BibTex RIS Cite

Biodegradation of Organic Pollutants in Saline Enviroments

Year 2014, Volume: 3 Issue: 2, 48 - 56, 03.02.2015
https://doi.org/10.17100/nevbiltek.210932

Abstract

One of the most important environmental problems of our days is the pollutions caused by the petroleum pollutants. A number of activities like petroleum exploration and extraction works, tanker and ship accidents, leakages that occur in petroleum transfer and storage works, petrochemical industry, etc. are causing petroleum pollutions to be experienced in an intensive manner. The works carried out have shown that some varieties of microorganisms can disintegrate petroleum hydrocarbons (biodegradation) that are causing pollution in various ratios. The biodegradation of the hydrocarbon pollutants by microorganisms cannot be made by every type of microorganism due to high salt concentrations in saline areas. Due to this reason, the researches that have been carried out in saline areas for remedying the pollution that occur in saline areas are gaining importance. Information has been provided in this compilation on the biodegradation abilityproperties of petroleum hydrocarbons by the halophylic microorganisms that are important from the point of view of environmental biotechnology

References

  • Harayama S., Kishira H., Kasai Y., Shutsubo K., “Petroleum biodegradation in marine environments” Journal of Molecular Microbiology and Biotechnology, 1(1), 63-70, 1999.
  • Hartmann L., “Historical development of wastewater treatment processes, in biotechnology: environmental processes.” In ( Ed. J Winter) Wileyvch Weinheim, 1(1), 5-16, 1999.
  • Leung K., T., Nandakumar K., Sreekumari K., Lee H., Trevors T., “Biodegradation and bioremidation of organic pollutants in soil” 2nd end. Modern Soil Microbiology CRC Press, Boca Raton, Florida, 522-549, 2006.
  • Das N., Chandran P., “Microbial degredation of petroleum hydrocarbon contaminantas: An Overview.” Biotechnology Research International, 2011, 1-13, 2010.
  • Margesin R., Schinner F., “Biodegradation and bioremediation of hydrocarbons in extreme environments.” Applied Microbiology and Biotechnology, 56, 650-663, 2001.
  • Park M., R., Kim D., J., Choi J.,W., Lim D., S., “Influence of immobilization of bacterial cells and TiO2 on phenol degradation.” Water, Air and Soil Pollution, 224, 1-9, 2013.
  • Haddadi A., Shavandi M., “Biodegradation of phenol in hypersaline conditions by Halomonas sp. strain PH2-2 isolated from saline soil.” International Biodeterioration and Biodegradradation, 85, 29-34, 2013.
  • Roberts E., R., “Remediation of petroleum contamined soils.” Lewis Publishers, New York, 139- 249, 1992.
  • Azetsu S., “BTEX degradation at high salinity in rozel point.” Oklahoma State University, Master Thesis, USA, 15-35, 2009.
  • Fernandes A., N., Gouveida C., D., Grassi M., T., da Crespo S., Giovanela M., “Determination of Monoaromatic Hydrocarbons (BTEX) in Surface Waters from a Brazilian Subtropical Hydrographic Basin.” Bulletin of Environmental Contamination and Toxicology, 92, 445-459 2014.
  • Ulrici W., “Contaminant soil areas, different countries and contaminant monitoring of contaminants,” in Environmental Process II. In Edith by Rehm H., J., Reed G., Soil Decontamination Biotechnology 11, 5-42, 2000.
  • Atlas R., Bragg J., “Bioremediation of marine oil spills: when and when not-the Exxon Valdez experience.” Microbial Biotechnology, 2(2), 213–221, 2009.
  • Gibson D., T., Subramania V., “Microbial degradation of aromatic hydrocarbons.” In Edith.by Gibson D., T., Microbial degradation of organic compounds, Marcel Dekker, Inc., New York, 181-252, 1984.
