Research Article
BibTex RIS Cite

Karabiber özütü kullanılarak sentezlenen biyojenik gümüş nanopartiküller ile grafen yapıların kombine antibakteriyel ve antioksidan etkisi

Year 2025, Volume: 7 Issue: 1, 77 - 91

Abstract

Nanoteknoloji, malzemelerin nanometre ölçeğinde, özellikle 1 ila 100 nanometre aralığında tasarım ve manipülasyonuna odaklanan öncü bir araştırma alanıdır. Gümüş nanoparçacıkları, antiseptik özellikleri ile bilinir ve genellikle malzemelerin antibakteriyel etkinliğini artırmak amacı ile diş hekimliği gibi alanlarda kullanılır. Son zamanlarda, grafen bazlı malzemeler de antibakteriyel özellikleri nedeniyle önem kazanmıştır. Bu çalışma ile karabiber ekstraktı kullanılarak mikrodalga yöntemi ile sentezlenmiş gümüş nanoparçacıkları ile grafen yapılarının kombinasyonunun antibakteriyel ve antioksidan aktiviteleri incelenmiştir. Sentezlenen malzemeler, UV-Vis spektroskopisi, taramalı elektron mikroskobu (SEM) ve enerji dağıtıcı X-ışını spektroskopisi (EDS) gibi çeşitli analitik yöntemlerle karakterize edilmiştir. Grafen ve gümüş nanoparçacık kompozitlerinin antibakteriyel etkinliği, Staphylococcus aureus (S. aureus) üzerine agar well difüzyon yöntemi kullanılarak değerlendirilmiştir. Ayrıca, kompozitlerin serbest radikal süpürme aktiviteleri DPPH, FRAP ve ABTS testleri ile test edilmiştir. Sonuçlar, grafen oksit ve gümüş nanoparçacıklarının kombinasyonunun 14.40 mm ile en büyük inhibisyon alanını oluşturduğunu, antioksidan aktivitenin ise genel olarak gümüş nanoparçacıklar için grafen ve kompozit yapılara kıyasla daha üstün olduğunu göstermiştir. Bu sonuçlar, sentezlenen grafenin, biyosentezlenmiş gümüş nanoparçacıkları ile entegrasyonunun antibakteriyel aktiviteyi geliştirebileceği ve biyomedikal alanlarda kullanılabileceğini göstermektedir.

