Research Article
BibTex RIS Cite

Metastatik Meme Kanseri Hücrelerinde EGF Uyarımına Bağlı Olarak PKA, AKT(PKB) ve PKC Hedefli AKT Substratlarının Fosforilasyon Düzeylerinin Değişimi

Year 2025, Volume: 7 Issue: 1, 48 - 55

Abstract

Protein kinaz B (PKB/AKT), hücre metabolizması, büyüme, çoğalma ve tümör invazyonu dahil olmak üzere çok çeşitli fizyolojik ve patolojik süreçleri düzenleyen fosfatidilinositol-3-kinaz (PI3K)/AKT sinyal yolağının temel düzenleyicisidir. AKT enzimi, EGF gibi hücresel uyarıcı moleküller tarafından aktive edilebilen bir serin/treonin kinazdır. Aktive AKT enzimi, hedef substratlarını RxRxxS/T konsensus dizisine bağlanarak fosforile eder. Bazı AKT hedefleri, farklı serin/treonin kinazlar tarafından benzer rezidulardan fosforile edilebilmektedir. Bu substratlar üzerinde yapılan birçok çalışma, sinyal yolakları arası etkileşimi sağlayan ortak moleküllerin ve yeni terapötik hedeflerin belirlenmesi için değerli bilgiler sunmaktadır. Bu bağlamda söz konusu çalışmada, EGF uyarımına bağlı olarak MDA-MB-231 üçlü negatif metastatik meme kanseri hücrelerinde, AKT substrat fosforilasyonlarını mimik eden PKA, PKB(AKT) ve PKC hedefli yeni moleküllerin belirlenmesi amaçlanmıştır. AKT substratlarının fosforilasyon düzeyleri Western blot analizi ile değerlendirildi. Elde edilen sonuçlara göre, PKA, PKB ve PKC inhibitörlerinin varlığında ve EGF uyarımı ile birlikte 30 kDa ağırlığında bir fosfo-proteininin (pp30), AKT substrat fosforilasyon düzeyinin değiştiği saptandı. EGF uyarımına bağlı olarak, beklendiği üzere AKT substratlarının fosforilasyon düzeyleri artarken, inhibitörler bu fosforilasyonları baskılamaktadır. Dikkat çekici bir şekilde, PKC inhibitörü varlığında pp30’un fosforilasyon düzeyinin, EGF uyarımına rağmen kontrole kıyasla azaldığı belirlendi. Bu sonuç, pp30’un hücresel regülasyonunun PKC tarafından AKT ile aynı bölgeden gerçekleşebileceğini ortaya koymaktadır. Çalışmamızdaki metodoloji, AKT ile PKC sinyal yolakları arasındaki etkileşimde rolü olabilecek yeni potansiyel düzenleyicilerin tanımlanabilmesinin mümkün olduğunu göstermektedir. Ancak, bu etkileşimin ne yönde olduğunu açıklayabilmek için ileri çalışmalara ihtiyaç vardır.ç vardır.

