Research Article
BibTex RIS Cite

Atık Sulardan İzole Edilen Pseudomonas Spp.’ lerin Ekzopolisakkarit Üretimine Bazı Ağır Metallerin Etkisi

Year 2018, Volume: 7 Issue: 2, 223 - 239, 30.12.2018
https://doi.org/10.17100/nevbiltek.402196

Abstract



Bu çalışmada atık su arıtma
havuzlarından alınan örneklerden 50 adet Pseudomonas
spp.
izole edilmiştir. İzolatların; koloni morfolojileri, Gram boyama
sonuçları ve VITEK 2 Compact 30 (biomerieux) cihazında yapılan tür
tanımlamaları sonucunda 27 adet Pseudomonas
aeruginosa
ve 23 adet P. stutzeri
oldukları tespit edilmiştir. Tanımlanan izolatlar 10 ppm Cr(VI), Cd(II), Cu(II)
ve Mn(II) konsantrasyonlarına maruz bırakılarak bu metallere karşı canlılıkları
tespit edilmiş ve her metal için canlılığını en çok koruyan izolatlar
seçilmiştir. Aynı zamanda izolatların canlılık değerlerine göre uygulanacak metallerin
4 farklı derişimi belirlenmiştir. Seçilen izolatlara belirlenen metal
konsantrasyonları verilerek yüzde ölüm değerleri tespit edilmiş ve LC50
değerleri hesaplanmıştır. Her metal için seçilen izolatlar, belirlenen
konsantrasyonlarda metale maruz bırakılarak EPS izolasyonu gerçekleştrilmiştir.
15 ppm Cr(VI) konsantrasyonunda en yüksek EPS üretiminin P.stutzeri S46 izolatında (74,68 mg/L), en düşük EPS üretiminin ise
P.stutzeri S18 izolatında olduğu
(39,37 mg/L) tespit edilmiştir. 40 ppm Cd(II) konsantrasyonunda en yüksek EPS
üretiminin P.stutzeri S23 izolatında
(60,93 mg/L), en düşük EPS üretiminin ise P.aeruginosa
S10 izolatında olduğu (40,93 mg/L) belirlenmiştir. 80 ppm Cu(II)
konsantrasyonunda en yüksek EPS üretiminin P.stutzeri
S45 izolatında (74,06 mg/L), en düşük EPS üretiminin ise P. aeruginosa S8 izolatında olduğu (28,28 mg/L) görülmüştür. 400
ppm Mn(II) konsantrasyonunda en yüksek EPS üretiminin P.stutzeri S44 izolatında (46,40 mg/L), en düşük EPS üretiminin ise
P.stutzeri S50 izolatında olduğu
(26,56 mg/L) tespit edilmiştir. Sonuç olarak artan metal dozlarına maruz kalan Pseudomonas spp. izolatlarının
ürettikleri EPS miktarlarında da artış olduğu tespit edilmiştir. Bu çalışma ile
atık sulardan izole edilen Pseudomonas
spp
. izolatlarının bazı ağır metallerin EPS üretimine etkisi biyoteknolojik
açıdan vurgulanmıştır.