References

  • A. Albanese, P.S. Tang, W.C.W. Chan, The effect of nanoparticle size, shape, and surface chemistry on biological systems, Annual Review of Biomedical Engineering. 14 (2012), 1-16.
  • R. V Bordiwala, Green synthesis and Applications of Metal Nanoparticles.- A Review Article, Results in Chemistry. 5 (2023) 100832. doi:https://doi.org/10.1016/j.rechem.2023.100832
  • X. Li, B. Li, R. Liu, Y. Dong, Y. Zhao, Y. Wu, Development of pH-responsive nanocomposites with remarkably synergistic antibiofilm activities based on ultrasmall silver nanoparticles in combination with aminoglycoside antibiotics, Colloids and Surfaces B: Biointerfaces. 208 (2021), 112112. doi:https://doi.org/10.1016/j.colsurfb.2021.112112
  • F. Erci, R. Cakir-Koc, I. Isildak, Green synthesis of silver nanoparticles using Thymbra spicata L. var. spicata (zahter) aqueous leaf extract and evaluation of their morphology-dependent antibacterial and cytotoxic activity, Artificial Cells, Nanomedicine, and Biotechnology. 46 (2018), 150-158. doi:10.1080/21691401.2017.1415917
  • M. Khubchandani, N. Thosar, S. Dangore–Khasbage, R. Srivastava, Applications of silver nanoparticles in pediatric dentistry: An overview, Cureus. 14(7) (2022), e26956. doi:10.7759/cureus.26956
  • C.B. Girón, J.F.H. Sierra, I. DeAlba-Montero, M.A. Urbano-Peña, F. Ruíz, therapeutic use of silver nanoparticles in the prevention and arrest of dental caries, Bioinorganic Chemistry and Applications. 2020 (2020), 1-7. doi:10.1155/2020/8882930
  • I.X. Yin, J. Zhang, I.S. Zhao, M.L. Mei, Q. Li, C.H. Chu, The antibacterial mechanism of silver nanoparticles and ıts application in dentistry, International Journal of Nanomedicine. 15 (2020), 2555-2562. doi:10.2147/ijn.s246764
  • S. Sakhamuri, S.L. Kotha, A.R.G.M. AlAsmari, G.H. AlJefri, F.N. Almotawah, S.K. Mallineni, R. Sajja, Silver nanoparticles in dental applications: A descriptive review, Bioengineering. 10 (2023), 327. doi:10.3390/bioengineering10030327
  • C.B. Girón, J. Mariel-Cárdenas, M. Pierdant-Pérez, J.F. Hernández-Sierra, J.E. Morales-Sánchez, F. Ruíz, Effectiveness of a combined silver nanoparticles/fluoride varnish in dental remineralization in children: ın vivo study, Superficies Y Vacío. 30 (2017), 21-24. doi:10.47566/2017_syv30_1-020021
  • A.-S. Neculai-Valeanu, B.-M. Madescu, I. Porosnicu, A.-M. Ariton, Effect of various environmentally friendly reducing agents on the antioxidant activity of green synthesized silver nanoparticles, Life Science and Sustainable Development. 3 (2022), 49-53. doi:10.58509/lssd.v3i2.206
  • B. Essghaier, R. Dridi, F. Mottola, L. Rocco, M.F. Zid, H. Hannachi, Biosynthesis and characterization of silver nanoparticles from the extremophile plant Aeonium haworthii and their antioxidant, antimicrobial and anti-diabetic capacities, Nanomaterials. 13 (2022), 100. doi:10.3390/nano13010100
  • T. Barot, D. Rawtani, P. Kulkarni, Physicochemical and biological assessment of silver nanoparticles ımmobilized halloysite nanotubes-based resin composite for dental applications, Heliyon. 6 (2020), e03601. doi:10.1016/j.heliyon.2020.e03601
  • E.S. Allehyani, Surface Functionalization of polyester textiles for antibacterial and antioxidant properties, Polymers. 14 (2022), 5512. doi:10.3390/polym14245512
  • S. Ghosh, S.D. Patil, M. Ahire, R. Kitture, S.P. Kale, K. Pardesi, S.S. Cameotra, J. Bellare, D.D. Dhavale, A.M. Jabgunde, B.A. Chopade, Synthesis of silver nanoparticles using Dioscorea bulbifera tuber extract and evaluation of its synergistic potential in combination with antimicrobial agents, International Journal of Nanomedicine. (2012), 483. doi:10.2147/ijn.s24793
  • F. Hong, P. Chen, Y.U. Xue-fen, Q. Chen, The Application of silver to decontaminate dental unit waterlines—a systematic review, Biological Trace Element Research. 200 (2022), 4988-5002. doi:10.1007/s12011-022-03105-w
  • H.Y.Y. Kuşçu, Utilization of nanomaterials in prosthetic dental treatment, HRU International Journal of Dentistry and Oral Research. (2023). doi:10.61139/ijdor.1270852
  • H. Mohammed, A. Kumar, E. Bekyarova, Y. Al-Hadeethi, X. Zhang, M. Chen, M.S. Ansari, A. Cochis, L. Rimondini, Antimicrobial mechanisms and effectiveness of graphene and graphene-functionalized biomaterials. A scope review, Frontiers in Bioengineering and Biotechnology. 8 (2020), 465.
  • S. Liu, T.H. Zeng, M. Hofmann, E. Burcombe, J. Wei, R. Jiang, J. Kong, Y. Chen, Antibacterial activity of graphite, graphite oxide, graphene oxide, and reduced graphene oxide: Membrane and oxidative stress, Acs Nano. 5 (2011), 6971-6980. doi:10.1021/nn202451x
  • X. Wang, P. Lü, Y. Li, H. Xiao, X. Li, Antibacterial activities and mechanisms of fluorinated graphene and guanidine-modified graphene, RSC Advances. 6 (2016), 8763-8772. doi:10.1039/c5ra28030c
  • J. Li, G. Wang, H. Zhu, M. Zhang, X. Zheng, Z. Di, X. Liu, X. Wang, Antibacterial activity of large-area monolayer graphene film manipulated by charge transfer, Scientific Reports. 4 (2014). doi:10.1038/srep04359
  • V.P. Veeraraghavan, Fabrication, Characterization, Antibacterial and biocompatibility studies of graphene oxide loaded alginate chitosan scaffolds for potential biomedical applications, Texila International Journal of Public Health. (2023), 77-85. doi:10.21522/tijph.2013.se.23.01.art009
  • J. Chen, H. Peng, X. Wang, F. Shao, Z. Yuan, H. Han, Graphene oxide exhibits broad-spectrum antimicrobial activity against bacterial phytopathogens and fungal Conidia by intertwining and membrane perturbation, Nanoscale. 6 (2014), 1879-1889. doi:10.1039/c3nr04941h
  • Y. Qiu, Z. Wang, A.C.E. Owens, I. Külaots, Y. Chen, A.B. Kane, R.H. Hurt, Antioxidant chemistry of graphene-based materials and its role in oxidation protection technology, Nanoscale. 6 (2014), 11744-11755. doi:10.1039/c4nr03275f