References

  • C. Mattiuzzi, G. Lippi, Current cancer epidemiology, Journal of Epidemiology and Global Health. 9(4) (2019), 217–222. doi:10.2991/jegh.k.191008.001
  • Z. Bıkmaz, S. Ünsar, Quality of life and social support levels in Leukemia patients, Necmettin Erbakan Üniversitesi Genel Sağlık Bilimleri Dergisi. 3(3) (2021), 200–214. doi: 10.51123/jgehes.2021.30
  • F. Bray, M. Laversanne, H. Sung, J. Ferlay, R.L. Siegel, I. Soerjomataram, A. Jemal, Global cancer statistics 2022: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries, CA a Cancer Journal for Clinicians. 74 (2024), 229–263. doi:10.3322/caac.21834
  • M. Davoodabadi-Farahani, Y. Mansoori, S. Ilbeigi, M. Barahman, M. Mazloomrezaei, P. Khani, S.M. Tabei, S. A. Dastgheib, H. Neamatzadeh, Expression levels of LINC01296 and LINC00152 in breast cancer tissue: Association with the use of oral contraceptives, Eurasian Journal of Medicine and Oncology. 6(1) (2022), 83–88. doi:10.14744/ejmo.2022.33174
  • A. Uslu, F. Hisar, Metastatik meme kanseri olan hastanın gordon’un fonksiyonel sağlık örüntüleri modeli’ne göre hemşirelik bakımı: Olgu sunumu, Necmettin Erbakan Üniversitesi Genel Sağlık Bilimleri Dergisi. 2(1) (2020), 59–69.
  • G. N. Sharma, R. Dave, J. Sanadya, P. Sharma, K. K. Sharma, Various types and management of breast cancer: an overview, Journal of Advanced Pharmaceutical Technology & Research. 1 (2) (2010), 109–126.
  • Y.S. Sun, Z. Zhao, Z. N. Yang, F. Xu, H. J. Lu, Z.Y. Zhu, W. Shi, J. Jiang, P.P. Yao, H. P. Zhu, Risk factors and preventions of breast cancer, International Journal of Biological Sciences. 13(11) (2017), 1387–1397. doi:10.7150/ijbs.21635
  • K.P. Trayes, S.E.H. Cokenakes, Breast cancer treatment, American Family Physician. 104(2) (2021), 171–178.
  • Z. Momenimovahed, H. Salehiniya, Epidemiological characteristics of and risk factors for breast cancer in the world, Breast Cancer: Targets and Therapy. 11 (2019), 151–164. doi:10.2147/BCTT.S176070
  • T.T. Kunstič, N. Debeljak, K.F. Tacer, Heterogeneity in hormone-dependent breast cancer and therapy: Steroid hormones, HER2, melanoma antigens, and cannabinoid receptors, Advances in Cancer Biology – Metastasis. 7 (2023). doi:10.1016/j.adcanc.2022.100086
  • E. Orrantia-Borunda, P. Anchondo-Nuñez, L.E. Acuña-Aguilar, F.O. Gómez-Valles, C.A. Ramírez-Valdespino, Subtypes of Breast Cancer, In: H. N. Mayrovitz (Ed.), Breast Cancer, Exon Publications, 2022: pp. 31-42. doi:10.36255/exon-publications-breast-cancer-subtypes
  • F. Huemer, R. Bartsch, M. Gnant, The PI3K/AKT/MTOR signaling pathway: The role of pı3k and akt ınhibitors in breast cancer, Current Breast Cancer Reports. 6 (2014), 59–70. doi:10.1007/s12609-014-0139-y
  • E. Bozgeyik, Kanserin ayırt edici özelliklerinde kodlanmayan RNA'ların rolü: Güncel bir bakış, Selcuk Medical Journal. 36(4) (2020), 381–396. doi:10.30733/std.2020.01268
  • D.A. Altomare, J.R. Testa, Perturbations of the AKT signaling pathway in human cancer, Oncogene. 24(50) (2005), 7455–7464. doi:10.1038/sj.onc.1209085
  • V. Marrocco, J. Bogomolovas, E. Ehler, C.G. dos Remedios, J. Yu, C. Gao, S. Lange, PKC and PKN in heart disease, Journal of Molecular and Cellular Cardiology. 128 (2019), 212–226. doi:10.1016/j.yjmcc.2019.01.029
  • B.D. Manning, L.C. Cantley, AKT/PKB signaling: Navigating downstream, Cell. 129(7) (2007), 1261–1274. doi:10.1016/j.cell.2007.06.009
  • G. Song, G. Ouyang, S. Bao, The activation of Akt/PKB signaling pathway and cell survival, Journal of Cellular and Molecular Medicine. 9(1) (2005), 59–71. doi:10.1111/j.1582-4934.2005.tb00337.x