References

  • [1] Patterson, J. W., “Waste water treatment”, Science Publishers Inc., U.S.A., 43-55, 59-67, 69-81, 1977
  • [2] Viel, P., Palacin, S., Descours, F., Bureau, C., Le Derf, F., Lyskawa, J., Salle, M., “Electropolymerized poly-4-vinylpyridine for removal of copper from wastewater”, Appl. Surf. Sci., 212-213: 792-796, 2003.
  • [3] Gramion, F., “Analyses of microbial community structures and functions in heavy metal-contaminated soils using molecular methods”, Ph.D. thesis, Swiss Federal Institute of Technology of Lausanne, Switzerland, 1-107, 2003.
  • [4] Young, R. V., “World of Chemistry”, Gale Group, Michigan 48-77, 2000.
  • [5] Zouboulis, A. I., Loukidou, M. X., Matis, K. A., “Biosorption of toxic metals from aqueous solutions by bacteria strains isolated from metal-polluted soils”, Process Biochem., 39: 909-916, 2004.
  • [6] Förstner, U., Wittman, G. T. W., “Metal Pollution in the aquatic environment”, Springer, Berlin 197-230, 1983.
  • [7] Kartal, G., Guven, A., Kahvecioğlu, O., Timur, S., “Metallerin Cevresel Etkileri-II, www.metalurji.org.tr/dergi/dergi137/d137_4651 pdf, Mart 2009
  • [8] Gokağaçlı, N, G., “Microcystis sp. ile Demir, Bakır ve Cinko Metallerinin Giderimi”, Marmara Universitesi Fen Bilimleri Enstitusu, Yuksek Lisans Tezi, SF. 1-17, İstanbul, 2007
  • [9] Environmental and Workplace Health. Manganese, 1987
  • [10] Morgan J.J., “Chemical Equilibria and Kinetic Properties of Manganese in Natural Waters”, S.D. Faust and J.V. Hunter, editors, Principles and Applications of Water Chemistry, Wiley and Sons Inc, Newyork, 1967
  • [11] Tefloncu A., “Biyoteknoloji”, Ege Üniversitesi Yayınlar,. Bornova, İzmir, 1995.
  • [12] Sutherland, I.W., “Polysaccharases for microbial exopolysaccharides”, Carbonhydrate Polymers, 38, 319-328, 1999.
  • [13] Rangsayatorn, N., Upatham, E. S., Kruatrachue, M., Pokethitiyook, P., Lanza, G. R., “Phytoremediation potential of Spirulina (Arthrospira) platensis: biosorption and toxicity studies of cadmium”, Environ. Pollut.,119: 45-53, 2002.
  • [14] İleri, R., Çevre Biyoteknolojisi, 501-503, 2000.
  • [15] Liu, Y., Lam, M. C., Fang, H. H. P., “Adsorption of heavy metals by EPS of activated sludge”, Water Sci. Technol., 43: 59–66, 2001.
  • [16] Wang, J. L., Chen, C., “Biosorption of heavy metal by Saccharomyces cerevisiae: areview”, Biotechnol. Adv., 24 (5): 427–451, 2006.
  • [17] Donot, F. Fontana, A., Baccou, J.C., Galindo, S.S., “Microbial exopolysaccharides: main examples of synthesis, excretion, genetics and extraction”, Carbohydrate Polymers, 87, 951– 962, 2012.
  • [18] White, C., Gadd, G. M., “Accumulation and effects of cadmium on sulphatereducing bacterial biofilms”, Microbiology, 144: 1407-1415, 1998.
  • [19] Adarsh, V. K, Mishra, M., Chowdhury, S., Sudarshan, M., Thakur A. R., Chaudhuri, S. R., “Studies on metal microbe interaction of three bacterial isolates from east calcutta wetland”, J. Biol. Sci., 7: 80-88, 2007.
  • [20] Vanhaverbeke, C., Heyraud, A., Mazeau, K., “Conformational analysis of the exopolysaccharide from Burkholderia caribensis strain MWAP71: Impact of the interaction with soils”, Biopolymers, 69: 480–497, 2003.
  • [21] Yalpani M., Sandford P. A., Commercial Polysaccharides: Recent Trends and Developments. In: Yalpani M., editor, Industrial Polysaccharides Genetic Engineering, Structure/Property Relations and Applications. Amsterdam, Elsevier Science Publishers, 311-35, 1987.
  • [22] Becker A., F. Katzen A., Pühler and L., lelpie. “Xanthan Gum Biosynthesis and Application: a Biochemical/Genetic Perspective”, Appl. Microbiol. Biotechnol., 50, 145-152, 1998.
  • [23] OECD (Organization for the Economic Cooperation and Development), ‘OECD Guideline for testing of chemical: Alga, growth inhibition test’, 1984.
  • [24] APHA, AWWA, WPCF, “Standart Methods for the examination of water and wastewater”, Washington, 1971.
  • [25] Dan Li, Jiaxi Li, Feng Zhao, Guohong Wang, Qianqian Qin, Yanling Hao. “The influence of fermentation condition on production and molecular mass of EPS produced by Streptococcus thermophilus 05-34 in milk-based medium”, Food Chemistry, 197:367-372, 2016.
  • [26] Petra Kson zekova, Peter Bystricky, Silvia Vlckova, Vladimir Patoprsty, Lucia Pulzova, Dagmar Mudronova, Terezia Kuboskova, Tomas Csank, Ludmila Tkacikova, “Exopolysaccharides of Lactobacillus reuteri: Their influence onadherence of E. Coli to epithelial cells and inflammatory response”, Carbohydrate Polymers, 141:10-19, 2016.
  • [27] Sneath, P. H. A., "Bergey’s Manual of Systematic Bacteriology", Edited by P. H. A. Sneath, N. S., Mair, M. E., Sharpe, J. G. Holt, Williams and Wilkins, 1 Baltimore, 2: 141-199, 1986.
  • [28] Collier, L., Balow, A., Sussman, M., "Topley & Wilson’s Microbiology and Microbiol Infections", Systematic Bacteriology, 9th edition, 2: 1091-1118, 1998.
  • [29] Sutherland, I.W., “Polysaccharases for microbial exopolysaccharides”, Carbonhydrate Polymers, 38, 319-328, 1999.