  • B. Kaczmarek-Szczepańska, M. Michalska‐Sionkowska, P. Binkowski, J.P. Łukaszewicz, P. Kamedulski, 3d-structured and blood-contact-safe graphene materials, International Journal of Molecular Sciences. 24 (2023), 3576. doi:10.3390/ijms24043576
  • Z. Chen, J. Zhao, J. Qiao, W. Li, Z. Guan, Z. Liu, X. Bai, B. Xing, J. Zhang, J. Li, W. Yin, H. Zhu, Graphene-mediated antioxidant enzyme activity and respiration in plant roots, Acs Agricultural Science & Technology. 2 (2022), 646-660. doi:10.1021/acsagscitech.2c00074
  • M.S. Blois, Antioxidant determinations by the use of a stable free radical, Nature. 181 (1958), 1199-1200.
  • M. Oyaizu, Studies on products of browning reaction antioxidative activities of products of browning reaction prepared from glucosamine, The Japanese Journal of Nutrition and Dietetics. 44 (1986), 307-315.
  • M. Elmastaş, I. Gülçin, Ö. Işildak, Ö.İ. Küfrevioğlu, K. İbaoğlu, H.Y. Aboul-Enein, Radical scavenging activity and antioxidant capacity of bay leaf extracts, Journal of the Iranian Chemical Society. 3 (2006), 258-266.
  • R. Re, N. Pellegrini, A. Proteggente, A. Pannala, M. Yang, C. Rice-Evans, Antioxidant activity applying an improved ABTS radical cation decolorization assay, Free Radical Biology and Medicine. 26 (1999), 1231-1237.
  • M.A. Noginov, G. Zhu, M. Bahoura, J. Adegoke, C. Small, B.A. Ritzo, V.P. Drachev, V.M. Shalaev, The effect of gain and absorption on surface plasmons in metal nanoparticles, Applied Physics B. 86 (2007), 455-460.
  • P. Makvandi, U. Josić, M. Delfi, F. Pinelli, V. Jahed, E. Kaya, M. Ashrafizadeh, A. Zarepour, F. Rossi, A. Zarrabi, T. Agarwal, E.N. Zare, M. Ghomi, T.K. Maiti, L. Breschi, F.R. Tay, Drug delivery (nano)platforms for oral and dental applications: Tissue regeneration, ınfection control, and cancer management, Advanced Science. 8 (2021). doi:10.1002/advs.202004014
  • M.M. Sarafraz, F. Hormozi, Scale formation and subcooled flow boiling heat transfer of CuO–water nanofluid inside the vertical annulus, Experimental Thermal and Fluid Science. 52 (2014), 205-214.
  • M.M. Sarafraz, S.M. Peyghambarzadeh, Nucleate pool boiling heat transfer to Al2O3-water and TiO2-water nanofluids on horizontal smooth tubes with dissimilar homogeneous materials, Chemical and Biochemical Engineering Quarterly. 26 (2012), 199-206.
  • A. Ahmad, Y. Wei, F. Syed, K. Tahir, A.U. Rehman, A. Khan, S. Ullah, Q. Yuan, The effects of bacteria-nanoparticles interface on the antibacterial activity of green synthesized silver nanoparticles, Microbial pathogenesis. 102 (2017), 133-142.
  • H.M.M. Ibrahim, Green synthesis and characterization of silver nanoparticles using banana peel extract and their antimicrobial activity against representative microorganisms, Journal of Radiation Research and Applied Sciences. 8 (2015), 265-275.
  • M.M. Stevanović, S.D. Škapin, I. Bračko, M. Milenković, J. Petković, M. Filipič, D.P. Uskoković, Poly (lactide-co-glycolide)/silver nanoparticles: Synthesis, characterization, antimicrobial activity, cytotoxicity assessment and ROS-inducing potential, Polymer. 53 (2012), 2818-2828.
  • F.C. Tenover, Mechanisms of antimicrobial resistance in bacteria, The American journal of medicine. 119 (2006), 3-10.
  • K. He, Z. Zeng, A. Chen, G. Zeng, R. Xiao, P. Xu, Z. Huang, J. Shi, L. Hu, G. Chen, Advancement of Ag–graphene based nanocomposites: an overview of synthesis and its applications, Small. 14 (2018), 1800871.
  • A.C.M. de Moraes, B.A. Lima, A.F. de Faria, M. Brocchi, O.L. Alves, Graphene oxide-silver nanocomposite as a promising biocidal agent against methicillin-resistant Staphylococcus aureus, International Journal of Nanomedicine. (2015), 6847-6861.
  • J. Tang, Q. Chen, L. Xu, S. Zhang, L. Feng, L. Cheng, H. Xu, Z. Liu, R. Peng, Graphene oxide–silver nanocomposite as a highly effective antibacterial agent with species-specific mechanisms, ACS Applied Materials & Interfaces. 5 (2013), 3867-3874.
  • İ. Gülçin, Antioxidant properties of resveratrol: A structure–activity insight, Innovative Food Science & Emerging Technologies. 11 (2010), 210-218.
  • C.A. Rice-Evans, N.J. Miller, G. Paganga, Structure-antioxidant activity relationships of flavonoids and phenolic acids, Free Radical Biology And Medicine. 20 (1996), 933-956.
  • N. Anwar, M. Shah, S. Saleem, H. Rahman, Plant mediated synthesis of silver nanoparticles and their biological applications, Bulletin of the Chemical Society of Ethiopia. 32 (2018), 469-479. doi:10.4314/bcse.v32i3.6
  • I. Yaremchuk, T. Bulavinets, P. Stakhira, V. Fitio, Nanocomposite materials based on graphene, graphene oxide, and silver nanoparticles, Information and Communication Technologies Electronic Engineering. 3 (2023), 163-169. doi:10.23939/ictee2023.01.163
  • A. Rahim, V.N. Ratnakaram, M.J.S. Al Musawi, M. Syam Sundar, A. Syed, K. Nitish, J.K. Monditoka, E.G. Grace, H. Subha, C. Basavaiah, B. Hari Babu, D. Ramachandran, Enhanced catalytic, antioxidant, and electrochemical properties of green‐synthesized graphene‐silver nanocomposite utilizing Moringa oleifera leaf extract, ChemistrySelect. 9 (2024), e202401848. doi:10.1002/slct.202401848
  • I. Nasim, M. Shamly, K.K. Jaju, V. Vishnupriya, Z. Jabin, Antioxidant and anti-inflammatory activity of a nanoparticle based intracanal drugs, Bioinformation. 18 (2022), 450-454.
  • M. Wierzbicki, S. Jaworski, E. Sawosz, A. Jung, G. Gielerak, H. Jaremek, W. Łojkowski, B. Woźniak, L. Stobiński, A. Małolepszy, A. Chwalibog, Graphene oxide in a composite with silver nanoparticles reduces the fibroblast and endothelial cell cytotoxicity of an antibacterial nanoplatform, Nanoscale Research Letters. 14 (2019). doi:10.1186/s11671-019-3166-9
  • Y. Bao, C. Tian, H. Yu, J. He, K. Song, J. Guo, X. Zhou, O. Zhuo, S. Liu, In situ green synthesis of graphene oxide-silver nanoparticles composite with using gallic acid, Frontiers in Chemistry. 10 (2022). doi:10.3389/fchem.2022.905781