  • J. Cicenas, The potential role of Akt phosphorylation in human cancers, The International Journal of Biological Markers. 23(1) (2008), 1–9. doi:10.1177/172460080802300101
  • S.V. Madhunapantula, P.J. Mosca, G.P. Robertson, The Akt signaling pathway, Cancer Biology & Therapy. 12(12) (2011), 1032–1049. doi:10.4161/cbt.12.12.18442
  • M. McKenna, N. Balasuriya, S. Zhong, S. S-C. Li, P. O'Donoghue, Phospho-Form specific substrates of protein kinase B (AKT1), Frontiers in Bioengineering and Biotechnology. 8 (2021). doi:10.3389/fbioe.2020.619252
  • Y. He, M.M. Sun, G.G. Zhang, J. Yang, K.S. Chen, W.W. Xu, B. Li, Targeting PI3K/Akt signal transduction for cancer therapy, Signal Transduction and Targeted Therapy. 6 (2021). doi:10.1038/s41392-021-00828-5
  • G. Risso, M. Blaustein, B. Pozzi, P. Mammi, A. Srebrow, Akt/PKB: one kinase, many modifications, Biochemical Journal. 468(2) (2015), 203–214. doi:10.1042/BJ20150041
  • M. Yu, T. Liu, Y. Chen, Y. Li, W. Li, Combination therapy with protein kinase inhibitor H89 and Tetrandrine elicits enhanced synergistic antitumor efficacy, Journal of Experimental & Clinical Cancer Research. 37 (2018). doi:10.1186/s13046-018-0779-2
  • K. Andreidesz, B. Koszegi, D. Kovacs, V.B. Vantus, F. Gallyas, K. Kovacs, Effect of oxaliplatin, olaparib and LY294002 in combination on Triple-Negative breast cancer cells, International Journal of Molecular Sciences. 22 (2021), 2056. doi:10.3390/ijms22042056
  • S. Pehlivanoğlu, Ç. Aydın Acar, PAK4 promotes invasive potential of MCF-7 cells in PKC-dependent manner through downregulation of E-Cadherin, Türk Hijyen ve Deneysel Biyoloji Dergisi. 77(1) (2020), 107–116. doi:10.5505/TurkHijyen.2020.33340
  • M.L. Ackland, D.F. Newgreen, M. Fridman, M.C. Waltham, A. Arvanitis, J. Minichiello, J.T. Price, E.W. Thompson, Epidermal growth Factor-Induced Epithelio-Mesenchymal transition in human breast carcinoma cells, Laboratory Investigation. 83 (2003), 435–448. doi:10.1097/01.lab.0000059927.97515.fd
  • B.D. Manning, A. Toker, AKT/PKB signaling: Navigating the network, Cell. 169 (2017), 381–405. doi:10.1016/j.cell.2017.04.001
  • P.-J. Tsai, Y.-H. Lai, R.K. Manne, Y.-S. Tsai, D. Sarbassov, H.-K. Lin, Akt: a key transducer in cancer, Journal of Biomedical Science. 29 (2022). doi:10.1186/s12929-022-00860-9
  • S. Kane, H. Sano, S.C.H. Liu, J.M. Asara, W.S. Lane, C.C. Garner, G.E. Lienhard, A method to identify serine kinase substrates, Journal of Biological Chemistry. 277 (2002), 22115–22118.
  • H. Sano, S. Kane, E. Sano, C.P. Mı̂Inea, J.M. Asara, W.S. Lane, C.W. Garner, G.E. Lienhard, Insulin-stimulated phosphorylation of a RAB GTPASe-activating protein regulates GLUT4 translocation, Journal of Biological Chemistry. 278 (2003), 14599–14602.
  • S. Gridley, W.S. Lane, C.W. Garner, G.E. Lienhard, Novel insulin-elicited phosphoproteins in adipocytes, Cellular Signalling. 17 (2004), 59–66. doi:10.1016/j.cellsig.2004.05.013
  • D. Zhu, X. Jiang, X. Wu, F. Tian, K. Mearow, R.H. Lipsky, A.M. Marini, Inhibition of protein kinase C promotes neuronal survival in low potassium through an Akt-dependent pathway, Neurotoxicity Research. 6 (2004), 281–289. doi:10.1007/bf03033438
  • H.C. Wen, W.C. Huang, A. Ali, J.R. Woodgett, W.W. Lin, Negative regulation of phosphatidylinositol 3-kinase and Akt signalling pathway by PKC, Cellular Signalling. 15 (2003), 37–45. doi:10.1016/s0898-6568(02)00047-5
  • J.J. Park, S.A. Hamad, A. Stewart, M.S. Carlino, S.Y. Lim, H. Rizos, PKC-independent PI3K signalling diminishes PKC inhibitor sensitivity in uveal melanoma, Oncogenesis. 13 (2024). doi:10.1038/s41389-024-00511-8

