhshan, A. Bidmeshki Pour, A. Hosseinzadeh Colagar, S. Sisakhtnezhad, Thymoquinone and its therapeutic potentials, Pharmacological Research. 95-96 (2015), 138-158. doi:10.1016/j.phrs.2015.03.011
  • G. Avci, A. Bülbül, Çörek Otu Tohumu Esansiyel Yağının Antioksidan Etkinliğinin in vitro Yöntemlerle Araştırılması, Avrasya Sağlık Bilimleri Dergisi. 4 (2021) 154-161. doi:10.53493/avrasyasbd.862336
  • Ş. Yildiz, S. Turan, Timokinon, Timol ve Karvakrolün Antioksidan Aktiviteleri ve Lipit Oksidasyonunu Önleme Kapasiteleri, Atatürk Üniversitesi Ziraat Fakültesi Dergisi. 52(1) (2021), 108-118. doi:10.17097/ataunizfd.773499
  • G. Barger, H. Dale, Chemical structure and sympathomimetic action of amines, The Journal of Physiology. 41 (1910), 19-59. doi:10.1113/jphysiol.1910.sp001392
  • P. Lieberman, The basics of histamine biology, Annals of Allergy, Asthma and Immunology. 106 (2011). doi:10.1016/j.anai.2010.08.005
  • T. Moriguchi, J. Takai, Histamine and histidine decarboxylase: Immunomodulatory functions and regulatory mechanisms, Genes to Cells. 25 (2020), 443-449. doi:10.1111/gtc.12774
  • A.F. Kalpaklıoğlu, İ. Koca Kalkan, A. Baççıoğlu Kavut, Histamin ve antihistaminler, Turkiye Klinikleri Immunology Allergy-Special Topics. 5 (2012), 12-24.
  • M. Moradi, R. Golmohammadi, A. Najafi, M. Moosazadeh Moghaddam, M. Fasihi-Ramandi, R. Mirnejad, A contemporary review on the important role of in silico approaches for managing different aspects of COVID-19 crisis, Informatics in Medicine Unlocked. 28 (2022). doi:10.1016/j.imu.2022.100862
  • H.M. Berman, J. Westbrook, Z. Feng, G. Gilliland, T.N. Bhat, H. Weissig, I.N. Shindyalov, P.E. Bourne, The protein data bank, Nucleic Acids Research. 28 (2000), 235-242. doi:10.1093/nar/28.1.235
  • S. Pagola, A. Benavente, A. Raschi, E. Romano, M.A.A. Molina, P.W. Stephens, Crystal structure determination of thymoquinone by high-resolution x-ray powder diffraction, AAPS PharmSciTech. 5 (2004). doi:10.1208/pt050228
  • E. Zhou, Y. Fu, Z. Wei, Y. Yu, X. Zhang, Z. Yang, Thymol attenuates allergic airway inflammation in ovalbumin (OVA)-induced mouse asthma, Fitoterapia. 96 (2014), 131-137. doi:10.1016/j.fitote.2014.04.016
  • E.F. Ediz, M. Demirel Kars, Moleküler yerleştirme yöntemi ile kanabidiolün reseptör-ligant etkileşiminin incelenmesi, Karadeniz Fen Bilimleri Dergisi. 13 (2023), 398-414. doi:10.31466/kfbd.1214649
  • W. Suttithumsatid, M.A. Shah, S. Bibi, P. Panichayupakaranant, α-Glucosidase inhibitory activity of cannabidiol, tetrahydrocannabinol and standardized cannabinoid extracts from Cannabis sativa, Current Research in Food Science. 5 (2022), 1091-1097. doi:10.1016/j.crfs.2022.07.002
  • A. Daina, O. Michielin, V. Zoete, SwissADME: A free web tool to evaluate pharmacokinetics, drug-likeness and medicinal chemistry friendliness of small molecules, Scientific Reports. 7 (2017). doi:10.1038/srep42717
  • A. Lagunin, A. Zakharov, D. Filimonov, V. Poroikov, QSAR modelling of rat acute toxicity on the basis of PASS prediction, içinde: Molecular Informatics, Wiley-VCH Verlag, 2011: ss. 241-250. doi:10.1002/minf.201000151
  • W.M. Pardridge, Drug transport across the blood-brain barrier, Journal of Cerebral Blood Flow and Metabolism. 32 (2012), 1959-1972. doi:10.1038/jcbfm.2012.126
  • W. Löscher, H. Potschka, Blood-brain barrier active efflux transporters: ATP-binding cassette gene family, NeuroRx. 2 (2005), 86-98. doi:10.1602/neurorx.2.1.86
  • S.-F. Zhou, Drugs behave as substrates, inhibitors and inducers of human cytochrome P450 3A4, Current Drug Metabolism. 9 (2008), 310-322. doi:10.2174/138920008784220664