  • Deeb R., A., Alvarez-Cohen L., “Temperature effects and substrate interactions during the aerobic biotransformation of BTEX mixtures by toluene-enriched consortia and Rhodocossus rhodochrous.” Biotechnology and Bioengineering, 62, 526-536, 1999.
  • Lovley D., R., Woodward J., C., Chapelle F., H., “Rapid anaerobic benzene oxidation with a variety of chelated Fe (III) forms.” Applied Environmental Microbiolology, 62, 288- 291, 1996.
  • Chen C., I., Taylor R., T., “Themophilic biodegradation of BTEX by two consortia of anaerobic bacteria.” Applied Microbiology Biotechnology, 48, 121-128, 1997.
  • Gieg L., M., Kolhatkar R., V., McInerney M., J., Tanner R., S., Harris S., H., Jr., Sublette K., L., Suflita J., M.,. “Intrinsic bioremediation of petroleum hydrocarbons in a gascondensate- contaminated aquifer.” Environmental Science and Technology, 33, 2550-2560, 1999.
  • Braddock J., F., McCarthy K., A., “Hydrologic and microbiological factors affecting persistence and migration of petroleum hydrocarbons spilled in a continuous-permafrost region.” Environmental Science and Technology, 30, 2626-2633, 1996.
  • Chen C., I., Taylor R., T.,. “Thermophilic biodegradation of BTEX by two Thermus species.” Biotechnology and Bioengineering 48, 614–624, 1995.
  • Brusa T., Borin S., Ferrari F., Sorlini C., Corselli C., Daffonchio D., “Aromatic hydrocarbon degradation patterns and catechol 2, 3-dioxygenase genes in microbial cultures from deep anoxic hypersaline lakes in the eastern Mediterranean Sea.” Microbiological Research 156, 49-57, 2001.
  • Nicholson C., A., “Biodegredasyon of petroleum hydrocarbons by halophilic and halotolerant microorganisms.” Oklahoma State University, Master Thesis, USA, 3-40,2005.
  • Dalvi S., Azetsu S., Patrauchan M., A., Aktaş D., F., Fathepure B., Z., “Proteogenomic elucidation of the initial steps in the benzene degradation pathway of a novel halophile, Arhodomonas sp. strain Rozel, isolated from a hypersaline enviroment.” Applied Environmental Microbiology 78, 7309-7316, 2012.
  • Malik Z., A., Ahmed S., “Degradation of petroleum hydrocarbons by oil field isolated bacterial consortium.” African Journal of Biotechnology, 11(3),650- 658, 2012.
  • Bragg J., R., Prince R., C., Harner E., J., Atlas R., M., “Effectiveness of bioremediation for the Exxon Valdez oil spill.” Nature, 368,413-418,1994.
  • Mnif S., Chamkha M., Sayadi S., “Isolation and characterization of Halomonas sp. strain C2SS100, a hydrocarbon-degrading bacterium under hypersaline conditions.” Journal of Applied Microbiology, 107, 785–794, 2009.
  • Al-Mailem D., M., Sorkhoh N., A., Marafie M., Al-Awadhi H., Eliyas M., Radwan S., S.,. “Oil phytoremediation potential of hypersaline coasts of the Arabian Gulf using rhizosphere technology.” Bioresource Technology, 101, 5786–5792, 2010.
  • Fernandez-Linares L., Acquaviva M., Betrand J., C., Gauthier M., “Effect of sodium chloride concentration on growth and degradation of eicosane by the marine halotolerant bacterium Marinobacter hydrocarbonoclasticus.” Systematic and Applied Microbiology, 19, 113-121, 1996.
  • Maltseva O., McGowan C., Fulthorpe R., Oriel P., “Degradation of 2,4 dichlorophenoxyacetic acid by haloalkaliphilic bacteri.” Microbiology, 142,1115–1122, 1996.
  • DeFrank J., Cheng T., C., “Purification and properties of an organophosphorus acid anhydrase from a halophilic bacterial isolate.” Journal of Bacteriology, 173, 1938–1943, 1991.
  • Fuse H., “Oxidation of organic compounds by bacteria.” Japanese Patent, JP10128385, May 19,1998.
  • Garcia M., T., Ventosa A., Mellado E., “Catabolic versatility of aromatik compound- degrading halophilic bacteria.” FEMS Mirobiology Ecology, 54, 97-109, 2005.
  • Lefebvre O., Vasudevan N., Moletta R., “Halophilic biological treatment of tannery soak liquor in a sequencing batch reaktor.” Water Research, 39, 1471-1480, 2005.