Changes in Phosphorylation Levels of PKA, AKT(PKB) and PKC Targeted AKT Substrates Upon EGF Stimulation in Metastatic Breast Cancer Cells

Year 2025, Volume: 7 Issue: 1, 48 - 55

Abstract

Protein kinase B (PKB/AKT) is a crucial regulator of the phosphatidylinositol 3-kinase (PI3K)/AKT signaling pathway, which regulates a wide range of physiological and pathological processes, including cell metabolism, growth, proliferation, and tumor invasion. The AKT enzyme is a serine/threonine kinase that can be activated by cellular stimuli such as EGF. Once activated, the AKT enzyme phosphorylates its target substrates by binding to the RxRxxS/T consensus sequence. Some AKT targets can be phosphorylated at similar residues by different serine/threonine kinases. Numerous studies on these substrates provide valuable insights into common molecules facilitating cross-talk between signaling pathways and the identification of new therapeutic targets. In this study, we aimed to identify novel molecules that target PKA, PKB (AKT), and PKC and mimic AKT substrate phosphorylation in EGF-stimulated MDA-MB-231 triple-negative metastatic breast cancer cells. Phosphorylation levels of AKT substrates were assessed using Western blot analysis. According to the results, the phosphorylation level of a 30 kDa phosphoprotein (pp30) varied in the presence of PKA, PKB, and PKC inhibitors, as well as upon EGF stimulation. As expected, phosphorylation levels of AKT substrates increased with EGF stimulation, while the inhibitors suppressed these phosphorylations. Interestingly, in the presence of the PKC inhibitor, the phosphorylation level of pp30 was found to be decreased compared to the control, despite EGF stimulation. This suggests that cellular regulation of pp30 by PKC might occur through the same region as AKT. Our methodology demonstrates the potential to identify new regulators that may play a role in the interaction between AKT and PKC signaling pathways. However, further studies are required to elucidate the specifics of this interaction.