Timokinon ve Timol'ün Histamin Reseptörleri Üzerinde Moleküler Kenetleme Analizi

Year 2025, Volume: 7 Issue: 1, 1 - 11

Abstract

Çörek otu veya N. sativa L., dünya çapında geniş bir alana yayılmış olan değerli bitkiler arasında popüler bir şifalı ottur. Geleneksel tıpta, solunum, sindirim ve kardiyovasküler sistemlerle ilgili hastalıkları tedavi etmek için kullanılmıştır. Timokinon, özellikle Nigella sativa L. bitkisinde bulunan bitki kökenli bir bileşik olan timolün türevidir ve antioksidan, anti-enflamatuar ve antitümör özelliklere sahip doğal bir fenolik bileşiktir. Timol ise bir monoterpendir ve çeşitli bitkilerde doğal olarak bulunan bir uçucu yağ bileşenidir. Antioksidan, antiseptik, antimikrobiyal ve anti-enflamatuar özelliklere sahiptir. Timokinon ve timol, anti-alerjik etkilere sahiptir ve alerjik reaksiyonları hafifletmek veya önlemek için kullanılan bileşenler olarak bilinir. Bu çalışmada insan vücudunda bulunan alerji reseptörü olan H1R, H2R, H3R, and H4R histamine reseptörleri tercih edilmiştir. Yapılan moleküler yerleştirme çalışmaları sonucunda timokinon ve timolün H1R, H2R, H3R, and H4R histamine reseptörleri için önemli afiniteye sahip bir molekül olduğu gösterilmiştir.

Ethical Statement

Sunulan çalışmanın YAYIN ETİĞİNE uyduğunu ve makale hakkında etik sorumluluğu kabul ederiz.

Thanks

Necmettin Erbakan Üniversitesi Bilim ve Teknoloji Araştırma ve Uygulama Merkezi (BITAM) tarafından sağlanan destekten dolayı minnettarız.