  • [30] Steinberger, R. E. and Holden P. A., “Macromolecular composition of unsaturated Pseudomonas aeruginosa biofilms with time and carbon source”, Biofilms, 1: 37-47, 2004.
  • [31] Asthana, S., Rusin, P., and Gerba, C. P., “Influence of hydrocarbons on the virulence and antibiotic sensitivity associated with Pseudomonas aeruginosa”, Int. J. Environ. Health Research, 7: 277-287, 1997.
  • [32] King, E. O., Ward, M. K., and Raney, D. E. “Two Simple Media for The Demonstration of Pyocyanin and Fluorescin”, J. Lab. Clin. Med., 44: 301-307, 1954.
  • [33] Onbaşılı, D., ‘’Çevredeki organik kirleticilerden biyoteknolojik olarak bazı ikincil metabolitlerin üretimi’’ Gazi Üniversitesi Fen Bilimleri Enstitüsü, Doktora Tezi, Ankara, 2006.
  • [34] Xia, Y., Liyuan, C., “Study of gelatinous supports for immobilizing inactivated cells of Rhizopus oligosporus to prepare biosorbent for lead ions”, The Int. J. Environ. Stud., 5: 1-6, 2002.
  • [35] Cossich, E. S., Tavares, C. R. G., Ravagnani, T. M. K., “Biosorption of chromium(III) by Sargassum sp. biomass”, Electron. J. Biotechn., 5(2): 133-140, 2002.
  • [36] Liu, Y., Lam, M. C., Fang, H. H. P., “Adsorption of heavy metals by EPS of activated sludge”, Water Sci. Technol., 43: 59–66, 2001.
  • [37] Yılmaz, E., ‘’Siyanobakterlerle ağır metal giderimi ve bunu etkileyen faktörlerin araştırılması’’, Hacettepe Üniversitesi Fen Bilimleri Enstitüsü, Doktora Tezi, Ankara. 2009.
  • [38] Philippis, R.D., Sili, C., Paperi, R., Vincenzini, M., “EPS-producing cyanobacteria and their possible exploitation: A review”, J. of App. Phycology, 13, 293 299, 2001.
  • [39] Kalantari, N., “Evaluation of toxicity of iron, chromium and cadmium on Bacillus cereus growth”, Iranian J. Basic Med. Sci., 10 (4): 222-228, 2008.
  • [40] Yamini, H., Shrivastava, S., Devaraj, N., Balachandran, U. N., “A schiff base complex of chromium(III): an efficient inhibitor for the pathogenic and invasive potential of Shigella dysenteriae”, J. Inorg. Biochem., 98: 387-392, 2004.
  • [41] Simonet, M., Berche, P., Fauchere, J. L., Veron, M., “Impaired resistance to Listeria monocytogenes in mice chronically exposed to cadmium”, Immunology, 53: 155-163, 1984.
  • [42] Solioz, M., Nakamura, R., Pan-Hou, H., Sato, M. H., Itoh, T., Kiyono, M., “Response of Gram-positive bacteria to copper stress”, J biol Inorg Chem, 15, 3-14, 2010.
  • [43] Gaetke, L. M., Chow, C. K., “Copper toxicity, oxidative stress, and antioxidant nutrients”, Toxicology, 189, 147-163, 2003.
  • [44] German, N., Doyscher, D., Rensing, C., “Bacterial killing in macrophages and amoeba: do they all use a brass dagger?”, Fature Microbial, 8,1257-1264, 2013.
  • [45] Brouwers, G. J., E., Vijgenboom, P. L. A. M., Corstjens, J. P. M., de Vrind, and E. W. de Vrind-de Jong, “Bacterial Mn2_ oxidizing systems and multicopper oxidases: an overview of mechanisms and functions”, Geomicrobiology,17:1–24, 2000.
  • [46] Fett, W.F. Wells, J.M. Cescutti, P. and Wijey, C. “Identification of Exopolysaccharides Produced by Fluorescent Pseudomonads Associated with Commercial Mushroom (Agaricus bisporus) Production”, Appl. Environ. Microbiol. 61: 513-517, 1995.
  • [47] Panwichian S. , Kantachote D. , Wittayaweerasak B. , Mallavarapu M. , 2011, “Removal of heavy metals by exopolymeric sunbtances produced by resistant purple nonsulfur bacteria isolated from contaminated shrimp ponds” , Environmental Biotechnology, Vol. 14 No. 4 , s.1-8, 2011.
  • [48] Priester J. H. , Olson S. G., Webb S. M., Neu M., P., Hersman L., E., Holden P., A., “Enhanced Exopolymer Production and Chromium Stabilization in Pseudomonas putida Unsaturated Bifilms”, Applied and Environmental Microbiology, Vol. 72, No. 3 P. 1988-1996, 2006.
  • [49] Özturk, S., Aslim, B., “Relationship between chromium(VI) resistance and extracellular polymeric substances (EPS) concentration by some cyanobacterial isolates”, Environ. Mic., 15, 478–480, 2008
  • [50] Ozturk S., Aslim B., Suludere Z., Tan S., ‘’Metal removal of cyanobacterial exopolysaccharides by uronic acid content and monosaccharide composition’’, Carbohydrate Polymers 101, 265-271, 2014.
  • [51] Şahlan Öztürk, Belma Aslım, “Modification of exopolysaccharide (EPS) composition and production by three cyanobacterial isolates under salt stress”, Environmental Science and Pollution Research , Sayı:17, Sayfalar:595-602, 2010.
  • [52] Sharma, M., Kaushik, A., Somvir, Bala., K., Karma, A., “Sequestration of chromium by exopolysaccharides of Nostoc and Gleocapsa from dilute aqueous solutions”, J. of Hazard. Mat., 157, 315-318, 2008.
  • [53] Öztürk Ş, “Çeşitli tatlı sulardan izole edilen bazı Synechocystis sp. izolatlarına Cr(VI) ve Cd(II) ağır metallerinin etkisi ve giderimi: metal gideriminin protein ve tiyoller açısından değerlendirilmesi”, Gazi Üniversitesi Fen Bilimleri Enstitüsü, Doktora Tezi, Ankara, 2008.