References

  • C. Mattiuzzi, G. Lippi, Current cancer epidemiology, Journal of Epidemiology and Global Health. 9(4) (2019), 217–222. doi:10.2991/jegh.k.191008.001
  • Z. Bıkmaz, S. Ünsar, Quality of life and social support levels in Leukemia patients, Necmettin Erbakan Üniversitesi Genel Sağlık Bilimleri Dergisi. 3(3) (2021), 200–214. doi: 10.51123/jgehes.2021.30
  • F. Bray, M. Laversanne, H. Sung, J. Ferlay, R.L. Siegel, I. Soerjomataram, A. Jemal, Global cancer statistics 2022: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries, CA a Cancer Journal for Clinicians. 74 (2024), 229–263. doi:10.3322/caac.21834
  • M. Davoodabadi-Farahani, Y. Mansoori, S. Ilbeigi, M. Barahman, M. Mazloomrezaei, P. Khani, S.M. Tabei, S. A. Dastgheib, H. Neamatzadeh, Expression levels of LINC01296 and LINC00152 in breast cancer tissue: Association with the use of oral contraceptives, Eurasian Journal of Medicine and Oncology. 6(1) (2022), 83–88. doi:10.14744/ejmo.2022.33174
  • A. Uslu, F. Hisar, Metastatik meme kanseri olan hastanın gordon’un fonksiyonel sağlık örüntüleri modeli’ne göre hemşirelik bakımı: Olgu sunumu, Necmettin Erbakan Üniversitesi Genel Sağlık Bilimleri Dergisi. 2(1) (2020), 59–69.
  • G. N. Sharma, R. Dave, J. Sanadya, P. Sharma, K. K. Sharma, Various types and management of breast cancer: an overview, Journal of Advanced Pharmaceutical Technology & Research. 1 (2) (2010), 109–126.
  • Y.S. Sun, Z. Zhao, Z. N. Yang, F. Xu, H. J. Lu, Z.Y. Zhu, W. Shi, J. Jiang, P.P. Yao, H. P. Zhu, Risk factors and preventions of breast cancer, International Journal of Biological Sciences. 13(11) (2017), 1387–1397. doi:10.7150/ijbs.21635
  • K.P. Trayes, S.E.H. Cokenakes, Breast cancer treatment, American Family Physician. 104(2) (2021), 171–178.
  • Z. Momenimovahed, H. Salehiniya, Epidemiological characteristics of and risk factors for breast cancer in the world, Breast Cancer: Targets and Therapy. 11 (2019), 151–164. doi:10.2147/BCTT.S176070
  • T.T. Kunstič, N. Debeljak, K.F. Tacer, Heterogeneity in hormone-dependent breast cancer and therapy: Steroid hormones, HER2, melanoma antigens, and cannabinoid receptors, Advances in Cancer Biology – Metastasis. 7 (2023). doi:10.1016/j.adcanc.2022.100086
  • E. Orrantia-Borunda, P. Anchondo-Nuñez, L.E. Acuña-Aguilar, F.O. Gómez-Valles, C.A. Ramírez-Valdespino, Subtypes of Breast Cancer, In: H. N. Mayrovitz (Ed.), Breast Cancer, Exon Publications, 2022: pp. 31-42. doi:10.36255/exon-publications-breast-cancer-subtypes
  • F. Huemer, R. Bartsch, M. Gnant, The PI3K/AKT/MTOR signaling pathway: The role of pı3k and akt ınhibitors in breast cancer, Current Breast Cancer Reports. 6 (2014), 59–70. doi:10.1007/s12609-014-0139-y
  • E. Bozgeyik, Kanserin ayırt edici özelliklerinde kodlanmayan RNA'ların rolü: Güncel bir bakış, Selcuk Medical Journal. 36(4) (2020), 381–396. doi:10.30733/std.2020.01268
  • D.A. Altomare, J.R. Testa, Perturbations of the AKT signaling pathway in human cancer, Oncogene. 24(50) (2005), 7455–7464. doi:10.1038/sj.onc.1209085
  • V. Marrocco, J. Bogomolovas, E. Ehler, C.G. dos Remedios, J. Yu, C. Gao, S. Lange, PKC and PKN in heart disease, Journal of Molecular and Cellular Cardiology. 128 (2019), 212–226. doi:10.1016/j.yjmcc.2019.01.029
  • B.D. Manning, L.C. Cantley, AKT/PKB signaling: Navigating downstream, Cell. 129(7) (2007), 1261–1274. doi:10.1016/j.cell.2007.06.009
  • G. Song, G. Ouyang, S. Bao, The activation of Akt/PKB signaling pathway and cell survival, Journal of Cellular and Molecular Medicine. 9(1) (2005), 59–71. doi:10.1111/j.1582-4934.2005.tb00337.x