  • Cuadros-Orellana S., Pohlschröder M., Durrant L., R., “Isolation and characterization of halophilic archaea able to grow in aromatic compounds.” International Biodeterioration and Biodegradation, 57, 151-154, 2006.
  • Garcia M., T., Mellado E., Ostos J., C., Ventosa A., “Halomonas organivorans sp. nov., a moderate halophile able to degrade aromatic compounds.” International Journal of Systematic and Evolutionary Microbiology, 54,1723–1728, 2004.
  • Ding J., Y., Lai M., C., “The biotechnological potential of the extreme halophilic archaea Haloterrigena sp. H13 in xenobiotic metabolism using a comparative genomics approach.” Environmental Technology,31, 905–914, 2010.
  • Bonfa M., R., L., Grossman M., J., Mellado E., Durrant L., R., “Biodegradation of aromatic hydrocarbons by haloarchaea and their use for the reduction of the chemical oxygen demand of hypersaline petroleum produced water.” Chemosphere, 84, 1671–1676, 2011.
  • Ha D., J., Joo W., A., Han G., Y., Kim C., W., “Proteome analysis of Halobacterium salinarum and characterization of proteins related to the degradation of isopropyl alcohol”. Biochimica et Biophysica Acta, 1774,44–50, 2007.
  • Erdoğmuş S., F., Mutlu B., Korcan S., E., Güven K., Konuk M., “Aromatic hydrocarbon d
  • egradation by halophilic archaea isolated from Çamaltı Saltern, Turkey.” Water, Air and Soil
  • Pollution, 224(3),1-9, 2013.
  • Gao W., Cui Z., Li Q., Xu G., Jia X., Zheng L., “ Marinobacter nanhaiticus sp. nov., polycyclic aromatic hydrocarbon-degrading bacterium isolated from the sediment of the South China Sea.” Antonie Van Leeuwenhoek, 103, 485-491, 2013.
  • Cui C., Z., Feng T., C., Yu Y., Q., Dong F., Yang X., M., Feng Y., Y., Liu Y., D., Lin H., P., “Isolation, characterization of an anthracene degrading bacterium Martelella sp. AD-3 and cloning of dioxygenase gene.” Environmental Science (Huanjing Kexue), 33, 4062–4068, 2012.
  • Cui C., Li P., Liu G., Tang H., Lin K., Luo Q., Liu S., Xu P., Liu Y., “Genome sequence of Martelella sp. strain AD-3, a moderately halophilic polycyclic aromatic hydrocarbon-degrading bacterium.” Genome Announcements, 2(1), e01189–13, 2014.
  • Guo J., Zhou J., Wang D., Yang J., Li Z., “The new incorporation bio-treatment technology of bromoamine acid and azo dyes wastewaters under high-salt conditions.” Biodegradation, 19, 93- 98, 2008.
  • Nicholson C., A., Fathepure B., Z., “Biodegradation of benzene by halophilic and halotolerant bacteria under aerobic conditions.” Applied Environmental Microbiology, 70(2), 222-225 2004.
  • Veenagayathri K., Vasudevan N., “Effect of pH, nitrogene sources and salts on the degradation of phenol by the bacterial consortium under saline conditions.” International Journal of Biotechnology and Biochemistry, 6(5), 783–791, 2010.
  • Berlendis S., Cayol J., L., Verhé F., Sophie L., Tholozan J., L., Ollivier B., Auria R., “First evidence of aerobic biodegradation of BTEX compounds by pure cultures of Marinobacter.” Applied Biochemistry and Biotechnology, 160 (7), 1992–1999, 2010.
  • Li H., Zhang Q., Wang X., L., Ma X., Y., Lin K., F., Liu Y., D., Gu J., D., Lu S., G., Shi L., Lu Q., Shen T., T., “Biodegradation of benzen homologues in contaminated sediment of the East China Sea.” Bioresour Technology, 124, 129–136, 2012.
  • Arulazhagan P., Vasudevan N., Yeom I., T., “Biodegradation of polycyclic aromatic hydrocarbon by a halotolerant bacterial consortium isolated from marine environment.” International Journal of Environmental Science and Technology, 7(4), 839-852, 2010.
  • Akolkar A., V., Deshpande G., M., Ravel K., N., Durai D., Nerurkar A., S., Desai A., J., “Organic solvent tolerance of Halobacterium sp. SP1(1) and its extracellular protease.” Journal of Basic Microbiology, 48, 421–425, 2008.