Circular Environmental Policies in The Industrial Production

Year 2018, Volume: 7 Issue: 2, 223 - 239, 30.12.2018
https://doi.org/10.17100/nevbiltek.402196

Abstract

In this study, 50 Pseudomonas
spp. have been isolated from the instances of waste water purification
pool. 27 Pseudomonas aeruginosa and
23 Pseudomonas stutzeri strains were
detected according to colony morphologies, Gram staining and type definitions
that have been made in the vitek 2 compact 30 (biomerieux) device. Identified
strains were exposed by 10 ppm Cr(VI), Cd(II), Cu(II) and Mn(II) concentrations
and detected their viabilities against these metals and by this way determined
the most resistant strains for each metal. Also, four different concentrations
of these metals were determined according to viability of strains. % death
values of strains were determined by treated with
metal concentrations and LC50 values of metals were calculated.
Strains selected for each metal by exposing them to the specified
concentrations, EPS isolation has been carried out. In Cr(VI) concentration it
has been found that the Pseudomonas
stutzeri
of the highest EPS production is S46 strains (74.68 mg/L) while
the lowest Pseudomonas stutzeri is
S18 (39.37 mg/L). In Cd(II) concentration; the Pseudomonas stutzeri of the highest EPS production is S23 (60.93
mg/L), while the lowest EPS production is Pseudomonas
aeruginosa
S10 strains (40.93 mg/L). In Cu(II) concentration, the Pseudomonas stutzeri of the highest EPS
production is S45 strains (76.06 mg/L) while the lowest EPS production is Pseudomonas aeruginosa S8 strains (28.28
mg/L). In Mn (II) concentration, the Pseudomonas
stutzeri
of the highest EPS production is S44 strains (46.40 mg/L), while
the Pseudomonas stutzeri of the
lowest EPS production is S50 strains (26.56 mg/L). As a result, exposed to
increasing metal dose of Pseudomonas spp.,
the amount of EPS produced by the strains has been found to be increased. By
this study it has been expressed the effect of some heavy metals of Pseudomonas spp strains, which have been
isolated from wastewater, to the EPS production in terms of biotechnology.