  • J. Cicenas, The potential role of Akt phosphorylation in human cancers, The International Journal of Biological Markers. 23(1) (2008), 1–9. doi:10.1177/172460080802300101
  • S.V. Madhunapantula, P.J. Mosca, G.P. Robertson, The Akt signaling pathway, Cancer Biology & Therapy. 12(12) (2011), 1032–1049. doi:10.4161/cbt.12.12.18442
  • M. McKenna, N. Balasuriya, S. Zhong, S. S-C. Li, P. O'Donoghue, Phospho-Form specific substrates of protein kinase B (AKT1), Frontiers in Bioengineering and Biotechnology. 8 (2021). doi:10.3389/fbioe.2020.619252
  • Y. He, M.M. Sun, G.G. Zhang, J. Yang, K.S. Chen, W.W. Xu, B. Li, Targeting PI3K/Akt signal transduction for cancer therapy, Signal Transduction and Targeted Therapy. 6 (2021). doi:10.1038/s41392-021-00828-5
  • G. Risso, M. Blaustein, B. Pozzi, P. Mammi, A. Srebrow, Akt/PKB: one kinase, many modifications, Biochemical Journal. 468(2) (2015), 203–214. doi:10.1042/BJ20150041
  • M. Yu, T. Liu, Y. Chen, Y. Li, W. Li, Combination therapy with protein kinase inhibitor H89 and Tetrandrine elicits enhanced synergistic antitumor efficacy, Journal of Experimental & Clinical Cancer Research. 37 (2018). doi:10.1186/s13046-018-0779-2
  • K. Andreidesz, B. Koszegi, D. Kovacs, V.B. Vantus, F. Gallyas, K. Kovacs, Effect of oxaliplatin, olaparib and LY294002 in combination on Triple-Negative breast cancer cells, International Journal of Molecular Sciences. 22 (2021), 2056. doi:10.3390/ijms22042056
  • S. Pehlivanoğlu, Ç. Aydın Acar, PAK4 promotes invasive potential of MCF-7 cells in PKC-dependent manner through downregulation of E-Cadherin, Türk Hijyen ve Deneysel Biyoloji Dergisi. 77(1) (2020), 107–116. doi:10.5505/TurkHijyen.2020.33340
  • M.L. Ackland, D.F. Newgreen, M. Fridman, M.C. Waltham, A. Arvanitis, J. Minichiello, J.T. Price, E.W. Thompson, Epidermal growth Factor-Induced Epithelio-Mesenchymal transition in human breast carcinoma cells, Laboratory Investigation. 83 (2003), 435–448. doi:10.1097/01.lab.0000059927.97515.fd
  • B.D. Manning, A. Toker, AKT/PKB signaling: Navigating the network, Cell. 169 (2017), 381–405. doi:10.1016/j.cell.2017.04.001
  • P.-J. Tsai, Y.-H. Lai, R.K. Manne, Y.-S. Tsai, D. Sarbassov, H.-K. Lin, Akt: a key transducer in cancer, Journal of Biomedical Science. 29 (2022). doi:10.1186/s12929-022-00860-9
  • S. Kane, H. Sano, S.C.H. Liu, J.M. Asara, W.S. Lane, C.C. Garner, G.E. Lienhard, A method to identify serine kinase substrates, Journal of Biological Chemistry. 277 (2002), 22115–22118.
  • H. Sano, S. Kane, E. Sano, C.P. Mı̂Inea, J.M. Asara, W.S. Lane, C.W. Garner, G.E. Lienhard, Insulin-stimulated phosphorylation of a RAB GTPASe-activating protein regulates GLUT4 translocation, Journal of Biological Chemistry. 278 (2003), 14599–14602.
  • S. Gridley, W.S. Lane, C.W. Garner, G.E. Lienhard, Novel insulin-elicited phosphoproteins in adipocytes, Cellular Signalling. 17 (2004), 59–66. doi:10.1016/j.cellsig.2004.05.013
  • D. Zhu, X. Jiang, X. Wu, F. Tian, K. Mearow, R.H. Lipsky, A.M. Marini, Inhibition of protein kinase C promotes neuronal survival in low potassium through an Akt-dependent pathway, Neurotoxicity Research. 6 (2004), 281–289. doi:10.1007/bf03033438
  • H.C. Wen, W.C. Huang, A. Ali, J.R. Woodgett, W.W. Lin, Negative regulation of phosphatidylinositol 3-kinase and Akt signalling pathway by PKC, Cellular Signalling. 15 (2003), 37–45. doi:10.1016/s0898-6568(02)00047-5
  • J.J. Park, S.A. Hamad, A. Stewart, M.S. Carlino, S.Y. Lim, H. Rizos, PKC-independent PI3K signalling diminishes PKC inhibitor sensitivity in uveal melanoma, Oncogenesis. 13 (2024). doi:10.1038/s41389-024-00511-8
There are 34 citations in total.