Organik Kirleticilerin Tuzcul Çevrelerde Biyodegredasyonu

Year 2014, Volume: 3 Issue: 2, 48 - 56, 03.02.2015
https://doi.org/10.17100/nevbiltek.210932

Abstract

Günümüzün en önemli çevresel sorunlarından biri petrol kirleticilerinin sebep oldukları kirliliklerdir. Petrol arama ve çıkarma çalışmaları, tanker ve gemi kazaları, petrol aktarma, depolama çalışmalarında meydana gelen sızıntılar, petrokimya endüstrisi vb. birçok faaliyet petrol kirliliklerinin yoğun bir şekilde yaşanmasına neden olmaktadır. Yapılan çalışmalar, bazı mikroorganizma türlerinin, kirliliğe sebep olan petrol hidrokarbonlarını çeşitli oranlarda parçalayabildiklerini (biyodegredasyon) göstermiştir. Hidrokarbon kirleticilerinin mikroorganizmalar tarafından biyodegredasyonu tuzcul alanlarda yüksek tuz konsantrasyonları sebebiyle her çeşit mikroorganizma ile yapılamamaktadır. Bu nedenle tuzcul alanlarda meydana gelen kirliliğin giderilmesi için yapılan araştırmalar önem kazanmaktadır. Bu derlemede, çevre biyoteknolojisi açısından önemli olan halofilik mikroorganizmaların petrol hidrokarbonlarını biyodegrede edebilme özellikleri hakkında bilgi verilmiştir. 