Combined Antibacterial and Antioxidant Effect of Graphene Structures with Biogenic Silver Nanoparticles Synthesized by Using Black Pepper Extract

Year 2025, Volume: 7 Issue: 1, 77 - 91

Abstract

Nanotechnology is a pioneering research field that focuses on the design and manipulation of materials at the nanoscale, particularly within the range of 1 to 100 nanometers. Silver nanoparticles are known for their antiseptic properties and are commonly used in fields such as dentistry to enhance the antibacterial efficacy of materials Recently, graphene-based materials have also gained importance due to their antibacterial properties. In this study, antibacterial and antioxidant activities of the combination of silver nanoparticles and graphene structures synthesized by microwave method using black pepper extract were investigated. The synthesized materials were characterized by various analytical methods such as UV-Vis spectroscopy, scanning electron microscopy (SEM) and energy dispersive X-ray spectroscopy (EDS). The antibacterial activity of graphene and silver nanoparticle composites was evaluated using agar well diffusion method on Staphylococcus aureus (S. aureus). In addition, the free radical scavenging activities of the composites were tested by DPPH, FRAP and ABTS assays. The results showed that the combination of graphene oxide and silver nanoparticles produced the largest inhibition area of 14.40 mm, while the antioxidant activity was generally superior for silver nanoparticles compared to graphene and composite structures. These results suggest that the integration of synthesized graphene with biosynthesized silver nanoparticles can improve antibacterial activity and can be used in biomedical fields.