References

  • [1] Patterson, J. W., “Waste water treatment”, Science Publishers Inc., U.S.A., 43-55, 59-67, 69-81, 1977
  • [2] Viel, P., Palacin, S., Descours, F., Bureau, C., Le Derf, F., Lyskawa, J., Salle, M., “Electropolymerized poly-4-vinylpyridine for removal of copper from wastewater”, Appl. Surf. Sci., 212-213: 792-796, 2003.
  • [3] Gramion, F., “Analyses of microbial community structures and functions in heavy metal-contaminated soils using molecular methods”, Ph.D. thesis, Swiss Federal Institute of Technology of Lausanne, Switzerland, 1-107, 2003.
  • [4] Young, R. V., “World of Chemistry”, Gale Group, Michigan 48-77, 2000.
  • [5] Zouboulis, A. I., Loukidou, M. X., Matis, K. A., “Biosorption of toxic metals from aqueous solutions by bacteria strains isolated from metal-polluted soils”, Process Biochem., 39: 909-916, 2004.
  • [6] Förstner, U., Wittman, G. T. W., “Metal Pollution in the aquatic environment”, Springer, Berlin 197-230, 1983.
  • [7] Kartal, G., Guven, A., Kahvecioğlu, O., Timur, S., “Metallerin Cevresel Etkileri-II, www.metalurji.org.tr/dergi/dergi137/d137_4651 pdf, Mart 2009
  • [8] Gokağaçlı, N, G., “Microcystis sp. ile Demir, Bakır ve Cinko Metallerinin Giderimi”, Marmara Universitesi Fen Bilimleri Enstitusu, Yuksek Lisans Tezi, SF. 1-17, İstanbul, 2007
  • [9] Environmental and Workplace Health. Manganese, 1987
  • [10] Morgan J.J., “Chemical Equilibria and Kinetic Properties of Manganese in Natural Waters”, S.D. Faust and J.V. Hunter, editors, Principles and Applications of Water Chemistry, Wiley and Sons Inc, Newyork, 1967
  • [11] Tefloncu A., “Biyoteknoloji”, Ege Üniversitesi Yayınlar,. Bornova, İzmir, 1995.
  • [12] Sutherland, I.W., “Polysaccharases for microbial exopolysaccharides”, Carbonhydrate Polymers, 38, 319-328, 1999.
  • [13] Rangsayatorn, N., Upatham, E. S., Kruatrachue, M., Pokethitiyook, P., Lanza, G. R., “Phytoremediation potential of Spirulina (Arthrospira) platensis: biosorption and toxicity studies of cadmium”, Environ. Pollut.,119: 45-53, 2002.
  • [14] İleri, R., Çevre Biyoteknolojisi, 501-503, 2000.
  • [15] Liu, Y., Lam, M. C., Fang, H. H. P., “Adsorption of heavy metals by EPS of activated sludge”, Water Sci. Technol., 43: 59–66, 2001.
  • [16] Wang, J. L., Chen, C., “Biosorption of heavy metal by Saccharomyces cerevisiae: areview”, Biotechnol. Adv., 24 (5): 427–451, 2006.
  • [17] Donot, F. Fontana, A., Baccou, J.C., Galindo, S.S., “Microbial exopolysaccharides: main examples of synthesis, excretion, genetics and extraction”, Carbohydrate Polymers, 87, 951– 962, 2012.
  • [18] White, C., Gadd, G. M., “Accumulation and effects of cadmium on sulphatereducing bacterial biofilms”, Microbiology, 144: 1407-1415, 1998.
  • [19] Adarsh, V. K, Mishra, M., Chowdhury, S., Sudarshan, M., Thakur A. R., Chaudhuri, S. R., “Studies on metal microbe interaction of three bacterial isolates from east calcutta wetland”, J. Biol. Sci., 7: 80-88, 2007.
  • [20] Vanhaverbeke, C., Heyraud, A., Mazeau, K., “Conformational analysis of the exopolysaccharide from Burkholderia caribensis strain MWAP71: Impact of the interaction with soils”, Biopolymers, 69: 480–497, 2003.