References

  • Harayama S., Kishira H., Kasai Y., Shutsubo K., “Petroleum biodegradation in marine environments” Journal of Molecular Microbiology and Biotechnology, 1(1), 63-70, 1999.
  • Hartmann L., “Historical development of wastewater treatment processes, in biotechnology: environmental processes.” In ( Ed. J Winter) Wileyvch Weinheim, 1(1), 5-16, 1999.
  • Leung K., T., Nandakumar K., Sreekumari K., Lee H., Trevors T., “Biodegradation and bioremidation of organic pollutants in soil” 2nd end. Modern Soil Microbiology CRC Press, Boca Raton, Florida, 522-549, 2006.
  • Das N., Chandran P., “Microbial degredation of petroleum hydrocarbon contaminantas: An Overview.” Biotechnology Research International, 2011, 1-13, 2010.
  • Margesin R., Schinner F., “Biodegradation and bioremediation of hydrocarbons in extreme environments.” Applied Microbiology and Biotechnology, 56, 650-663, 2001.
  • Park M., R., Kim D., J., Choi J.,W., Lim D., S., “Influence of immobilization of bacterial cells and TiO2 on phenol degradation.” Water, Air and Soil Pollution, 224, 1-9, 2013.
  • Haddadi A., Shavandi M., “Biodegradation of phenol in hypersaline conditions by Halomonas sp. strain PH2-2 isolated from saline soil.” International Biodeterioration and Biodegradradation, 85, 29-34, 2013.
  • Roberts E., R., “Remediation of petroleum contamined soils.” Lewis Publishers, New York, 139- 249, 1992.
  • Azetsu S., “BTEX degradation at high salinity in rozel point.” Oklahoma State University, Master Thesis, USA, 15-35, 2009.
  • Fernandes A., N., Gouveida C., D., Grassi M., T., da Crespo S., Giovanela M., “Determination of Monoaromatic Hydrocarbons (BTEX) in Surface Waters from a Brazilian Subtropical Hydrographic Basin.” Bulletin of Environmental Contamination and Toxicology, 92, 445-459 2014.
  • Ulrici W., “Contaminant soil areas, different countries and contaminant monitoring of contaminants,” in Environmental Process II. In Edith by Rehm H., J., Reed G., Soil Decontamination Biotechnology 11, 5-42, 2000.
  • Atlas R., Bragg J., “Bioremediation of marine oil spills: when and when not-the Exxon Valdez experience.” Microbial Biotechnology, 2(2), 213–221, 2009.
  • Gibson D., T., Subramania V., “Microbial degradation of aromatic hydrocarbons.” In Edith.by Gibson D., T., Microbial degradation of organic compounds, Marcel Dekker, Inc., New York, 181-252, 1984.
  • Deeb R., A., Alvarez-Cohen L., “Temperature effects and substrate interactions during the aerobic biotransformation of BTEX mixtures by toluene-enriched consortia and Rhodocossus rhodochrous.” Biotechnology and Bioengineering, 62, 526-536, 1999.
  • Lovley D., R., Woodward J., C., Chapelle F., H., “Rapid anaerobic benzene oxidation with a variety of chelated Fe (III) forms.” Applied Environmental Microbiolology, 62, 288- 291, 1996.
  • Chen C., I., Taylor R., T., “Themophilic biodegradation of BTEX by two consortia of anaerobic bacteria.” Applied Microbiology Biotechnology, 48, 121-128, 1997.
  • Gieg L., M., Kolhatkar R., V., McInerney M., J., Tanner R., S., Harris S., H., Jr., Sublette K., L., Suflita J., M.,. “Intrinsic bioremediation of petroleum hydrocarbons in a gascondensate- contaminated aquifer.” Environmental Science and Technology, 33, 2550-2560, 1999.
  • Braddock J., F., McCarthy K., A., “Hydrologic and microbiological factors affecting persistence and migration of petroleum hydrocarbons spilled in a continuous-permafrost region.” Environmental Science and Technology, 30, 2626-2633, 1996.
  • Chen C., I., Taylor R., T.,. “Thermophilic biodegradation of BTEX by two Thermus species.” Biotechnology and Bioengineering 48, 614–624, 1995.
  • Brusa T., Borin S., Ferrari F., Sorlini C., Corselli C., Daffonchio D., “Aromatic hydrocarbon degradation patterns and catechol 2, 3-dioxygenase genes in microbial cultures from deep anoxic hypersaline lakes in the eastern Mediterranean Sea.” Microbiological Research 156, 49-57, 2001.
  • Nicholson C., A., “Biodegredasyon of petroleum hydrocarbons by halophilic and halotolerant microorganisms.” Oklahoma State University, Master Thesis, USA, 3-40,2005.
  • Dalvi S., Azetsu S., Patrauchan M., A., Aktaş D., F., Fathepure B., Z., “Proteogenomic elucidation of the initial steps in the benzene degradation pathway of a novel halophile, Arhodomonas sp. strain Rozel, isolated from a hypersaline enviroment.” Applied Environmental Microbiology 78, 7309-7316, 2012.
  • Malik Z., A., Ahmed S., “Degradation of petroleum hydrocarbons by oil field isolated bacterial consortium.” African Journal of Biotechnology, 11(3),650- 658, 2012.
  • Bragg J., R., Prince R., C., Harner E., J., Atlas R., M., “Effectiveness of bioremediation for the Exxon Valdez oil spill.” Nature, 368,413-418,1994.
  • Mnif S., Chamkha M., Sayadi S., “Isolation and characterization of Halomonas sp. strain C2SS100, a hydrocarbon-degrading bacterium under hypersaline conditions.” Journal of Applied Microbiology, 107, 785–794, 2009.