Details

Primary Language English
Subjects Signal Transduction
Journal Section Articles
Authors

Merve Özcan Türkmen 0000-0003-2064-4519

Şebnem Pehlivanoğlu 0000-0003-0817-0891

Suray Pehlivanoğlu 0000-0001-7422-2974

Early Pub Date January 11, 2025
Publication Date
Submission Date August 31, 2024
Acceptance Date November 20, 2024
Published in Issue Year 2025 Volume: 7 Issue: 1

Cite

APA Özcan Türkmen, M., Pehlivanoğlu, Ş., & Pehlivanoğlu, S. (2025). Changes in Phosphorylation Levels of PKA, AKT(PKB) and PKC Targeted AKT Substrates Upon EGF Stimulation in Metastatic Breast Cancer Cells. Necmettin Erbakan Üniversitesi Fen Ve Mühendislik Bilimleri Dergisi, 7(1), 48-55.
AMA Özcan Türkmen M, Pehlivanoğlu Ş, Pehlivanoğlu S. Changes in Phosphorylation Levels of PKA, AKT(PKB) and PKC Targeted AKT Substrates Upon EGF Stimulation in Metastatic Breast Cancer Cells. NEJSE. January 2025;7(1):48-55.
Chicago Özcan Türkmen, Merve, Şebnem Pehlivanoğlu, and Suray Pehlivanoğlu. “Changes in Phosphorylation Levels of PKA, AKT(PKB) and PKC Targeted AKT Substrates Upon EGF Stimulation in Metastatic Breast Cancer Cells”. Necmettin Erbakan Üniversitesi Fen Ve Mühendislik Bilimleri Dergisi 7, no. 1 (January 2025): 48-55.
EndNote Özcan Türkmen M, Pehlivanoğlu Ş, Pehlivanoğlu S (January 1, 2025) Changes in Phosphorylation Levels of PKA, AKT(PKB) and PKC Targeted AKT Substrates Upon EGF Stimulation in Metastatic Breast Cancer Cells. Necmettin Erbakan Üniversitesi Fen ve Mühendislik Bilimleri Dergisi 7 1 48–55.
IEEE M. Özcan Türkmen, Ş. Pehlivanoğlu, and S. Pehlivanoğlu, “Changes in Phosphorylation Levels of PKA, AKT(PKB) and PKC Targeted AKT Substrates Upon EGF Stimulation in Metastatic Breast Cancer Cells”, NEJSE, vol. 7, no. 1, pp. 48–55, 2025.
ISNAD Özcan Türkmen, Merve et al. “Changes in Phosphorylation Levels of PKA, AKT(PKB) and PKC Targeted AKT Substrates Upon EGF Stimulation in Metastatic Breast Cancer Cells”. Necmettin Erbakan Üniversitesi Fen ve Mühendislik Bilimleri Dergisi 7/1 (January 2025), 48-55.
JAMA Özcan Türkmen M, Pehlivanoğlu Ş, Pehlivanoğlu S. Changes in Phosphorylation Levels of PKA, AKT(PKB) and PKC Targeted AKT Substrates Upon EGF Stimulation in Metastatic Breast Cancer Cells. NEJSE. 2025;7:48–55.
MLA Özcan Türkmen, Merve et al. “Changes in Phosphorylation Levels of PKA, AKT(PKB) and PKC Targeted AKT Substrates Upon EGF Stimulation in Metastatic Breast Cancer Cells”. Necmettin Erbakan Üniversitesi Fen Ve Mühendislik Bilimleri Dergisi, vol. 7, no. 1, 2025, pp. 48-55.
Vancouver Özcan Türkmen M, Pehlivanoğlu Ş, Pehlivanoğlu S. Changes in Phosphorylation Levels of PKA, AKT(PKB) and PKC Targeted AKT Substrates Upon EGF Stimulation in Metastatic Breast Cancer Cells. NEJSE. 2025;7(1):48-55.


32206                   17157           17158