  • [21] Yalpani M., Sandford P. A., Commercial Polysaccharides: Recent Trends and Developments. In: Yalpani M., editor, Industrial Polysaccharides Genetic Engineering, Structure/Property Relations and Applications. Amsterdam, Elsevier Science Publishers, 311-35, 1987.
  • [22] Becker A., F. Katzen A., Pühler and L., lelpie. “Xanthan Gum Biosynthesis and Application: a Biochemical/Genetic Perspective”, Appl. Microbiol. Biotechnol., 50, 145-152, 1998.
  • [23] OECD (Organization for the Economic Cooperation and Development), ‘OECD Guideline for testing of chemical: Alga, growth inhibition test’, 1984.
  • [24] APHA, AWWA, WPCF, “Standart Methods for the examination of water and wastewater”, Washington, 1971.
  • [25] Dan Li, Jiaxi Li, Feng Zhao, Guohong Wang, Qianqian Qin, Yanling Hao. “The influence of fermentation condition on production and molecular mass of EPS produced by Streptococcus thermophilus 05-34 in milk-based medium”, Food Chemistry, 197:367-372, 2016.
  • [26] Petra Kson zekova, Peter Bystricky, Silvia Vlckova, Vladimir Patoprsty, Lucia Pulzova, Dagmar Mudronova, Terezia Kuboskova, Tomas Csank, Ludmila Tkacikova, “Exopolysaccharides of Lactobacillus reuteri: Their influence onadherence of E. Coli to epithelial cells and inflammatory response”, Carbohydrate Polymers, 141:10-19, 2016.
  • [27] Sneath, P. H. A., "Bergey’s Manual of Systematic Bacteriology", Edited by P. H. A. Sneath, N. S., Mair, M. E., Sharpe, J. G. Holt, Williams and Wilkins, 1 Baltimore, 2: 141-199, 1986.
  • [28] Collier, L., Balow, A., Sussman, M., "Topley & Wilson’s Microbiology and Microbiol Infections", Systematic Bacteriology, 9th edition, 2: 1091-1118, 1998.
  • [29] Sutherland, I.W., “Polysaccharases for microbial exopolysaccharides”, Carbonhydrate Polymers, 38, 319-328, 1999.
  • [30] Steinberger, R. E. and Holden P. A., “Macromolecular composition of unsaturated Pseudomonas aeruginosa biofilms with time and carbon source”, Biofilms, 1: 37-47, 2004.
  • [31] Asthana, S., Rusin, P., and Gerba, C. P., “Influence of hydrocarbons on the virulence and antibiotic sensitivity associated with Pseudomonas aeruginosa”, Int. J. Environ. Health Research, 7: 277-287, 1997.
  • [32] King, E. O., Ward, M. K., and Raney, D. E. “Two Simple Media for The Demonstration of Pyocyanin and Fluorescin”, J. Lab. Clin. Med., 44: 301-307, 1954.
  • [33] Onbaşılı, D., ‘’Çevredeki organik kirleticilerden biyoteknolojik olarak bazı ikincil metabolitlerin üretimi’’ Gazi Üniversitesi Fen Bilimleri Enstitüsü, Doktora Tezi, Ankara, 2006.
  • [34] Xia, Y., Liyuan, C., “Study of gelatinous supports for immobilizing inactivated cells of Rhizopus oligosporus to prepare biosorbent for lead ions”, The Int. J. Environ. Stud., 5: 1-6, 2002.
  • [35] Cossich, E. S., Tavares, C. R. G., Ravagnani, T. M. K., “Biosorption of chromium(III) by Sargassum sp. biomass”, Electron. J. Biotechn., 5(2): 133-140, 2002.
  • [36] Liu, Y., Lam, M. C., Fang, H. H. P., “Adsorption of heavy metals by EPS of activated sludge”, Water Sci. Technol., 43: 59–66, 2001.
  • [37] Yılmaz, E., ‘’Siyanobakterlerle ağır metal giderimi ve bunu etkileyen faktörlerin araştırılması’’, Hacettepe Üniversitesi Fen Bilimleri Enstitüsü, Doktora Tezi, Ankara. 2009.
  • [38] Philippis, R.D., Sili, C., Paperi, R., Vincenzini, M., “EPS-producing cyanobacteria and their possible exploitation: A review”, J. of App. Phycology, 13, 293 299, 2001.