References

  • A. Albanese, P.S. Tang, W.C.W. Chan, The effect of nanoparticle size, shape, and surface chemistry on biological systems, Annual Review of Biomedical Engineering. 14 (2012), 1-16.
  • R. V Bordiwala, Green synthesis and Applications of Metal Nanoparticles.- A Review Article, Results in Chemistry. 5 (2023) 100832. doi:https://doi.org/10.1016/j.rechem.2023.100832
  • X. Li, B. Li, R. Liu, Y. Dong, Y. Zhao, Y. Wu, Development of pH-responsive nanocomposites with remarkably synergistic antibiofilm activities based on ultrasmall silver nanoparticles in combination with aminoglycoside antibiotics, Colloids and Surfaces B: Biointerfaces. 208 (2021), 112112. doi:https://doi.org/10.1016/j.colsurfb.2021.112112
  • F. Erci, R. Cakir-Koc, I. Isildak, Green synthesis of silver nanoparticles using Thymbra spicata L. var. spicata (zahter) aqueous leaf extract and evaluation of their morphology-dependent antibacterial and cytotoxic activity, Artificial Cells, Nanomedicine, and Biotechnology. 46 (2018), 150-158. doi:10.1080/21691401.2017.1415917
  • M. Khubchandani, N. Thosar, S. Dangore–Khasbage, R. Srivastava, Applications of silver nanoparticles in pediatric dentistry: An overview, Cureus. 14(7) (2022), e26956. doi:10.7759/cureus.26956
  • C.B. Girón, J.F.H. Sierra, I. DeAlba-Montero, M.A. Urbano-Peña, F. Ruíz, therapeutic use of silver nanoparticles in the prevention and arrest of dental caries, Bioinorganic Chemistry and Applications. 2020 (2020), 1-7. doi:10.1155/2020/8882930
  • I.X. Yin, J. Zhang, I.S. Zhao, M.L. Mei, Q. Li, C.H. Chu, The antibacterial mechanism of silver nanoparticles and ıts application in dentistry, International Journal of Nanomedicine. 15 (2020), 2555-2562. doi:10.2147/ijn.s246764
  • S. Sakhamuri, S.L. Kotha, A.R.G.M. AlAsmari, G.H. AlJefri, F.N. Almotawah, S.K. Mallineni, R. Sajja, Silver nanoparticles in dental applications: A descriptive review, Bioengineering. 10 (2023), 327. doi:10.3390/bioengineering10030327
  • C.B. Girón, J. Mariel-Cárdenas, M. Pierdant-Pérez, J.F. Hernández-Sierra, J.E. Morales-Sánchez, F. Ruíz, Effectiveness of a combined silver nanoparticles/fluoride varnish in dental remineralization in children: ın vivo study, Superficies Y Vacío. 30 (2017), 21-24. doi:10.47566/2017_syv30_1-020021
  • A.-S. Neculai-Valeanu, B.-M. Madescu, I. Porosnicu, A.-M. Ariton, Effect of various environmentally friendly reducing agents on the antioxidant activity of green synthesized silver nanoparticles, Life Science and Sustainable Development. 3 (2022), 49-53. doi:10.58509/lssd.v3i2.206
  • B. Essghaier, R. Dridi, F. Mottola, L. Rocco, M.F. Zid, H. Hannachi, Biosynthesis and characterization of silver nanoparticles from the extremophile plant Aeonium haworthii and their antioxidant, antimicrobial and anti-diabetic capacities, Nanomaterials. 13 (2022), 100. doi:10.3390/nano13010100
  • T. Barot, D. Rawtani, P. Kulkarni, Physicochemical and biological assessment of silver nanoparticles ımmobilized halloysite nanotubes-based resin composite for dental applications, Heliyon. 6 (2020), e03601. doi:10.1016/j.heliyon.2020.e03601
  • E.S. Allehyani, Surface Functionalization of polyester textiles for antibacterial and antioxidant properties, Polymers. 14 (2022), 5512. doi:10.3390/polym14245512
  • S. Ghosh, S.D. Patil, M. Ahire, R. Kitture, S.P. Kale, K. Pardesi, S.S. Cameotra, J. Bellare, D.D. Dhavale, A.M. Jabgunde, B.A. Chopade, Synthesis of silver nanoparticles using Dioscorea bulbifera tuber extract and evaluation of its synergistic potential in combination with antimicrobial agents, International Journal of Nanomedicine. (2012), 483. doi:10.2147/ijn.s24793
  • F. Hong, P. Chen, Y.U. Xue-fen, Q. Chen, The Application of silver to decontaminate dental unit waterlines—a systematic review, Biological Trace Element Research. 200 (2022), 4988-5002. doi:10.1007/s12011-022-03105-w