  • Al-Mailem D., M., Sorkhoh N., A., Marafie M., Al-Awadhi H., Eliyas M., Radwan S., S.,. “Oil phytoremediation potential of hypersaline coasts of the Arabian Gulf using rhizosphere technology.” Bioresource Technology, 101, 5786–5792, 2010.
  • Fernandez-Linares L., Acquaviva M., Betrand J., C., Gauthier M., “Effect of sodium chloride concentration on growth and degradation of eicosane by the marine halotolerant bacterium Marinobacter hydrocarbonoclasticus.” Systematic and Applied Microbiology, 19, 113-121, 1996.
  • Maltseva O., McGowan C., Fulthorpe R., Oriel P., “Degradation of 2,4 dichlorophenoxyacetic acid by haloalkaliphilic bacteri.” Microbiology, 142,1115–1122, 1996.
  • DeFrank J., Cheng T., C., “Purification and properties of an organophosphorus acid anhydrase from a halophilic bacterial isolate.” Journal of Bacteriology, 173, 1938–1943, 1991.
  • Fuse H., “Oxidation of organic compounds by bacteria.” Japanese Patent, JP10128385, May 19,1998.
  • Garcia M., T., Ventosa A., Mellado E., “Catabolic versatility of aromatik compound- degrading halophilic bacteria.” FEMS Mirobiology Ecology, 54, 97-109, 2005.
  • Lefebvre O., Vasudevan N., Moletta R., “Halophilic biological treatment of tannery soak liquor in a sequencing batch reaktor.” Water Research, 39, 1471-1480, 2005.
  • Cuadros-Orellana S., Pohlschröder M., Durrant L., R., “Isolation and characterization of halophilic archaea able to grow in aromatic compounds.” International Biodeterioration and Biodegradation, 57, 151-154, 2006.
  • Garcia M., T., Mellado E., Ostos J., C., Ventosa A., “Halomonas organivorans sp. nov., a moderate halophile able to degrade aromatic compounds.” International Journal of Systematic and Evolutionary Microbiology, 54,1723–1728, 2004.
  • Ding J., Y., Lai M., C., “The biotechnological potential of the extreme halophilic archaea Haloterrigena sp. H13 in xenobiotic metabolism using a comparative genomics approach.” Environmental Technology,31, 905–914, 2010.
  • Bonfa M., R., L., Grossman M., J., Mellado E., Durrant L., R., “Biodegradation of aromatic hydrocarbons by haloarchaea and their use for the reduction of the chemical oxygen demand of hypersaline petroleum produced water.” Chemosphere, 84, 1671–1676, 2011.
  • Ha D., J., Joo W., A., Han G., Y., Kim C., W., “Proteome analysis of Halobacterium salinarum and characterization of proteins related to the degradation of isopropyl alcohol”. Biochimica et Biophysica Acta, 1774,44–50, 2007.
  • Erdoğmuş S., F., Mutlu B., Korcan S., E., Güven K., Konuk M., “Aromatic hydrocarbon d
  • egradation by halophilic archaea isolated from Çamaltı Saltern, Turkey.” Water, Air and Soil
  • Pollution, 224(3),1-9, 2013.
  • Gao W., Cui Z., Li Q., Xu G., Jia X., Zheng L., “ Marinobacter nanhaiticus sp. nov., polycyclic aromatic hydrocarbon-degrading bacterium isolated from the sediment of the South China Sea.” Antonie Van Leeuwenhoek, 103, 485-491, 2013.
  • Cui C., Z., Feng T., C., Yu Y., Q., Dong F., Yang X., M., Feng Y., Y., Liu Y., D., Lin H., P., “Isolation, characterization of an anthracene degrading bacterium Martelella sp. AD-3 and cloning of dioxygenase gene.” Environmental Science (Huanjing Kexue), 33, 4062–4068, 2012.
  • Cui C., Li P., Liu G., Tang H., Lin K., Luo Q., Liu S., Xu P., Liu Y., “Genome sequence of Martelella sp. strain AD-3, a moderately halophilic polycyclic aromatic hydrocarbon-degrading bacterium.” Genome Announcements, 2(1), e01189–13, 2014.
  • Guo J., Zhou J., Wang D., Yang J., Li Z., “The new incorporation bio-treatment technology of bromoamine acid and azo dyes wastewaters under high-salt conditions.” Biodegradation, 19, 93- 98, 2008.
  • Nicholson C., A., Fathepure B., Z., “Biodegradation of benzene by halophilic and halotolerant bacteria under aerobic conditions.” Applied Environmental Microbiology, 70(2), 222-225 2004.
  • Veenagayathri K., Vasudevan N., “Effect of pH, nitrogene sources and salts on the degradation of phenol by the bacterial consortium under saline conditions.” International Journal of Biotechnology and Biochemistry, 6(5), 783–791, 2010.
  • Berlendis S., Cayol J., L., Verhé F., Sophie L., Tholozan J., L., Ollivier B., Auria R., “First evidence of aerobic biodegradation of BTEX compounds by pure cultures of Marinobacter.” Applied Biochemistry and Biotechnology, 160 (7), 1992–1999, 2010.
  • Li H., Zhang Q., Wang X., L., Ma X., Y., Lin K., F., Liu Y., D., Gu J., D., Lu S., G., Shi L., Lu Q., Shen T., T., “Biodegradation of benzen homologues in contaminated sediment of the East China Sea.” Bioresour Technology, 124, 129–136, 2012.
  • Arulazhagan P., Vasudevan N., Yeom I., T., “Biodegradation of polycyclic aromatic hydrocarbon by a halotolerant bacterial consortium isolated from marine environment.” International Journal of Environmental Science and Technology, 7(4), 839-852, 2010.
  • Akolkar A., V., Deshpande G., M., Ravel K., N., Durai D., Nerurkar A., S., Desai A., J., “Organic solvent tolerance of Halobacterium sp. SP1(1) and its extracellular protease.” Journal of Basic Microbiology, 48, 421–425, 2008.
There are 50 citations in total.