References

  • S. Çakmakçı, Y. Çakır, Çörekotu (Nigella sativa L.): Bileşimi, gıda sanayinde kullanımı ve sağlık üzerine etkileri, Akademik Gıda / Academic Food Journal. 9 (2011), 61-69.
  • K. Hayashi, N. Kato, M. Kato, K. Ishikawa, Impacts of channel direction on bone tissue engineering in 3D-printed carbonate apatite scaffolds, Materials and Design. 204 (2021). doi:10.1016/j.matdes.2021.109686
  • S. Saadat, M.R. Aslani, V. Ghorani, R. Keyhanmanesh, M.H. Boskabady, The effects of Nigella sativa on respiratory, allergic and immunologic disorders, evidence from experimental and clinical studies, a comprehensive and updated review, Phytotherapy Research. 35 (2021), 2968-2996. doi:10.1002/ptr.7003
  • Z. Li, Y. Wang, Q. Xu, J. Ma, X. Li, J. Yan, Y. Tian, Y. Wen, T. Chen, Nigella sativa and health outcomes: An overview of systematic reviews and meta-analyses, Frontiers in Nutrition. 10 (2023). doi:10.3389/fnut.2023.1107750
  • S. Darakhshan, A. Bidmeshki Pour, A. Hosseinzadeh Colagar, S. Sisakhtnezhad, Thymoquinone and its therapeutic potentials, Pharmacological Research. 95-96 (2015), 138-158. doi:10.1016/j.phrs.2015.03.011
  • G. Avci, A. Bülbül, Çörek Otu Tohumu Esansiyel Yağının Antioksidan Etkinliğinin in vitro Yöntemlerle Araştırılması, Avrasya Sağlık Bilimleri Dergisi. 4 (2021) 154-161. doi:10.53493/avrasyasbd.862336
  • Ş. Yildiz, S. Turan, Timokinon, Timol ve Karvakrolün Antioksidan Aktiviteleri ve Lipit Oksidasyonunu Önleme Kapasiteleri, Atatürk Üniversitesi Ziraat Fakültesi Dergisi. 52(1) (2021), 108-118. doi:10.17097/ataunizfd.773499
  • G. Barger, H. Dale, Chemical structure and sympathomimetic action of amines, The Journal of Physiology. 41 (1910), 19-59. doi:10.1113/jphysiol.1910.sp001392
  • P. Lieberman, The basics of histamine biology, Annals of Allergy, Asthma and Immunology. 106 (2011). doi:10.1016/j.anai.2010.08.005
  • T. Moriguchi, J. Takai, Histamine and histidine decarboxylase: Immunomodulatory functions and regulatory mechanisms, Genes to Cells. 25 (2020), 443-449. doi:10.1111/gtc.12774
  • A.F. Kalpaklıoğlu, İ. Koca Kalkan, A. Baççıoğlu Kavut, Histamin ve antihistaminler, Turkiye Klinikleri Immunology Allergy-Special Topics. 5 (2012), 12-24.
  • M. Moradi, R. Golmohammadi, A. Najafi, M. Moosazadeh Moghaddam, M. Fasihi-Ramandi, R. Mirnejad, A contemporary review on the important role of in silico approaches for managing different aspects of COVID-19 crisis, Informatics in Medicine Unlocked. 28 (2022). doi:10.1016/j.imu.2022.100862
  • H.M. Berman, J. Westbrook, Z. Feng, G. Gilliland, T.N. Bhat, H. Weissig, I.N. Shindyalov, P.E. Bourne, The protein data bank, Nucleic Acids Research. 28 (2000), 235-242. doi:10.1093/nar/28.1.235
  • S. Pagola, A. Benavente, A. Raschi, E. Romano, M.A.A. Molina, P.W. Stephens, Crystal structure determination of thymoquinone by high-resolution x-ray powder diffraction, AAPS PharmSciTech. 5 (2004). doi:10.1208/pt050228
  • E. Zhou, Y. Fu, Z. Wei, Y. Yu, X. Zhang, Z. Yang, Thymol attenuates allergic airway inflammation in ovalbumin (OVA)-induced mouse asthma, Fitoterapia. 96 (2014), 131-137. doi:10.1016/j.fitote.2014.04.016
  • E.F. Ediz, M. Demirel Kars, Moleküler yerleştirme yöntemi ile kanabidiolün reseptör-ligant etkileşiminin incelenmesi, Karadeniz Fen Bilimleri Dergisi. 13 (2023), 398-414. doi:10.31466/kfbd.1214649
  • W. Suttithumsatid, M.A. Shah, S. Bibi, P. Panichayupakaranant, α-Glucosidase inhibitory activity of cannabidiol, tetrahydrocannabinol and standardized cannabinoid extracts from Cannabis sativa, Current Research in Food Science. 5 (2022), 1091-1097. doi:10.1016/j.crfs.2022.07.002
  • A. Daina, O. Michielin, V. Zoete, SwissADME: A free web tool to evaluate pharmacokinetics, drug-likeness and medicinal chemistry friendliness of small molecules, Scientific Reports. 7 (2017). doi:10.1038/srep42717
  • A. Lagunin, A. Zakharov, D. Filimonov, V. Poroikov, QSAR modelling of rat acute toxicity on the basis of PASS prediction, içinde: Molecular Informatics, Wiley-VCH Verlag, 2011: ss. 241-250. doi:10.1002/minf.201000151
  • W.M. Pardridge, Drug transport across the blood-brain barrier, Journal of Cerebral Blood Flow and Metabolism. 32 (2012), 1959-1972. doi:10.1038/jcbfm.2012.126
  • W. Löscher, H. Potschka, Blood-brain barrier active efflux transporters: ATP-binding cassette gene family, NeuroRx. 2 (2005), 86-98. doi:10.1602/neurorx.2.1.86
  • S.-F. Zhou, Drugs behave as substrates, inhibitors and inducers of human cytochrome P450 3A4, Current Drug Metabolism. 9 (2008), 310-322. doi:10.2174/138920008784220664
There are 22 citations in total.