  • H.Y.Y. Kuşçu, Utilization of nanomaterials in prosthetic dental treatment, HRU International Journal of Dentistry and Oral Research. (2023). doi:10.61139/ijdor.1270852
  • H. Mohammed, A. Kumar, E. Bekyarova, Y. Al-Hadeethi, X. Zhang, M. Chen, M.S. Ansari, A. Cochis, L. Rimondini, Antimicrobial mechanisms and effectiveness of graphene and graphene-functionalized biomaterials. A scope review, Frontiers in Bioengineering and Biotechnology. 8 (2020), 465.
  • S. Liu, T.H. Zeng, M. Hofmann, E. Burcombe, J. Wei, R. Jiang, J. Kong, Y. Chen, Antibacterial activity of graphite, graphite oxide, graphene oxide, and reduced graphene oxide: Membrane and oxidative stress, Acs Nano. 5 (2011), 6971-6980. doi:10.1021/nn202451x
  • X. Wang, P. Lü, Y. Li, H. Xiao, X. Li, Antibacterial activities and mechanisms of fluorinated graphene and guanidine-modified graphene, RSC Advances. 6 (2016), 8763-8772. doi:10.1039/c5ra28030c
  • J. Li, G. Wang, H. Zhu, M. Zhang, X. Zheng, Z. Di, X. Liu, X. Wang, Antibacterial activity of large-area monolayer graphene film manipulated by charge transfer, Scientific Reports. 4 (2014). doi:10.1038/srep04359
  • V.P. Veeraraghavan, Fabrication, Characterization, Antibacterial and biocompatibility studies of graphene oxide loaded alginate chitosan scaffolds for potential biomedical applications, Texila International Journal of Public Health. (2023), 77-85. doi:10.21522/tijph.2013.se.23.01.art009
  • J. Chen, H. Peng, X. Wang, F. Shao, Z. Yuan, H. Han, Graphene oxide exhibits broad-spectrum antimicrobial activity against bacterial phytopathogens and fungal Conidia by intertwining and membrane perturbation, Nanoscale. 6 (2014), 1879-1889. doi:10.1039/c3nr04941h
  • Y. Qiu, Z. Wang, A.C.E. Owens, I. Külaots, Y. Chen, A.B. Kane, R.H. Hurt, Antioxidant chemistry of graphene-based materials and its role in oxidation protection technology, Nanoscale. 6 (2014), 11744-11755. doi:10.1039/c4nr03275f
  • B. Kaczmarek-Szczepańska, M. Michalska‐Sionkowska, P. Binkowski, J.P. Łukaszewicz, P. Kamedulski, 3d-structured and blood-contact-safe graphene materials, International Journal of Molecular Sciences. 24 (2023), 3576. doi:10.3390/ijms24043576
  • Z. Chen, J. Zhao, J. Qiao, W. Li, Z. Guan, Z. Liu, X. Bai, B. Xing, J. Zhang, J. Li, W. Yin, H. Zhu, Graphene-mediated antioxidant enzyme activity and respiration in plant roots, Acs Agricultural Science & Technology. 2 (2022), 646-660. doi:10.1021/acsagscitech.2c00074
  • M.S. Blois, Antioxidant determinations by the use of a stable free radical, Nature. 181 (1958), 1199-1200.
  • M. Oyaizu, Studies on products of browning reaction antioxidative activities of products of browning reaction prepared from glucosamine, The Japanese Journal of Nutrition and Dietetics. 44 (1986), 307-315.
  • M. Elmastaş, I. Gülçin, Ö. Işildak, Ö.İ. Küfrevioğlu, K. İbaoğlu, H.Y. Aboul-Enein, Radical scavenging activity and antioxidant capacity of bay leaf extracts, Journal of the Iranian Chemical Society. 3 (2006), 258-266.
  • R. Re, N. Pellegrini, A. Proteggente, A. Pannala, M. Yang, C. Rice-Evans, Antioxidant activity applying an improved ABTS radical cation decolorization assay, Free Radical Biology and Medicine. 26 (1999), 1231-1237.
  • M.A. Noginov, G. Zhu, M. Bahoura, J. Adegoke, C. Small, B.A. Ritzo, V.P. Drachev, V.M. Shalaev, The effect of gain and absorption on surface plasmons in metal nanoparticles, Applied Physics B. 86 (2007), 455-460.
  • P. Makvandi, U. Josić, M. Delfi, F. Pinelli, V. Jahed, E. Kaya, M. Ashrafizadeh, A. Zarepour, F. Rossi, A. Zarrabi, T. Agarwal, E.N. Zare, M. Ghomi, T.K. Maiti, L. Breschi, F.R. Tay, Drug delivery (nano)platforms for oral and dental applications: Tissue regeneration, ınfection control, and cancer management, Advanced Science. 8 (2021). doi:10.1002/advs.202004014
  • M.M. Sarafraz, F. Hormozi, Scale formation and subcooled flow boiling heat transfer of CuO–water nanofluid inside the vertical annulus, Experimental Thermal and Fluid Science. 52 (2014), 205-214.