  • [39] Kalantari, N., “Evaluation of toxicity of iron, chromium and cadmium on Bacillus cereus growth”, Iranian J. Basic Med. Sci., 10 (4): 222-228, 2008.
  • [40] Yamini, H., Shrivastava, S., Devaraj, N., Balachandran, U. N., “A schiff base complex of chromium(III): an efficient inhibitor for the pathogenic and invasive potential of Shigella dysenteriae”, J. Inorg. Biochem., 98: 387-392, 2004.
  • [41] Simonet, M., Berche, P., Fauchere, J. L., Veron, M., “Impaired resistance to Listeria monocytogenes in mice chronically exposed to cadmium”, Immunology, 53: 155-163, 1984.
  • [42] Solioz, M., Nakamura, R., Pan-Hou, H., Sato, M. H., Itoh, T., Kiyono, M., “Response of Gram-positive bacteria to copper stress”, J biol Inorg Chem, 15, 3-14, 2010.
  • [43] Gaetke, L. M., Chow, C. K., “Copper toxicity, oxidative stress, and antioxidant nutrients”, Toxicology, 189, 147-163, 2003.
  • [44] German, N., Doyscher, D., Rensing, C., “Bacterial killing in macrophages and amoeba: do they all use a brass dagger?”, Fature Microbial, 8,1257-1264, 2013.
  • [45] Brouwers, G. J., E., Vijgenboom, P. L. A. M., Corstjens, J. P. M., de Vrind, and E. W. de Vrind-de Jong, “Bacterial Mn2_ oxidizing systems and multicopper oxidases: an overview of mechanisms and functions”, Geomicrobiology,17:1–24, 2000.
  • [46] Fett, W.F. Wells, J.M. Cescutti, P. and Wijey, C. “Identification of Exopolysaccharides Produced by Fluorescent Pseudomonads Associated with Commercial Mushroom (Agaricus bisporus) Production”, Appl. Environ. Microbiol. 61: 513-517, 1995.
  • [47] Panwichian S. , Kantachote D. , Wittayaweerasak B. , Mallavarapu M. , 2011, “Removal of heavy metals by exopolymeric sunbtances produced by resistant purple nonsulfur bacteria isolated from contaminated shrimp ponds” , Environmental Biotechnology, Vol. 14 No. 4 , s.1-8, 2011.
  • [48] Priester J. H. , Olson S. G., Webb S. M., Neu M., P., Hersman L., E., Holden P., A., “Enhanced Exopolymer Production and Chromium Stabilization in Pseudomonas putida Unsaturated Bifilms”, Applied and Environmental Microbiology, Vol. 72, No. 3 P. 1988-1996, 2006.
  • [49] Özturk, S., Aslim, B., “Relationship between chromium(VI) resistance and extracellular polymeric substances (EPS) concentration by some cyanobacterial isolates”, Environ. Mic., 15, 478–480, 2008
  • [50] Ozturk S., Aslim B., Suludere Z., Tan S., ‘’Metal removal of cyanobacterial exopolysaccharides by uronic acid content and monosaccharide composition’’, Carbohydrate Polymers 101, 265-271, 2014.
  • [51] Şahlan Öztürk, Belma Aslım, “Modification of exopolysaccharide (EPS) composition and production by three cyanobacterial isolates under salt stress”, Environmental Science and Pollution Research , Sayı:17, Sayfalar:595-602, 2010.
  • [52] Sharma, M., Kaushik, A., Somvir, Bala., K., Karma, A., “Sequestration of chromium by exopolysaccharides of Nostoc and Gleocapsa from dilute aqueous solutions”, J. of Hazard. Mat., 157, 315-318, 2008.
  • [53] Öztürk Ş, “Çeşitli tatlı sulardan izole edilen bazı Synechocystis sp. izolatlarına Cr(VI) ve Cd(II) ağır metallerinin etkisi ve giderimi: metal gideriminin protein ve tiyoller açısından değerlendirilmesi”, Gazi Üniversitesi Fen Bilimleri Enstitüsü, Doktora Tezi, Ankara, 2008.
There are 53 citations in total.