Details

Primary Language English
Subjects Natural Products and Bioactive Compounds, Chemical Engineering (Other)
Journal Section Articles
Authors

Emre Fatih Ediz 0000-0003-0259-4298

Meltem Demirel Kars 0000-0002-7300-4075

Early Pub Date January 9, 2025
Publication Date
Submission Date January 31, 2024
Acceptance Date June 30, 2024
Published in Issue Year 2025 Volume: 7 Issue: 1

Cite

APA Ediz, E. F., & Demirel Kars, M. (2025). Molecular Docking Analysis of Thymoquinone and Thymol on Histamine Receptors. Necmettin Erbakan Üniversitesi Fen Ve Mühendislik Bilimleri Dergisi, 7(1), 1-11.
AMA Ediz EF, Demirel Kars M. Molecular Docking Analysis of Thymoquinone and Thymol on Histamine Receptors. NEJSE. January 2025;7(1):1-11.
Chicago Ediz, Emre Fatih, and Meltem Demirel Kars. “Molecular Docking Analysis of Thymoquinone and Thymol on Histamine Receptors”. Necmettin Erbakan Üniversitesi Fen Ve Mühendislik Bilimleri Dergisi 7, no. 1 (January 2025): 1-11.
EndNote Ediz EF, Demirel Kars M (January 1, 2025) Molecular Docking Analysis of Thymoquinone and Thymol on Histamine Receptors. Necmettin Erbakan Üniversitesi Fen ve Mühendislik Bilimleri Dergisi 7 1 1–11.
IEEE E. F. Ediz and M. Demirel Kars, “Molecular Docking Analysis of Thymoquinone and Thymol on Histamine Receptors”, NEJSE, vol. 7, no. 1, pp. 1–11, 2025.
ISNAD Ediz, Emre Fatih - Demirel Kars, Meltem. “Molecular Docking Analysis of Thymoquinone and Thymol on Histamine Receptors”. Necmettin Erbakan Üniversitesi Fen ve Mühendislik Bilimleri Dergisi 7/1 (January 2025), 1-11.
JAMA Ediz EF, Demirel Kars M. Molecular Docking Analysis of Thymoquinone and Thymol on Histamine Receptors. NEJSE. 2025;7:1–11.
MLA Ediz, Emre Fatih and Meltem Demirel Kars. “Molecular Docking Analysis of Thymoquinone and Thymol on Histamine Receptors”. Necmettin Erbakan Üniversitesi Fen Ve Mühendislik Bilimleri Dergisi, vol. 7, no. 1, 2025, pp. 1-11.
Vancouver Ediz EF, Demirel Kars M. Molecular Docking Analysis of Thymoquinone and Thymol on Histamine Receptors. NEJSE. 2025;7(1):1-11.


32206                   17157           17158