  • M.M. Sarafraz, S.M. Peyghambarzadeh, Nucleate pool boiling heat transfer to Al2O3-water and TiO2-water nanofluids on horizontal smooth tubes with dissimilar homogeneous materials, Chemical and Biochemical Engineering Quarterly. 26 (2012), 199-206.
  • A. Ahmad, Y. Wei, F. Syed, K. Tahir, A.U. Rehman, A. Khan, S. Ullah, Q. Yuan, The effects of bacteria-nanoparticles interface on the antibacterial activity of green synthesized silver nanoparticles, Microbial pathogenesis. 102 (2017), 133-142.
  • H.M.M. Ibrahim, Green synthesis and characterization of silver nanoparticles using banana peel extract and their antimicrobial activity against representative microorganisms, Journal of Radiation Research and Applied Sciences. 8 (2015), 265-275.
  • M.M. Stevanović, S.D. Škapin, I. Bračko, M. Milenković, J. Petković, M. Filipič, D.P. Uskoković, Poly (lactide-co-glycolide)/silver nanoparticles: Synthesis, characterization, antimicrobial activity, cytotoxicity assessment and ROS-inducing potential, Polymer. 53 (2012), 2818-2828.
  • F.C. Tenover, Mechanisms of antimicrobial resistance in bacteria, The American journal of medicine. 119 (2006), 3-10.
  • K. He, Z. Zeng, A. Chen, G. Zeng, R. Xiao, P. Xu, Z. Huang, J. Shi, L. Hu, G. Chen, Advancement of Ag–graphene based nanocomposites: an overview of synthesis and its applications, Small. 14 (2018), 1800871.
  • A.C.M. de Moraes, B.A. Lima, A.F. de Faria, M. Brocchi, O.L. Alves, Graphene oxide-silver nanocomposite as a promising biocidal agent against methicillin-resistant Staphylococcus aureus, International Journal of Nanomedicine. (2015), 6847-6861.
  • J. Tang, Q. Chen, L. Xu, S. Zhang, L. Feng, L. Cheng, H. Xu, Z. Liu, R. Peng, Graphene oxide–silver nanocomposite as a highly effective antibacterial agent with species-specific mechanisms, ACS Applied Materials & Interfaces. 5 (2013), 3867-3874.
  • İ. Gülçin, Antioxidant properties of resveratrol: A structure–activity insight, Innovative Food Science & Emerging Technologies. 11 (2010), 210-218.
  • C.A. Rice-Evans, N.J. Miller, G. Paganga, Structure-antioxidant activity relationships of flavonoids and phenolic acids, Free Radical Biology And Medicine. 20 (1996), 933-956.
  • N. Anwar, M. Shah, S. Saleem, H. Rahman, Plant mediated synthesis of silver nanoparticles and their biological applications, Bulletin of the Chemical Society of Ethiopia. 32 (2018), 469-479. doi:10.4314/bcse.v32i3.6
  • I. Yaremchuk, T. Bulavinets, P. Stakhira, V. Fitio, Nanocomposite materials based on graphene, graphene oxide, and silver nanoparticles, Information and Communication Technologies Electronic Engineering. 3 (2023), 163-169. doi:10.23939/ictee2023.01.163
  • A. Rahim, V.N. Ratnakaram, M.J.S. Al Musawi, M. Syam Sundar, A. Syed, K. Nitish, J.K. Monditoka, E.G. Grace, H. Subha, C. Basavaiah, B. Hari Babu, D. Ramachandran, Enhanced catalytic, antioxidant, and electrochemical properties of green‐synthesized graphene‐silver nanocomposite utilizing Moringa oleifera leaf extract, ChemistrySelect. 9 (2024), e202401848. doi:10.1002/slct.202401848
  • I. Nasim, M. Shamly, K.K. Jaju, V. Vishnupriya, Z. Jabin, Antioxidant and anti-inflammatory activity of a nanoparticle based intracanal drugs, Bioinformation. 18 (2022), 450-454.
  • M. Wierzbicki, S. Jaworski, E. Sawosz, A. Jung, G. Gielerak, H. Jaremek, W. Łojkowski, B. Woźniak, L. Stobiński, A. Małolepszy, A. Chwalibog, Graphene oxide in a composite with silver nanoparticles reduces the fibroblast and endothelial cell cytotoxicity of an antibacterial nanoplatform, Nanoscale Research Letters. 14 (2019). doi:10.1186/s11671-019-3166-9
  • Y. Bao, C. Tian, H. Yu, J. He, K. Song, J. Guo, X. Zhou, O. Zhuo, S. Liu, In situ green synthesis of graphene oxide-silver nanoparticles composite with using gallic acid, Frontiers in Chemistry. 10 (2022). doi:10.3389/fchem.2022.905781
There are 48 citations in total.