Details

Primary Language Turkish
Subjects Engineering
Journal Section Diğer Bölümler
Authors

Süleyman Yalçın

Şahlan Öztürk

Berrin Keloğlu This is me

Publication Date December 30, 2018
Acceptance Date December 31, 2018
Published in Issue Year 2018 Volume: 7 Issue: 2

Cite

APA Yalçın, S., Öztürk, Ş., & Keloğlu, B. (2018). Atık Sulardan İzole Edilen Pseudomonas Spp.’ lerin Ekzopolisakkarit Üretimine Bazı Ağır Metallerin Etkisi. Nevşehir Bilim Ve Teknoloji Dergisi, 7(2), 223-239. https://doi.org/10.17100/nevbiltek.402196
AMA Yalçın S, Öztürk Ş, Keloğlu B. Atık Sulardan İzole Edilen Pseudomonas Spp.’ lerin Ekzopolisakkarit Üretimine Bazı Ağır Metallerin Etkisi. Nevşehir Bilim ve Teknoloji Dergisi. December 2018;7(2):223-239. doi:10.17100/nevbiltek.402196
Chicago Yalçın, Süleyman, Şahlan Öztürk, and Berrin Keloğlu. “Atık Sulardan İzole Edilen Pseudomonas Spp.’ Lerin Ekzopolisakkarit Üretimine Bazı Ağır Metallerin Etkisi”. Nevşehir Bilim Ve Teknoloji Dergisi 7, no. 2 (December 2018): 223-39. https://doi.org/10.17100/nevbiltek.402196.
EndNote Yalçın S, Öztürk Ş, Keloğlu B (December 1, 2018) Atık Sulardan İzole Edilen Pseudomonas Spp.’ lerin Ekzopolisakkarit Üretimine Bazı Ağır Metallerin Etkisi. Nevşehir Bilim ve Teknoloji Dergisi 7 2 223–239.
IEEE S. Yalçın, Ş. Öztürk, and B. Keloğlu, “Atık Sulardan İzole Edilen Pseudomonas Spp.’ lerin Ekzopolisakkarit Üretimine Bazı Ağır Metallerin Etkisi”, Nevşehir Bilim ve Teknoloji Dergisi, vol. 7, no. 2, pp. 223–239, 2018, doi: 10.17100/nevbiltek.402196.
ISNAD Yalçın, Süleyman et al. “Atık Sulardan İzole Edilen Pseudomonas Spp.’ Lerin Ekzopolisakkarit Üretimine Bazı Ağır Metallerin Etkisi”. Nevşehir Bilim ve Teknoloji Dergisi 7/2 (December 2018), 223-239. https://doi.org/10.17100/nevbiltek.402196.
JAMA Yalçın S, Öztürk Ş, Keloğlu B. Atık Sulardan İzole Edilen Pseudomonas Spp.’ lerin Ekzopolisakkarit Üretimine Bazı Ağır Metallerin Etkisi. Nevşehir Bilim ve Teknoloji Dergisi. 2018;7:223–239.
MLA Yalçın, Süleyman et al. “Atık Sulardan İzole Edilen Pseudomonas Spp.’ Lerin Ekzopolisakkarit Üretimine Bazı Ağır Metallerin Etkisi”. Nevşehir Bilim Ve Teknoloji Dergisi, vol. 7, no. 2, 2018, pp. 223-39, doi:10.17100/nevbiltek.402196.
Vancouver Yalçın S, Öztürk Ş, Keloğlu B. Atık Sulardan İzole Edilen Pseudomonas Spp.’ lerin Ekzopolisakkarit Üretimine Bazı Ağır Metallerin Etkisi. Nevşehir Bilim ve Teknoloji Dergisi. 2018;7(2):223-39.

Dergimizin tarandığı indeksler


12300          20980     2097822081