Details

Primary Language Turkish
Subjects Engineering
Journal Section Biyoloji
Authors

Nurnehir Baltacı

Zehra Yüksekdağ

Publication Date February 3, 2015
Published in Issue Year 2014 Volume: 3 Issue: 2

Cite

APA Baltacı, N., & Yüksekdağ, Z. (2015). Organik Kirleticilerin Tuzcul Çevrelerde Biyodegredasyonu. Nevşehir Bilim Ve Teknoloji Dergisi, 3(2), 48-56. https://doi.org/10.17100/nevbiltek.210932
AMA Baltacı N, Yüksekdağ Z. Organik Kirleticilerin Tuzcul Çevrelerde Biyodegredasyonu. Nevşehir Bilim ve Teknoloji Dergisi. February 2015;3(2):48-56. doi:10.17100/nevbiltek.210932
Chicago Baltacı, Nurnehir, and Zehra Yüksekdağ. “Organik Kirleticilerin Tuzcul Çevrelerde Biyodegredasyonu”. Nevşehir Bilim Ve Teknoloji Dergisi 3, no. 2 (February 2015): 48-56. https://doi.org/10.17100/nevbiltek.210932.
EndNote Baltacı N, Yüksekdağ Z (February 1, 2015) Organik Kirleticilerin Tuzcul Çevrelerde Biyodegredasyonu. Nevşehir Bilim ve Teknoloji Dergisi 3 2 48–56.
IEEE N. Baltacı and Z. Yüksekdağ, “Organik Kirleticilerin Tuzcul Çevrelerde Biyodegredasyonu”, Nevşehir Bilim ve Teknoloji Dergisi, vol. 3, no. 2, pp. 48–56, 2015, doi: 10.17100/nevbiltek.210932.
ISNAD Baltacı, Nurnehir - Yüksekdağ, Zehra. “Organik Kirleticilerin Tuzcul Çevrelerde Biyodegredasyonu”. Nevşehir Bilim ve Teknoloji Dergisi 3/2 (February 2015), 48-56. https://doi.org/10.17100/nevbiltek.210932.
JAMA Baltacı N, Yüksekdağ Z. Organik Kirleticilerin Tuzcul Çevrelerde Biyodegredasyonu. Nevşehir Bilim ve Teknoloji Dergisi. 2015;3:48–56.
MLA Baltacı, Nurnehir and Zehra Yüksekdağ. “Organik Kirleticilerin Tuzcul Çevrelerde Biyodegredasyonu”. Nevşehir Bilim Ve Teknoloji Dergisi, vol. 3, no. 2, 2015, pp. 48-56, doi:10.17100/nevbiltek.210932.
Vancouver Baltacı N, Yüksekdağ Z. Organik Kirleticilerin Tuzcul Çevrelerde Biyodegredasyonu. Nevşehir Bilim ve Teknoloji Dergisi. 2015;3(2):48-56.

Dergimizin tarandığı indeksler


12300          20980     2097822081