Details

Primary Language English
Subjects Nanobiotechnology, Nanochemistry
Journal Section Articles
Authors

Selim Işıldak 0000-0002-7259-2848

Mahfuz Elmastas 0000-0002-7149-7427

Behiç Selman Erdoğdu 0000-0001-7098-5982

Meryem Erdoğdu 0000-0002-2430-0687

Early Pub Date January 12, 2025
Publication Date
Submission Date November 12, 2024
Acceptance Date January 6, 2025
Published in Issue Year 2025 Volume: 7 Issue: 1

Cite

APA Işıldak, S., Elmastas, M., Erdoğdu, B. S., Erdoğdu, M. (2025). Combined Antibacterial and Antioxidant Effect of Graphene Structures with Biogenic Silver Nanoparticles Synthesized by Using Black Pepper Extract. Necmettin Erbakan Üniversitesi Fen Ve Mühendislik Bilimleri Dergisi, 7(1), 77-91.
AMA Işıldak S, Elmastas M, Erdoğdu BS, Erdoğdu M. Combined Antibacterial and Antioxidant Effect of Graphene Structures with Biogenic Silver Nanoparticles Synthesized by Using Black Pepper Extract. NEJSE. January 2025;7(1):77-91.
Chicago Işıldak, Selim, Mahfuz Elmastas, Behiç Selman Erdoğdu, and Meryem Erdoğdu. “Combined Antibacterial and Antioxidant Effect of Graphene Structures With Biogenic Silver Nanoparticles Synthesized by Using Black Pepper Extract”. Necmettin Erbakan Üniversitesi Fen Ve Mühendislik Bilimleri Dergisi 7, no. 1 (January 2025): 77-91.
EndNote Işıldak S, Elmastas M, Erdoğdu BS, Erdoğdu M (January 1, 2025) Combined Antibacterial and Antioxidant Effect of Graphene Structures with Biogenic Silver Nanoparticles Synthesized by Using Black Pepper Extract. Necmettin Erbakan Üniversitesi Fen ve Mühendislik Bilimleri Dergisi 7 1 77–91.
IEEE S. Işıldak, M. Elmastas, B. S. Erdoğdu, and M. Erdoğdu, “Combined Antibacterial and Antioxidant Effect of Graphene Structures with Biogenic Silver Nanoparticles Synthesized by Using Black Pepper Extract”, NEJSE, vol. 7, no. 1, pp. 77–91, 2025.
ISNAD Işıldak, Selim et al. “Combined Antibacterial and Antioxidant Effect of Graphene Structures With Biogenic Silver Nanoparticles Synthesized by Using Black Pepper Extract”. Necmettin Erbakan Üniversitesi Fen ve Mühendislik Bilimleri Dergisi 7/1 (January 2025), 77-91.
JAMA Işıldak S, Elmastas M, Erdoğdu BS, Erdoğdu M. Combined Antibacterial and Antioxidant Effect of Graphene Structures with Biogenic Silver Nanoparticles Synthesized by Using Black Pepper Extract. NEJSE. 2025;7:77–91.
MLA Işıldak, Selim et al. “Combined Antibacterial and Antioxidant Effect of Graphene Structures With Biogenic Silver Nanoparticles Synthesized by Using Black Pepper Extract”. Necmettin Erbakan Üniversitesi Fen Ve Mühendislik Bilimleri Dergisi, vol. 7, no. 1, 2025, pp. 77-91.
Vancouver Işıldak S, Elmastas M, Erdoğdu BS, Erdoğdu M. Combined Antibacterial and Antioxidant Effect of Graphene Structures with Biogenic Silver Nanoparticles Synthesized by Using Black Pepper Extract. NEJSE. 2025;7(1):77-91.


32206                   17157           17158